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1. Gravitational Instability

The generally accepted theoretical framework for the formation of structure is that of gravitational
instability. The gravitational instability scenario assumes the early universe to have been almost perfectly
smooth, with the exception of tiny density deviations with respect to the global cosmic background
density and the accompanying tiny velocity perturbations from the general Hubble expansion.

The minor density deviations vary from location to location. At one place the density will be slightly
higher than the average global density, while a few Megaparsecs further the density may have a slightly
smaller value than on average. The observed fluctuations in the temperature of the cosmic microwave
background radiation are a reflection of these density perturbations, so that we know that the primordial
density perturbations have been in the order of 10−5. The origin of this density perturbation field has
as yet not been fully understood. The most plausible theory is that the density perturbations are the
product of processes in the very early Universe and correspond to quantum fluctuations which during
the inflationary phase expanded to macroscopic proportions1

Originally minute local deviations from the average density of the Universe (see fig. 1), and the
corresponding deviations from the global cosmic expansion velocity (the Hubble expansion), will start
to grow under the influence of the involved gravity perturbations. The gravitational force acting on each
patch of matter in the universe is the total sum of the gravitational attraction by all matter throughout
the universe. Evidently, in a homogeneous Universe the gravitational force is the same everywhere. In
a universe with minute density perturbations this will be no longer true, the density perturbations will
induce local differences in gravity. In the vicinity of a region with a higher density the surplus of matter
will exert an attractive gravitational force larger than the average value, near low density regions a
deficit in matter will lead to a weaker force. Because of the differences in gravitational force the extent
to which the expansion of the Universe will be decelerated will differ per location (or, from the moment
onward that dark energy attains a dominant cosmic influence, it will not accelerate anymore to the same
extent). During its early evolution an overdensity will experience a gradually stronger deceleration of
its expansion velocity so that its its initial expansion will increasingly slow down with respect to the
global Hubble expansion. Because matter gets attracted slightly more by a region of higher density
it will also have the tendency to move towards that region. The mass of the overdensity will increase
correspondingly, the slow-down of the initial cosmic expansion gets correspondingly stronger. When the
region has become sufficiently overdense the mass of the fluctuation will have grown so much that its
expansion may even come to a halt. The region decouples completely from the Hubble expansion, it
turns around and starts to contract. If or as long as pressure forces are not sufficient to counteract the
infall, the overdensity will grow without bound, and assemble more and more matter by accretion of

1As the result of a phase transition the very early Universe went through a phase of an astonishingly rapid exponential
expansion. During this phase the universe expanded by a factor e

100. A good candidate for this phase transition is the
GUT (Grand Unified Theory) transition, about 10−36 sec after the Big Bang. In this phase transition the strong nuclear

force splitted itself off from the electroweak force. Not only would inflation offer an explanation for why the cosmos has a
flat geometry, but also for the origin of the primordial density fluctuations and thus for the origin of all structure in the
Universe.
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Figure 1. Example of a random field of Gaussian density fluctuations. The figure illustrates the corre-
sponding density field realization in a plane by means of a surface plot.

matter from its surroundings (for an illustration of the process see fig. 3. Ultimately this will turn into
a full collapse to form a gravitationally bound object. By means of the mutual exchange of energy the
matter in the collapsed overdensity will seek to reach virial equilibrium. Once it has settled as such a
genuine recognizable cosmic object has formed. Their precise nature (galaxy, cluster, etc.) and physical
conditions are determined by the scale, mass and surroundings of the initial fluctuation.

The opposite tendency may be seen to occur in the case of primordial density depressions. Because
they contain less matter than on average, the deceleration of the matter in and around such an underdense
region is less than that of the global Hubble expansion. Matter will therefore tend to get displaced
somewhat further, with the net result of matter streaming out of the interior of the underdensities
and them expanding with respect to the global Universe. As the process continues and becomes more
pronounced the gravitational instability process results in the gradual emergence of a void in the matter
distribution.

The early linear stages of structure formation have been succesfully and completely worked out within
the context of the linear theory of gravitationally evolving cosmological density and perturbation fields
(Peebles 1980). At every cosmologically interesting scale, it aptly and succesfully describes the situation
in the early eons after the decoupling of radiation and matter at recombination. However, we should
also be aware of the fact that linear theoretical predictions fail soon after gravity surpasses its initial
moderate imprint and nonlinear features start to emerge. Primordial density perturbations on a small
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scale appear to have a much higher amplitude than those on larger scales. This leads to a hierarchical
process of structure formation, with small-scale perturbations being the first one to become nonlinear and
develop into cosmic objects. This also implies that at any cosmic epoch we can identify spatial scales
over which the spatially averaged perturbations still reside in a linear phase and the spatial density
field resembles that of a panorama of gently sloping hills. At present this concerns scales larger than
≈ 10h−1Mpc. If we assume, or impose, the condition that one may discard the smaller scale structures
which such large linear perturbations contain (the smaller-scale nonlinear and linear structures), the
linear analysis of structure evolution is at the present cosmic epoch still valid for these large Megaparsec
scales. By implication, the study of the cosmic mass distribution and cosmic flows on scales larger than
≈ 10h−1Mpc is therefore based on the framework of linear perturbation theory.

We will thus first set out to analyze the early linear phase of structure formation. It will help us to
develop an intuition for the processes involved with gravitational instability. It will also provide us with
an important set of tools for analyzing the observations of structure of the Universe on scales exceeding
≈ 10h−1Mpc, and as well that of the structure of the primordial Universe as observed through the
angular distribution of the microwave background temperature.

2. Perturbation Quantities

The description of the formation and evolution of structure in the Universe, against the background
of the global, expanding, and uniform FRW Universe it is preferrable to focus on the quantities that
specify the development of the corresponding density and velocity deviations from the global cosmic
background. In other words, we wish to relegate the background FRW Universe also literally to the
background of our formalism. Note, however, that the reality of the Hubble expansion will always be
present and will therefore also appear, in a different disguise, in the resulting equations.

2.1. Comoving Coordinates

The location of an object of parcel of matter/radiation in the Universe is specified by its physical
coordinates r. In an expanding Universe, its evolution is dictated by the Hubble expansion. For an
ideal uniform FRW Universe, only the Hubble expansion changes the coordinate. Because the Hubble
expansion is uniform throughout the Universe we have seen that it can be encrypted in a universal
expansion factor a(t), such that the location r of any object moves along,

r(t) = a(t)x . (1)

By convention, we have chosen the dimensionless expansion factor a(t) such that a(t0) = a0 = 1 for the
present cosmic epoch. By definition of course a(t = 0) = 0 at the very time of the Big Bang itself. The
comoving position x remains fixed in an FRW Universe, one may see it as the location at which an object
is pinned to the expanding background Universe and subsequently moves along with the expansion of
that background.

While in a pure FRW Universe x remains fixed in time, in the context of structure formation it will
change due to the corresponding displacements in comoving space. Once there are gravity perturbations
inducing motions of objects with respect to the background Universe the position r of an object will not
only evolve through the development of a(t): also the comoving coordinate x becomes a time-dependent
quantity x(t).

It is therefore much more convenient, optimizing the visibility of the displacement of an object in
comoving space, to focus on its comoving position x(t)
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Figure 2. A region of the CMB sky as observed by the WMAP microwave background satellite. The
grayscale map represents temperature fluctuations in the CMB, with an amplitude of ∆T ≈ 10−5K,
reflecting underlying primordial density and velocity perturbations. These are the seeds of the structure
observed in the present Universe.
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x(t) =
r(t)

a(t)
(2)

2.2. Density Perturbations

Perturbations from the global Universe may come in a variety of ways (see later chapter on perturbation
character, treating issues such as adiabatic fluctuations). The primary perturbation mode involves the
(energy) density ρ(r, t) at a particular cosmic location r.

By virtue of the Cosmological Principle the background FRW Universe has a global uniform density
ρu(t). In an unperturbed Universe the density has the same value throughout the Universe, ρ(r, t) =
ρu(t). For notational purposes, we distinguish the background density at a cosmic time t from the local
density values ρ(r, t) and denote it by ρu(t).

The density perturbation at a comoving location x is most conveniently characterized by its fractional
difference δ(x, t with respect to the the background Universe,

δ(x, t) ≡ ρ(x, t)− ρu(t)

ρu(t)
(3)

Arguably, the quantity δ may be considered to be the key quantity of this course. Structure formation
is all about the growth of δ in an expanding and evolving Universe ! Evidently, in an unperturbed
Universe with ρ(r, t) = ρu(t) everywhere δ(x, t) = 0. In fact, this will be true at any time by lack of any
gravitational source to generate fluctations (see eqn. 108).

Note that positive density fluctuations may in principle grow limitless: galaxies correspond to δ ≈ 106

fluctuations, clusters of galaxies to δ = 1000 fluctuations on a scale of Rc = 1.5h−1Mpc correspond and
in principle there is nothing to prevent collapse to δ =∞. Negative density perturbations, on the other
hand, have a strict lower limit, δ = −1. Emptier than empty does not exist. Nonetheless, theoretically we
will see that we do in fact sometimes make calculations with negative δ values, for example corresponding
to a hypothetical linear growth of primordial perturbations. Thus, always take care to appreciate the
context ! In a full and detailed treatment of (energy) density perturbations in the Universe we should

differentiate between the contributions of the different components of the Universe. Radiation, Dark
Matter, Baryonic Matter and Dark Energy have their own individual cosmological history. The total
energy density ρ(r, t) is the sum of the various components in the Universe,

ρ(r, t) = ρb(r, t) + ρDM (r, t) + ρrad(r, t) + ρv(r, t)

Cosmological epochs are identified by the components which are gravitationally dominant and dictate
their dynamical evolution. In terms of their global gravitational influence dark matter and baryonic
matter contribute and evolve equivalently. On cosmological scales we may therefore combine them into
a total matter density ρm = ρu + ρDM . In this chapter we will make no further distinction between
baryonic and dark matter and include both components in the total matter contribution.

The corresponding perturbations in the energy density of the Universe are therefore composed of
perturbations in the various cosmic components,

ρu(t)δ(r, t) = ρb,uδb + ρDM,uδDM + ρrad,uδrad + ρv,uδv . (4)
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Each component may have its own (primordial) perturbation character. Dark energy does not have
any density fluctuations, i.e. δv = 0 always, a result of its negative pressure and repulsive gravity.
Cosmological perturbations will evolve quite differently for different perturbation modes, each iden-
tified on the basis of the nature of radiation perturbations with respect to the matter perturbations.
The mode of isothermal perturbations only involves matter perturbations, radiation would remain
distributed uniformly throughout the Universe. On the other hand, the primordial perturbations δm
and δrad of matter and radiation may be completely equivalent (except for a constant proportionality
factor), corresponding to a zero fluctuation in the entropy. These are called adiabatic perturbations.
A third mode of perturbations is that of isocurvature perturbations in which radiation and matter
perturbations cancel each other such that the local curvature remains equal to the global cosmological
curvature. Moreover, the evolution of the various components is complicated to a considerable extent
by their mutual interactions. A simple illustration is that of baryonic matter initially without density
perturbations: while dark matter creates ever deeper potential wells baryonic matter will fall in and
experience increasing density perturbations. Also, in the pre-recombination epoch baryonic matter is
closely coupled to radiation so that its evolution is seriously affected by the corresponding radiation
pressure gradients.

In the analysis in this chapter of the linear evolution of perturbations we will mainly concentrate on
the evolution of individual components of the Universe. As most of the structure formation happens
during the matter-dominated era, this mainly involves an assessment of linear evolution of matter per-
turbations. While this single component analysis is superior in providing insight into the essentials of
structure formation, it is clear that a formal treatment will be more complex. Towards the end of the
chapter we will treat a simple situation of perturbation evolution in a Universe filled with radiation and
matter.

2.3. Pressure Perturbations

Together with perturbations in the spatial energy density distribution we also find perturbations in
the pressure of corresponding cosmic media. The resulting pressure gradients will have a considerable
impact on the evolution of structure, the pressure forces do counteract gravitational contraction. Proper
and complete treatment of gravitational instability should include this. A more appropriate name for
“gravitational instability” therefore goes by the name of “Jeans Instability”.

We will see in chapter 6 that structure will only be able to form when gravity prevails over the
pressure forces. This will be possible when the corresponding mass scale is larger than the characteristic
Jeans Mass, the mass set by the sound speed in the medium: as long as pressure waves – soundwaves –
can travel through the entire perturbation within in less than its collapse timescale gravitational collapse
will be withhold by the pressure gradients in the medium.

With respect to the total pressure P (r, t) we may identify the pressure perturbation p(r, t) with
respect to the global pressure Pu,

p(r, t) = P (r, t) − Pu , (5)

whereby we should remark that physically the difference between P and p is only in the relativistic
source term for the gravitational field (Poisson equation). For the pressure force, the result of pressure
gradients, there is not distinction between p and P .

Cosmic pressure includes three contributions. Dark Matter is assumed to consist of weakly inter-
acting particles and to form a pressureless medium (note that strictly speaking this would not be true
for a medium of relativistic cosmic neutrinos). Total pressure is therefore the sum of the pressure in the
baryonic matter, in radiation and in the dark energy,

P (r, t) = Pb(r, t) + Prad(r, t) + Pv(r, t) .

As for its contribution to the gravitational field the contribution by the baryonic pressure can be ignored.
It is always much less than the corresponding energy density, Pb ≪ ρb/c

2. Meanwhile, because dark
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energy remains a perfectly uniformly distributed medium (see sect. ??), the contributions to pressure
perturbations (and gradients) are confined to those in the baryonic matter and radiation,

p(r, t) = pb(r, t) + prad(r, t) .

Pressure forces are very important during the pre-recombination era. During the radiation-dominated
epoch this is self-evident. After matter takes over as gravitationally dominant component and until
recombination, radiation pressure remains the main agent for pressure forces through the tight coupling
between baryonic matter and radiation.

2.4. Velocity Perturbations

In addition to density perturbations we usually are dealing with velocity perturbations. They are
usually intimately coupled to the density perturbations. The corresponding gravity perturbations do
induce velocities. Theoretically, there might be extra velocity perturbation contributions. Mostly, we
will consider the socalled growing mode situation in which they are entirely coupled.

In an unperturbed FRW Universe all matter is moving along with the Hubble expansion, characterized
by the Hubble parameter H(t),

H(t) =
ȧ

a
. (6)

An object at a location r has a Hubble velocity vH(r),

vH(r) = H(t) r (7)

which in terms of its comoving coordinate is vH = ȧx. In the generic perturbed case there is an additional
velocity perturbation v, often known by the name of peculiar velocity. The total velocity u of an object
is then given by

u(r, t) = vH(x, t) + v(x, t) . (8)

Given the fact that r = a(t)x(t), we may easily see that

u =
dr

dt
= ȧx + aẋ

= vH(x, t) + a(t)ẋ . (9)

In other words, the peculiar velocity v is the quantity describing the change in comoving position x,

v = a(t)ẋ (10)

2.5. Potential Perturbations

The perturbed gravitational field corresponding to the density perturbations will be specified by a
location-dependent gravitational potential Φ. It is related to the density/energy fluctuations via the
Poisson equation. In the generic cosmological situation we have to take into account of the contribution
by matter, but also by that of the relativistic media of radiation and dark energy. Strictly speaking one
needs to resort to a fully general relativistic treatment. However, in the situation we will be considering
the radiation and dark energy fields are so weak that we can resort to a special relativistic treatment
and use Newtonian gravity with a relativistic source term,

∇2
rΦ = 4πG

(

ρ(r, t) +
3P

c2

)

. (11)
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In the epoch of most interest for structure formation, the matter-dominated era, we may neglect the
relativistic pressure contributions because its contribution is considerably smaller than the energy density
of the Universe,

P ≪ ρ c2 . (12)

This allows us to restrict ourselves to the conventional Newtonian continuity equation

∇2
rΦ = 4πGρ(r, t) . (13)

In the equations above we already explicitly tagged the ∇2 operator with an index r to indicate it is with

respect to the physical coordinate system r. Because we are only interested in the perturbation with
respect to the background, we split the potential Φ in a background contribution Φu and a potential
perturbation component φ. The background potential

Φu =
1

2
aäx2 , (14)

includes the contribution by the background energy densities ρm,u, ρrad,u and ρv,u as well as that of the
global relativistic pressure contributions Prad,u and Pv,u. The potential perturbation φ is therefore given
by

φ(x, t) = Φ(r, t) − 1

2
aäx2 (15)

Because the complete inventory of the uniformly distributed dark energy is included in the background
potential Φu, it does not contribute anything to the potential perturbation φ. The perturbed Poisson
equation (see section 3.3) specifies the relation between the potential perturbation φ and its sources, the
perturbations in the matter density as well as those in the radiation energy density and pressure.

2.6. Peculiar Gravity

Having defined the potential perturbation φ(x, t), we may proceed to define the corresponding peculiar
acceleration. The peculiar gravitational acceleration g is the extra acceleration with respect to the FRW
background, and thus the gradient of the potential perturbation,

g(x, t) ≡ −∇φ

a
(16)

Note that the gradient in this equation is also with respect to the comoving coordinate system x, leading
to the extra factor a(t) in the divisor. In addition, one may easily appreciate that with

r̈ = äx + 2ȧẋ + aẍ

= äx + g(x, t)

(17)

v̇ = ȧẋ + aẍ

we find that the peculiar velocity v and the peculiar acceleration g are related through the relation
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Figure 3. Gravitational Instability: schematic presentation of process. Top lefthand: contour map of a
(Gaussian) stochastic density field. Top righthand: the resulting gravitational force field. Lower lefthand:
resulting (nonlinear) particle distribution. Lower righthand: vector map corresponding velocity field

g(x, t) =
1

a

d(av)

dt
(18)

Thus while one easily recognizes the conventional relation of the gravitational acceleration being the
time derivative of the velocity, through the definition of the perturbation quantities and the choice to
work in comoving coordinates x we introduce extra factors a(t).

3. Equations of Motion

Having established the physical perturbation quantities, we can set out to describe the full evolution of
a system of coupled cosmic density-, velocity- and gravity fields.

On the large Megaparsec scales we are studying the formation of structure we may consider the
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matter and radiation content of the Universe as a continuous fluidum. In other words, we may gloss
over the details of a discrete matter distribution. The dynamics of the Megaparsec Universe appears
to be mainly governed by dark matter. Hypothetically the most plausible possibility is that it exists of
as yet unidentified weakly interacting elementary particles. With discreteness restricted to microscopic
levels, a continuous matter distribution is a perfectly good approximation on Megaparsec scales. Also the
baryonic matter distribution is perfectly suited for a description in terms of a fluidum approximation. At
later epochs, however, the approximation will break down on scales smaller than a hundred kiloparsec.
At these small scales discrete objects, galaxies and stars, have condensed out of the cosmic matter
distribution. As an illustration consider the evolution of a globular cluster: containing in the order of
105-106 stars its dynamical evolution may not be properly understood without taking into account the
discrete nature of its matter distribution. Nonetheless, on cosmological Megaparsec scales the fluidum
approximation remains a reasonable and very useful one. Even the evolution of perturbations in the
radiation energy density, consisting of a sea of photons (and also cosmic background neutrinos), may be
analyzed in terms of a fluidum.

The evolution of a fluid is dictated by three fluid equations. The continuity equation or energy
equation describes the conservation of energy (mass). The Euler equation is the force-law describing
the acceleration of the fluid elements as a result of the gravitational force and pressure (gradient) in the
fluid. The sources for the gravitational field are specified by the Poisson equation. The prevailing
pressure of a medium is obtained through the equation of state, specifying the nature of the cosmic
fluid.In the following we will introduce these equations. We do this in the physical coordinate system
r and on the basis of the full physical quantities. These are the density ρ(r, t) at a location r, the
corresponding total velocity u(r, t), and total gravitational potential Φ(r, t) as well as the pressure
P (r, t) of the medium.

In the following we will first treat the fluid equations for a strictly matter-dominated Universe. As has
been mentioned earlier the Universe does contain two important relativistic media, radiation and dark
energy. Strictly speaking for these media we should resort to a fully general relativistic treatment, but
because the cosmologically interesting situations involve weak fields for these media we may use specially
relativistic fluid mechanics and Newtonian gravity with relativistic source terms. Ignoring radiation, a
rather decent approximation at the present epoch given that Ωr,0 ≈ 10−5, we can even assert that the
perturbation fluid equations are valid for a Universe filled with matter and dark energy. Because
of its negative pressure and repulsive gravity perturbations in the dark energy component will not be
able to develop so that it remains a purely uniform medium. Following the transformation to the fluid
equations in comoving space, subtracting the background components, we will be left with exactly the
same equations as in the pure matter-dominated situation.

3.1. Continuity Equation

The first equation, the Continuity Equation or Energy Equation, assures the conservation of energy
(mass). It guarantees that the growth (or decrease) of mass in a particular volume of space is equal to
the netto amount of matter flowing into the volume (the flux). For the non-relativistic matter component
in the Universe we have the conventional Newtonian continuity equation,

∂ρ

∂t
+ ~∇r · ρ~u = 0 (19)

Within the context of our assessment of gravitational instability, the continuity equation establishes the
significant link between the density ρ(r, t) of a medium and the corresponding velocity flow u(r, t).

Both radiation and dark energy are cosmic components whose nature makes it necessary to use
a modified, special relativistic, energy equation. The corresponding inertia term needs to include the
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pressure inertia contribution,

ρ 7−→ ρ+
P

c2
. (20)

and the Energy Equation becomes

∂ρ

∂t
+ ~∇r ·

(

ρ +
P

c2

)

~u = 0 (21)

3.2. Euler Equation

The Euler equation, of force equation, specifies the sources of the velocity flows in our cosmic
fluidum. Evidently, one needs forces to set the fluidum into motion. The two we take into account are
the gravitational force, the integrated gravitational attraction by all matter in the Universe, and the
force due to the pressure in the medium. We will make the reasonable approximation to discard any
influence of magnetic fields on these scales (be it that we may not forget about them !).

The Euler equation embodies Newton’s second law for a fluidum, specifying the acceleration of a
particular parcel of fluid on the lefthand side and the accelerating force terms on the righthand side,

∂~u

∂t
+

(

~u · ~∇r

)

~u = −1

ρ
~∇rP − ~∇rΦ (22)

Note that here the fluid equations are written in Eulerian language. That is, we act as if we are fixed
to a particular location r and then look how a quantity changes at the spot. Often it is more insightful
in terms of the physics involved to take a Lagrangian point of view. This implies us to travel along
with a particular fluid element. The acceleration of such a fluid element is precisely the full lefthand
term of the Euler equation:

d~u

dt
≡ ∂~u

∂t
+ (~u · ~∇r) ~u . (23)

For the radiation component the Euler equation concerns a slightly modified version as it involves
the contribution by pressure to the inertia of the medium,

ρ 7−→ ρ+
P

c2
. (24)

so that the special relativistic Euler Equation is specified by the relation

∂~u

∂t
+

(

~u · ~∇r

)

~u = − 1
(

ρrad + Prad/c
2
)

~∇rP − ~∇rΦ (25)
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3.3. Poisson Equation

Having established that the gravitational potential Φ and the pressure p are the agents of the velocity
flows in the cosmic fluidum, we need to establish what their ultimate source is.

The gravitational field Φ is induced by the total cosmic matter and energy distribution ρ(r, t). The
most general case involves the contributions by radiation and dark energy components as sources for the
gravitational field. This means that we also need to take into account their pressure contributions,

∇2
rΦ = 4πG

(

ρ(r, t) +
3P

c2

)

. (26)

Notice that the source term is the sum of all components in the Universe, including the contributions by
the energy density of baryonic matter, dark matter, radiation and dark energy, as well as the pressure
contributions by baryonic matter, radiation and dark energy,

ρ(r, t) = ρb(r, t) + ρDM (r, t) + ρrad(r, t) + ρv(r, t)

(27)

P (r, t) = Pb(r, t) + Prad(r, t) + Pv(r, t)

≈ Prad(r, t) + Pv(r, t)

In the above we assume that dark matter consists of weakly interacting particles, forming a pressureless
medium. Because the pressure of a normal baryonic gas is always much less than its density, Pb ≪ ρu/c

2,
we may discard its contribution to the gravitational potential. In a matter-dominated Universe we only

need to take into account the matter density of matter as source of the gravitational potential in the
Universe, leaving us the pure Newtonian form of the Poisson equation,

∇2
rΦ = 4πG ρ (28)

By subtracting the background contribution from the Poisson equation, we obtain the Poisson equation
for for the perturbed potential φ,

∇2
xφ = 4πGa2 [ρm(x, t)− ρm,u(t)] ,

= 4πGa2 ρm,uδm(x, t) . (29)

Because dark energy does not contribute to the potential perturbation, this equation is also valid for a

Universe consisting of matter and dark energy. This is indeed the situation pertaining at the current
epoch (see sect 8).

When we also have to take into account the gravitational influence of radiation, essentialy before and
around the matter-radiation equivalence epoch (and mostly up to the recombination era), the Poisson
equation gets modified through the presence of the radiation pressure contribution (see sect 9.2):

∇2
xφ = 4πGa2 [ρm(x, t)− ρm,u(t)] +

4πGa2 [ρrad(x, t)− ρrad,u(t)] + 4πGa2

[

3prad(x, t)

c2

]

⇓ (30)

∇2
xφ = 4πGa2 [ρm,uδm(x, t) + 2ρrad,uδrad(x, t)]
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In this we have used the equation of state for radiation (see next section),

Prad =
1

3
ρradc

2 . (31)

3.4. Equation of State

The pressure P in a particular medium of density ρ depends on its nature. Its value depends on the
density of the medium as well as its entropy, specified through the the equation of state,

P = P (ρ, S) (32)

Note that in addition to the density ρ the equation of state is also dependent on the entropy S of the
fluid.

Within a cosmological context, the equation of state for the different components is usually characterized
by a constant w,

P (ρ) = w ρc2 (33)

In the case of matter, strictly speaking for the approximation of “cosmic dust”, pressure is assumed to
be negligible on cosmological scales: wm = 0. On (comoving) scales smaller ≈ 1Mpc this approximation
is not really appropriate, pressure forces in the baryonic matter component will become a significant
influence. Here we will neglect it. Radiation is known to have wrad = 1

3 . Dark energy, seemingly
dominant at the current cosmic epoch, has a value −1 < lewv < −1

3 .

3.5. Fluid Equations: total

In summary, for a particular cosmological component j, with an energy density ρj and equation of
constant parameter wi, the resulting full set of three fluid equations is

∂ρj
∂t

+ ~∇r · (1 + wj)ρj~u = 0

∂~u

∂t
+

(

~u · ~∇r

)

~u = − 1

(1 + wj)ρj
~∇rP − ~∇rΦ

∇2
rΦ = 4πG

{

∑

l

(1 + 3wl) ρl

}

in which the Poisson equation includes the sum over all components (matter, radiation and dark energy)
in the Universe. In the analysis in this chapter we will discard the role of pressure forces −~∇rP , and
thus continue without this term in the Euler equation.
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4. Perturbations: from physical to comoving coordinates

The purpose of our analysis is to study the evolution of perturbations with respect to the background
FRW Universe. Such an analysis is considerably facilitated by translating the above three fluid equations,
formulated with respect to physical coordinates and in terms of full physical quantities, to a set of fluid
equations with respect to comoving coordinates and in terms of perturbation quantities. In other words,
instead of evaluating the

• density ρ(r, t) ,

• velocity u(r, t) ,

• gravitational potential Φ(r, t) ,

with respect to the physical coordinate system r, we will evaluate the evolution of the

• density perturbation δ(x, t) ,

• peculiar velocity v ,

• potential perturbation φ .

For a cosmic component j (matter, radiation or dark energy) the resulting set of fluid equations is:

∂δj
∂t

+
(1 + wj)

a
~∇x · (1 + δj)~v = 0

∂~v

∂t
+

1

a

(

~v · ~∇x

)

~v +
ȧ

a
~v = −1

a
~∇xφ

∇2
xφ = 4πG a2

{

∑

j

(1 + 3wj) ρj,u δj

}

In the above set of equations we still explicitly tagged the gradient and nabla operators by an index ′′x′′.
Because these equations are going to be the basis of our further evaluations, this index will be dropped
in the remainder of this chapter. Unless otherwise stated or indicated these operators are defined with
respect to comoving coordinates x.

Because energy density fluctuations in the dark energy component do not exist (see section 8), the
sum in the Poisson equation only needs to include the component of matter and radiation. During the
matter-dominated epoch of structure formation, the most important one, also the radiation contribution
may be neglected.

Of the comoving fluid equations the Poisson equation is the one most resembling its original form in
physical coordinates. The background cosmology figures in via the FRW background density ρj,u and
the cosmological expansion factor a(t). Also the continuity equation in comoving space x retains a close
resemblance to its form in physical space r. The background cosmology enters via the expansion factor
a(t) in front of the divergence term. The Euler equation is the one mostly affected, it includes an extra
factor

ȧ

a
v . (34)
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This term may be considered as a “Hubble expansion drag term”. Due to the expansion of the background
FRW Universe velocity perturbations get gradually damped: the extra displacement involved with the
peculiar velocity will bring the motion of a particle more and more in agreement with the background
Hubble expansion and the motion of the particle gets more and more in line with the expected Hubble
expansion. The only way to sustain and increase velocity perturbations is therefore the righthand source
term, the influence of the gravitational field.

One may appreciate this most directly by rewriting the Euler equation into its Lagrangian formula-
tion. Through the translation from a comoving Eulerian to a comoving Lagrangian formulation

d

dt
⇒ ∂

∂t
+

1

a
v · ∇ , (35)

we can rewrite the Euler equation

∂v

∂t
+

1

a
(v · ∇) v +

ȧ

a
v = −1

a
∇φ

⇓ (36)

dv

dt
= − ȧ

a
v − 1

a
∇φ

This leads to an immediately recognizable equation of motion,

d av

dt
= −∇φ . (37)

EXERCISE: Show how you can transform the fluid equations in physical coordinate system (eq: 34)
to fluid equations in comoving coordinate system (eq: 34). It is most convenient to do this by
restricting yourself to one medium, matter, in the matter-dominated epoch.

5. Linear Evolution

While the set of three fluid equations form a fully selfconsistent description of the cosmic fluidum, in
the general situation an analytical evaluation is not feasible. We may understand this already from a
superficial evaluation of eqn. (34). The presence of higher order terms like

• δ(x)v in the continuity equation

•
(

~v · ~∇x

)

~v in the Euler equation

reflects the nonlinearity of a generally evolving system. Nonlinear couplings between the various pertur-
bation quantities will render the system insolvable for generic density and velocity fields.

A very important and crucial exception to this is the situation in which the density and velocity pertur-
bations are still very small. In that case the coupling terms are negligible and can be discarded, yielding
a linearized set of fluid equations. This linear system can be fully solved. The linear regime is defined
by density and velocity perturbations of a small amplitude. In explicit terms this means

δ ≪ 1

(38)
(

vtexp

d

)2

≪ δ
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where d is the coherence length for spatial variations of δ, v the characteristic fluid velocity and texp the
expansion time ∼ (Gρu)−1/2 (see Peebles 1980, § 10). The Linear Regime of gravitational clustering
is extremely important for a variety of reasons.

• First, we know that on all scales primordial fluctuations were extremely small, δ ≪ 1. On all scales
the first instances of structure formation were linear in character.

• Also, the linear stage of structure development is a relatively long lasting one. Once a perturbation
is entering the nonlinear regime, δ ≈ 1, we will notice ever shorter timespans in which particular
higher order moments are dominant.

• One may always find large scales on which the density and velocity perturbations still reside in the
linear regime. A the current cosmic epoch this concerns spatial scales larger than ≈ 10h−1Mpc.

• With experiments measuring the temperature fluctuations in the cosmic microwave background,
we have established a probe to directly measure the prevailing linear density fluctuations at the
recombination era. By working out the structure growth in the linear regime we will be enabled
to translate these into the amplitude of fluctuations at the current epoch, against which we can
compare the measured large scale structure in the galaxy distribution.

Under the conditions of linearity (eq. 39) we may discard the higher order terms δv and
(

~v · ~∇x

)

~v.

Because both δ and v are small perturbed quantities, mutual quadratic and higher order products of
these quantities are in turn negligible with respect to the first order perturbed quantities themselves.
This leaves the following set of Linearized Fluid Equations:

∂δj
∂t

+
(1 + wj)

a
~∇x · ~v = 0

∂~v

∂t
+

ȧ

a
~v = −1

a
~∇φ

∇2φ = 4πG a2

{

∑

j

(1 + wj)ρj,u δj

}

In the following sections we will treat a few of the most relevant situations of linear perturbation evolution.
First, we will treat the evolution of matter perturbations in a pure matter-dominated Universe.

6. Matter-Dominated FRW Universes: Linear Perturbations

Most of structure formation has been proceeding during the matter-dominated era of the Universe.
In the early stages after the matter-radiation equivalence epoch, until recombination, baryonic matter
and radiation were still tightly coupled. In the meantime, density and velocity perturbations in the
gravitationally dominant dark matter component could grow almost uninterruptedly. On scales larger
than the Jeans mass this was equally true for the baryonic matter component.

If indeed we appear to live in a Universe closely characterized by the socalled Concordance Model,
with Ωm,0 ≈ 0.3 and ΩΛ,0 ≈ 0.7, at a rather recent redshift of z ≈ 0.7 dark energy has taken over
as the component dominating the cosmic expansion. This is even later than the redshift zg ≈ 1.3 at
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which large scale structure growth ceases (see sect. 8). This justifies a concentration in detail on the
matter-dominated epoch for our first assessment of the process of cosmic structure formation.

As most of matter in the Universe appears to consist of collisionless dark matter we are also justified
in ignoring the effects of pressure and concentrate our analysis on a pure “cosmic dust” medium. Even
for the baryonic matter component this is a good approximation in the aftermath of the recombination
era, after which the Jeans mass dropped from a value of around MJ ≈ 1012M⊙ to a mere MJ ≈ 105M⊙

(see chapter 6). We are therefore justified in concentrating on purely gravitating matter, neglecting
any pressure effects, in identifying the principal characteristics of the early and large scale structure
formation process. Perhaps the main virtue for our purposes is that it has the great benefit of providing
the most illuminating insights into the evolution of a gravitationally unstable system.

6.1. Fluid Equations for Matter Perturbations

In our approximation we discard completely the influence of dark energy and radiation, so that the
resulting set of fluid equations (cf. eqn. 34) becomes

∂ρ

∂t
+ ~∇r · ρ~u = 0

∂~u

∂t
+

(

~u · ~∇r

)

~u = −~∇rΦ

∇2
rΦ = 4πG ρ

Transforming to comoving coordinates, these become

∂δ

∂t
+

1

a
~∇x · (1 + δ)~v = 0

∂~v

∂t
+

1

a

(

~v · ~∇x

)

~v +
ȧ

a
~v = −1

a
~∇xφ

∇2
xφ = 4πG a2 ρu δ

For the linear regime we then find the resulting linearized fluid equations,
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∂δ

∂t
+

1

a
~∇x · ~v = 0

∂~v

∂t
+

ȧ

a
~v = −1

a
~∇φ

∇2φ = 4πG a2 ρu δ

6.2. Perturbation Evolution Equation for Matter Perturbations

From the three fluid equations we can directly infer the time evolution of the density perturbation δ(x, t).
By taking the divergence of the Euler equation,

∂

∂t
(∇ · v) +

ȧ

a
(∇ · v) = −1

a
∇2φ ,

and combining this with the continuity equation for the relation between the velocity divergence and δ
and the Poisson equation for relating the potential φ and the density perturbation δ,

∇ · v = −a ∂δ
∂t
,

(39)

∇2φ = 4πGa2 ρu δ ,

we obtain a second order partial differential equation for the density perturbation δ,

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
=

3

2
Ω0H

2
0

1

a3 δ (40)

The above second order partial differential equation is the linearized equation for the growth of
density perturbations δ(x, t). It forms one of the key equations within the linear theory of gravi-
tational instability. The fact that it concerns a second order differential equation in time coordinate t
implies two things. First, one may see that it has two solutions,

δ(x, t) = δ1(x, t) + δ2(x, t)

Secondly, the fact that the equation only includes differential terms in time t implies that the time
evolution is equivalent throughout the cosmic volume. In other words, the time evolution is independent
of cosmic location x and the corresponding solutions can be separated into a spatial part ∆(x) and a
temporal part D(t), δ(t) = D(t)∆(x),

δ1(x, t) = D1(t) ∆1(x)

(41)

δ2(x, t) = D2(t) ∆2(x)

18



The time evolution of D(t) is specified by the evolution equation

d2D

dt2
+ 2

ȧ

a

dD

dt
=

3

2
Ω0H

2
0

1

a3 D (42)

In all, the implied general linear solution of the evolution equation may be written as the sum of two
terms of separated time and spatial functions:

δ(x, t) = D1(t) ∆1(x) + D2(t) ∆2(x) (43)

where D1(t) and D2(t) are the universal density growth factors for the linear evolution of density
perturbations, and ∆1(x) and ∆2(x) represent the corresponding spatial configuration of the cosmic
primordial matter distribution. From this results we may immediately appreciate that the rate with
which the primordial densities are to grow in the linear regime is the same everywhere, solely dependent
on the global time factors D1(t) and D2(t). From this we can infer that

• The density fluctuations δ(x, t) will grow at the same rate at every location,

• The topology of the matter distribution will remain exactly the same (ie. the contours do not
change in geometrical shape).

• The density values of the corresponding density contours do evolve, all developing at the same
rate, the growth factor D(t). In other words, only the corresponding density contrast in the
density field will increase.

The density growth factors are dependent upon the cosmological background: in different FRW
Universes the growth of structure will proceed differently. This may be immediately observed from the
inspection of the density perturbation growth equation 42. The FRW cosmological background enters
through two terms, explicitly involving the cosmic expansion factor a(t). One is the ‘2ȧ/a term on
the lefthand side, the “Hubble dragterm” reflecting the cosmic expansion. The second term is the
righthand term, that of the evolution of the cosmic background density ρu, which in a matter-dominated
Universe evolves like

ρu(t) ∝ 1

a3 . (44)

Before assessing the general expression for the density growth factor D(t) we will first assess a few specific
cases. This in order to get a better appreciation for their meaning.

7. Linear Density Growth factors in

Matter-dominated FRW Universes

The linear density growth factors D(t) in a matter-dominated FRW Universe can be computed by solving
fully analytically the linear structure growth equation 42.

For appreciation of these solutions we will first consider two specific situations. One is an Ω0 = 1
Einstein-de Sitter Universe, the other is a totally empty and freely expanding Ω0 = 0 FRW Universe.
The linear structure growth for these two situations provide a good illustration of generic structure
growth behaviour.
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Figure 4. Growing mode linear density growth factors D1(t) for a range of matter-dominated FRW Uni-
verses, plotted as a function of cosmic time. D1(t) has been normalized with respect to the current epoch,
D1(t0) ≡ 1. Red: open Universes. Magenta: Closed Universes. Blue: Einstein-de Sitter Universes. Top
range: 0.05 < Ω0 < 2.0, Bottom range: 0.001 < Ω0 < 1000.0.
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Figure 5. Decaying mode linear density growth factors D2(t) for a range of matter-dominated FRW
Universes, plotted as a function of expansion factor a(t). D2(t) has been normalized with respect to the
current epoch, D2(t0) ≡ 1. Red: open Universes. Magenta: Closed Universes. Blue: Einstein-de Sitter
Universes. Range: 0.05 < Ω0 < 2.0.

Also these solutions represent the asymptotic solutions in the two asymptotic regimes of an evolving
open FRW Universe. An open Universe will start off as a Universe which is close to an Einstein-de
Sitter Universe and will gradually unfold into a Universe with low Ω, ultimately evolving into a freely
expanding empty Universe. Thus, we expect that at early cosmic times structure in the Universe will
grow according to the density growth in an Einstein-de Sitter Universe, D(t) ∝ t2/3, gradually slow down
and finally come to a halt like that in an empty Universe.

7.1. Einstein-de Sitter Universe

An Einstein-de Sitter Universe, with Ω(t) = Ω0 = 1 and Hubble parameter H(t) = H0, expands like

a(t) =

(

3

2
H0t

)2/3

(45)

so that














ȧ
a = 2

3t

3
2 Ω0H

2
0

1
a3 = 2

3t2

so that the linearized density growth equation is given by
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∂2δ

∂t2
+

4

3t

∂δ

∂t
=

2

3 t2
δ (46)

One may recognize that this partial differential equation has 2 solutions, δ1(x, t) and δ2(x, t). They are
both power-law functions of cosmic time t,

δm(t) ∝ tα , m = 1, 2 , (47)

whose temporal parts, the linear structure growth factors Dm(t) are given by

D1(t) ∝ t2/3

(48)

D2(t) ∝ t−1

The first solution δ1(t) involves a growth of the densities in the Universe. Note that in this specific case
of an Einstein-de Sitter Universe, the growth is proportional to the expansion factor of the Universe,

D1(t) ∝ t2/3 ∝ a(t) . (49)

This solution is known as the Growing Mode Solution. The second solution, on the other hand,
leads to a continuously declining density: the primordial density contrast is diminishing in time. It is
named Decaying Mode Solution. Often, once its share (between growing and decaying mode) in the
primordial density fluctuations is fixed it is discarded from further considerations in the evolution of
structure: its share gradually fades away and at the current epoch it will be no longer noticeable. It is
convenient practice to normalize the density growth factors such that their current value is unity:

D1(t) ≡ D1(t)

D1(t0)
=

(

t

t0

)2/3

(50)

D2(t) ≡ D2(t)

D2(t0)
=

(

t

t0

)−1

By choosing this convention, the spatial functions ∆1(x, t) and ∆2(x, t) get to correspond to linearly
extrapolated density fluctuations. They are the density values which a fluctuation would have if it
would have continued growing linearly up to the present epoch (which usually they have not). Strictly,
in fact, it would only be a valid assumption if the growing mode contribution ∆1 ≪ 1. As for the decaying
mode contribution, it would indeed have to be very small today in order to prevent it to be larger than
unity in the primordial Universe.

In summary, we find that the general solution for the linear evolution of a density fluctuation in an
Einstein-de Sitter Universe is given by the sum of a growing solution, specified by the normalized density
growth factor D1(t) = a(t), and a decaying solution specified by D2(t) ∝ t−1.

7.2. Empty Universe

Although the consideration of an empty matter-dominated FRW Universe, with Ω(t) = Ω0 = 0, appears
at first sight a mere academic exercise, it is indeed of genuine interest. It concerns the asymptotic limit
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for an Ω0 < 1 Universe. We know that while such a Universe will have an Ω ≈ 1 at early cosmic times,
a(t) ↓ 0, it will become increasingly empty and asymptotically evolve to Ω(t) → 0 as a(t) → ∞. Once
Ω(t)≪ 1, the cosmic expansion turns into a free expansion once Ω(t)≪ 1,

a(t) = H0t (51)

so that










ȧ
a = 1

t

4πGρu(t) = 0

so that we end up with the following density growth equation,

∂2δ

∂t2
+

2

t

∂δ

∂t
= 0 (52)

Also in this case we can identify two solutions δ1 and δ2, and each of them can be separated in a spatial
and a temporal part.

δ(x, t) = δ1(x, t) + δ2(x, t)

= D1(t)∆1(x) + D2(t)∆2(x, t) (53)

In terms of normalized density growth factors Dm(t) the solutions are

D1(t) = cst.

(54)

D2(t) ∝ t−1

Interestingly, instead of growth, the solution δ1(x, t) comes to a halt: density growth freezes out and
structure retains the present configuration. On the other hand, the decaying mode solution behaves
the same as in an Einstein Universe.

When extrapolating back in time, we see that the repercussion of such a scenario in terms of the
formation of present-day structure is that it must have been in place in the primordial Universe. Ev-
idently, this would be hard to reconcile with our knowledge of the early Universe (in particular, the
isotropy of the cosmic microwave background). However, following the remark that an empty Universe
may be regarded as the asymptotic state of an evolving open FRW Universe, we may conclude that the
present-day structure has been in place since a much earlier cosmic epoch. This epoch is the time at
which a Universe not yet empty evolved into a freely expanding empty Universe. In summary, in the
linear regime:

Empty Universe: NO Structure Evolution
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7.3. General Matter-Dominated FRW Universes

From the linear structure growth equation 42 we observed that the two cosmological factors determining
linear structure growth are the background density ρu(t) and the Hubble parameter ȧ/a. As a function
of the expansion factor a(t) the first one evolves the same as in the case of the Einstein-de Sitter and
the empty Universe, ρu ∝ a−3. The ȧ/a term, however, has a more complex behaviour. Its evolution
is set by a combination of two factors, the background density and curvature. In the case of the pure
Einstein-de Sitter Universe the only influence was the density, in the case of the empty Universe it was
the curvature.

7.3.1. The Friedmann Equation

To evaluate their contributions to the linear density growth solutions, we turn to the Friedmann equation,

ȧ2

a2 =
8πG ρu

3
− kc2/R2

0

a2

To rephrase the Friedmann equation into a form from which we can readily appreciate the balance
between the two contributions, we express the curvature term kc2/R2

o and the background density ρu in
terms of the Hubble parameter H0 and the cosmic density parameter Ω0,



















8πGρu
3 = Ω0H

2
0 a

−3

kc2

R2
0

= H2
0 (Ω0 − 1)

From this, we can proceed to rewrite the curvature term as

kc2/R2
0

a2 =
8πGρu

3

H2
0 (Ω0 − 1)

Ω0H
2
0a

−1

(55)

=
8πGρu

3
a(t)

(

1− 1

Ω0

)

.

so that the Friedmann equation reads

ȧ2

a2 =
8πGρu

3

{

1 + a(t)

(

1

Ω0
− 1

)}

. (56)

By parameterizing the evolution of the cosmic density factor Ω(t) in terms of the factor x(t) (see Peebles
1980),

x(t) ≡











































(

1
Ω(t)

− 1

)

= a(t)
(

1
Ω0
− 1

)

Ω0 < 1

0 Ω0 = 1

(

1− 1
Ω(t)

)

= a(t)
(

1− 1
Ω0

)

Ω0 > 1

(57)

we find the following useful expression for the Friedmann equation
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ȧ2

a2 =



































8πG ρu
3 (1 + x(t)) Ω0 < 1

8πG ρu
3 Ω0 = 1

8πG ρu
3 (1 − x(t)) Ω0 > 1

For the three distinct cases the value of the factor x(t) varies within the range

x(t) =































[0→∞) Ω0 < 1

0 Ω0 = 1

[0→ 1→ 0) Ω0 > 1

(58)

It is the value of x(t) which determines the balance between density and curvature. If |x| < 1 the density
is clearly dominant, while the curvature dominates as |x| ≫ 1. The latter only happens in the case of
an open Universe, once it gets into free expansion.

7.3.2. The Einstein-de Sitter Universe

The Einstein-de Sitter Universe represents the asymptotic situation in which x(t) = x0 = 0,

ȧ2

a2 =
8πGρu

3
. (59)

7.3.3. Closed Universe

In a closed Universe x < 0. This results in a lower value of the Hubble dragterm ȧ/a. From eqn. (42)
we can readily appreciate that this results in a speeding up of the density evolution. Perhaps not
surprisingly structure in a closed Universe grows more rapidly, mainly due to the higher background
density of the Universe and corresponding higher mass content of density fluctuations.

7.3.4. Open Universe

In an open Universe we see the reverse, structure growth will proceed less rapidly than in a Einstein-
de Sitter Universe. For a(t) ≫ 1 the x(t) term becomes all-dominant so that the open Universe has
proceeded towards free expansion,

ȧ2 ≈ 8πGρ0

3

(

1

Ω0
− 1

)

= const. . (60)

Linear density growth in an open Universe will therefore proceed from a primordial situation in which it
resembles that in a Einstein-de Sitter Universe, D(t) ∝ a(t), towards a halting of structure growth akin
to that in a freely expanding empty Universe, D(t) = const.. We may therefore identify a characteristic
epoch ag at which the initial evolving structure in such a Universe comes to a halt. It is set by the
equality of the two contributing terms, i.e. x(t) ≈ 1,

ag =

(

1

Ω0
− 1

)−1

. (61)
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corresponding to a characteristic redshift

zg ≡
1

Ω0
− 2 . (62)

In other words, the redshift zg marks the transition from the phase in which structure grows (for redshifts
z > zg) to one in which this process comes to a halt (z < zg),















1 + zg ≫
(

1
Ω0
− 1

)

structure growth

1 + zg ≪
(

1
Ω0
− 1

)

structure growth halts

If we were to live in a open Universe at the time of the transition, it would imply Ω0 ≈ 0.5. If Ω0 ≈ 0.3,

as observations seem to indicate, structure did stop growing at around zg ≈ 1.3. Note that this refers to
linear structure growth. At the current cosmic epoch this involves spatial scales larger than ≈ 10h−1Mpc.
On smaller spatial scales nonlinear collapse of structure may still proceed.

A comparison of this crude analytical result to the outcome of large computer simulations of structure
formation in open Universes does confirm the effect of linear growth coming to a halt. Moreover, as
we will see later on scales much smaller than the horizon the effect of dark energy on the growth
of structure is considerably smaller than that of dark matter. This is due to the fact that dark energy
remains a uniformly distributed medium which itself cannot clump and thus accelerate the corresponding
gravitational collapse. In simulations of a Universe with a finite Λ and a Ωm < 1 we therefore find
practically similar behaviour.

7.3.5. Structure Growth Equation

Having introduced the parameter x(t) in phrasing the evolution of ȧ/a in a matter-dominated FRW
Universe, we may also observe that for Ω0 6= 1 it is linearly proportional to the expansion factor a(t).
For Ω0 6= 1, we therefore change the time variable from expansion factor a(t) to that of x(t),

x(t) =















a(t)
(

1
Ω0
− 1

)

Ω0 < 1

a(t)
(

1− 1
Ω0

)

Ω0 > 1

(63)

Following this change of variables the equation for the linear structure growth factor D(x) (cf. eqn. 42)
becomes

d2D

dx2
+

3 + 4x

2x(1 + x)

dD

dx
=

3D

2x2(1 + x)
Ω0 < 1

(64)

(65)

d2D

dx2
+

3− 4x

2x(1− x)

dD

dx
=

3D

2x2(1− x)
Ω0 > 1

This second order differential equation can be solved analytically (see Peebles 1980).
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7.3.6. Open Universe: linear structure growth factors

The growing mode solution D1(t) for Ω0 > 1 of equation (66) is (Peebles 1980)

D1(t) = 1 +
3

x
+

3
√

1 + x

x3/2
log
√

1 + x−
√

x (66)

An alternative expression for the growing mode solution D1(t) is in terms of the development angle Φu

of the Universe, related to x(t) via

x(t) =
coshΦu − 1

2
, (67)

yielding

D1(t) =
3 sinhΦu (sinh Φu − Φu)

(coshΦu − 1)2
− 2 (68)

The corresponding decaying mode solution D2(t) is

D2(t) =

√
1 + x

x3/2
(69)

7.3.7. Closed Universe: linear structure growth factors

In the case of a closed Universe we need to distinguish separate solutions for the expanding regime and
the recollapse regime of cosmic evolution. In terms of the cosmic development angle











0 < Φu < π cosmic expansion

π < Φu < 2π cosmic recollapse

(70)

For the growing mode the solutions D1(t) are

D1(t) =































−1 + 3
x −

3
√

1− x
x3/2 arctan

(

x
1 + x

)1/2

0 < Φu < π

−1 + 3
x −

3
√

1− x
x3/2

[

arctan
(

x
1 + x

)1/2

− π

]

π < Φu < 2π

(71)

while the corresponding decaying mode solution D2(t) is given by
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D2(t) =































√
1− x
x3/2 0 < Φu < π

−
√

1− x
x3/2 0 < Φu < π

(72)

8. Linear Perturbations: FRW Universe with Dark Energy

Earlier we have observed that at the present epoch the main contribution to the energy density of the
Universe is that by dark energy. Usually this is identified with the energy content of the vacuum
of the Universe, be it that any simple interpretation in these terms leads to the conclusion its energy
density should be a factor 10120 higher than has been inferred from cosmological measurements. Even
though its nature remains a mystery, its impact on the dynamics of the Universe is unmistakable and
bizarre: cosmic expansion finds itself in a state of acceleration !!!

The one requirement for all options of dark energy is that they involve a cosmic acceleration, that
is

ρv +
3Pv

c2
< 0 . (73)

With a dark energy equation of state

Pv = w ρvc
2 ⇒ 1) w < −1

3
(74)

⇒ 2) ρv = ρv,0 a
−3(1+w)

As yet cosmological observations seem to indicate that the most plausible interpretation is that in terms

of a “conventional” cosmological constant Λ, i.e. w = −1,

PΛ = − ρΛc
2 . (75)

This implies a rather rigid dark energy medium, whose energy density would remain constant while
the Universe expands: the expansion of the Universe creates dark energy as a result of its negative
pressure.

8.1. Dark Energy Perturbations

Energy perturbations in a Universe with a cosmological constant Λ are not an issue for our study. They
simply do not exist, nor would they grow. We may immediately appreciate this from the continuity
equation, for which of course we need to use the relativistic form,
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Figure 6. Growing mode linear density growth factors D1(t) for a range of matter-dominated FRW
Universes, plotted as a function of cosmic time. D1(t) has been normalized with respect to the current
epoch, D0 ≡ 1. Red: open Universes. Magenta: Closed Universes. Blue: Einstein-de Sitter Universes.
Top range: 0.05 < Ω0 < 2.0, Bottom range: 0.001 < Ω0 < 1000.0.
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Figure 7. Decaying mode linear density growth factors D2(t) for a range of matter-dominated FRW
Universes, plotted as a function of expansion factor a(t). D2(t) has been normalized with respect to the
current epoch, D2(t0) ≡ 1. Red: open Universes. Magenta: Closed Universes. Blue: Einstein-de Sitter
Universes. Range: 0.05 < Ω0 < 2.0.
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∂ρΛ

∂t
+ ~∇r ·

(

ρΛ +
PΛ

c2

)

~u = 0

⇓ (76)

∂ρΛ

∂t
= 0

For the cosmological constant, the implication is therefore that ρLambda = cst. While the matter density
within a certain region will increase or decrease due to the contraction (∇·v < 0) or expansion (∇·v > 0)
of that region, nothing like this will happen for Λ dark energy. Its nature would guarantee its energy
density to remain constant, so that local deviations would never be able to grow (or decay). We can
therefore see the presence of a cosmological constant as the presence of a background medium, itself
completely inactive with respect to the formation of structure. Also in the more general situation of a

dark energy medium whose equation of state has −1 < w < −1/3 there would be no growth of structure.
The reason for this is to be found in its dynamical influence: its repulsive gravitational effect.

∇2
rΦ = 4πG

(

ρv(r, t) +
3Pv

c2

)

. (77)

If locally the dark energy density would be slightly higher than average, it would result in an extra
repulsive force and therefore in an expansion (instead of contraction) of the region. This would quickly
even out the energy density perturbation. The net result is an immediate halt to any structure growth
in such a dark energy medium.

However, we still find ourselves living in a present-day Universe filled with a dominant dark energy
medium. One therefore needs to understand the growth of structure in matter against the background
of an “inert” dark energy medium.

8.2. FRW Universes containing Matter and Cosmological Constant:
Linear Matter Perturbations

In the presence of a cosmological constant, within a generally curved FRW Universe, the linear growth of
density perturbations in the matter distribution can be evaluated directly throuhg an integral expression.
This expression allows us to calculate the linear density growth factor D(t) for matter by means of a
simple numerical integration.

In principal we could also include the effect of radiation to obtain a fully general theory of linear
structure growth in a FRW Universe. However, in the presence of a significant contribution by radiation
to the cosmic energy density the evolution of matter and radiation perturbations are coupled (see sect. 9),
complicating the analysis somewhat. In the corresponding pre-recombination era dark energy was totally
insignificant. In section 9 we will concentrate on the linear evolution of radiation perturbations (larger
than the Jeans mass). Here we will focus on the evolution of matter perturbations in a general FRW
Universe, filled with matter and a cosmological constant, with a general curvature (also see Hamilton
2000). At a particular stage of the analysis we will neglect the influence of radiation.

We assume a FRW Universe with a Hubble parameter H0, for which the contributions to the cosmic
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density parameter are































Ωrad,0 radiation

Ωm,0 matter

ΩΛ,0 cosmological constant

Ω0 = Ωrad,0 + Ωm,0 + ΩΛ,0 curvature

(78)

The Hubble parameter H(t) at any cosmic time t in such a FRW Universe is given by the relation

H2(t) = H2
0

{

Ωrad,0a
−4 + Ωm,0a

−3 + (1− Ω0)a
−2 + ΩΛ,0

}

(79)

Differentiating the above expression both once and twice yields

2HḢ = H2
0

ȧ

a

{

−4
Ωrad,0

a4 − 3
Ωm,0

a3 − 2
(1− Ω0)

a2

}

= H2
0H

{

−4
Ωrad,0

a4 − 3
Ωm,0

a3 − 2
(1− Ω0)

a2

}

(80)

Ḧ = H2
0H

{

8
Ωrad,0

a4 +
9

2

Ωm,0

a3 + 2
(1− Ω0)

a2

}

(81)

Adding both expressions we find that

Ḧ + 2HḢ = H2
0H

{

3
Ωm,0

2a3 + 4
Ωrad,0

a4

}

(82)

≈ H2
0H

3

2

Ωm,0

a3 for Ωrad,0 ≪ 1

so that we find that
Ḧ + 2HḢ = 4πGH ρm,u, . (83)

Thus, H(t) evolves according to exactly the same equation as the density growth factorD(t) in a Universe
with matter (see eqn. 42):

D̈ + 2HḊ = 4πGD ρm,u . (84)

Multiplying the equation for the evolution of H by D(t) and subtracting H(t) times the equation for
D(t) we have

DḦ − HD̈ + 2H
(

DḢ −HḊ
)

= 0

↓ (85)

a2 d

dt

(

ḊH −DḢ
)

+
da2

dt

(

ḊH −DḢ
)

= 0 (86)

which leads to the second-order differential equation

d

dt

{

a2H2 d

dt

(

D

H

)}

= 0 (87)
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whose solution is given by the integral equation

D(t) ≈ H(t)

∫

dt

a2H2(t)
(88)

The linear perturbation growth factor D(t) can be calculated for any FRW Universe with matter and a
cosmological constant – specified by the parameters Ωm,0 and ΩΛ,0 –by inserting the expression for the
evolution of the Hubble parameter 79 into the above integral expression and computing the integral. For
most cases this involves a numerical evaluation of the integral. It is customary to evaluate the growing

mode growth factor D(z) in terms of the redshift z. This is accomplished through the relation between
redshift z and cosmic time t,

dt = − 1

(1 + z)H(z)
dz (89)

which one may infer on the basis of the fact that a(t) = 1/(1 + z). It leads to the integral expression

D(z) =
5 Ωm,0H

2
0

2
H(z)

∫ ∞

z

1 + z′

H3(z′)
dz′ (90)

whereby the proportionality factor is chosen such that

D(z) ∝ 1

1 + z
for z →∞ . (91)

because for early times the Universe will tend asymptotically towards an Einstein-de Sitter Universe.
The integral (90) can be solved analytically for a pure matter-dominated Universe, with Ω = Ωm and

ΩΛ = 0. The solutions are given by equations (103), (66) and (71) in the preceding sections. In
the general situation of ΩΛ 6= 0, for most purposes a fitting formula provides a sufficiently accurate
approximation. For the relative growth factor g(t) ≡ D(t)/a(t) – relative with respect to the equivalent
Einstein-de Sitter Universe – we find (see e.g. Lahav & Suto 2003),

g(z) ≡ (1 + z)D(z) ≈ 5Ω(z)

2

1

Ω4/7(z) − ΩΛ(z) + [1 + Ωm(z)/2][1 + ΩΛ(z)/70]
, (92)

with Ωm(z) and ΩΛ(z) the values of the cosmological density parameter for matter and the cosmological
constant at a redshift z,

Ωm(z) = Ωm,0 (1 + z)3
[

H0

H(z)

]2

(93)

ΩΛ(z) = ΩΛ,0

[

H0

H(z)

]2

9. Linear Radiation Perturbations

Extending our analysis of perturbation growth to a broader class of FRW Universes, composed of other
and/or more components than just matter makes it necessary to extend the analysis to the set of
appropriate (special) relativistic fluid equations. Even this is a mere idealization and approximation,

33



a truely generally applicable analysis should not be based upon the idealization of special relativistic
fluid equations. Instead, it should be based upon a fully general relativistic treatment of the Boltzmann
equation. CMBFAST, the code for computing temperature perturbations in the cosmic microwave
background, is precisely doing that.

Even though at present the dynamical influence of radiation is negligible, it representing around
1/100, 000th of the Universe’s energy content, it has dominated the Universe’s dynamics before the
epoch of radiation-matter equivalence. In the first subsection 9.1 we will study the evolution of
radiation perturbations in this regime in which radiation is the only cosmic component of importance.

Near the epoch of radiation-matter equivalence and up to the epoch of recombination and resulting
decoupling between matter and radiation, radiation remains a significant factor in the evolution of
perturbations. Around the equivalence epoch its energy density is still comparable to that of the matter
density. A proper treatment of such perturbations should involve a coupled system of matter and
radiation perturbations. In subsection 9.2 we will shortly indicate the simple situation in which we
disregard the pressure force and limit the coupling to the mutual gravitational influence.

Finally, we know that even while the gravitational significance of radiation is quickly diminishing
after radiation-matter equivalence, radiation perturbations remain responsible for a sizeable pressure
force acting on the baryonic matter component. The repercussions of this will be discussed in extensio
in our treatment of Jeans Instabilities in chapter 6.

9.1. Linear perturbations in a pure radiation-dominated Universe

Here we focus on perturbation growth in a pure radiation-dominated Universe, discarding the influence
of matter (and dark energy).

The resulting special relativistic fluid equations include three extra terms. In the continuity equation
and the Euler equation we need to take into account a pressure inertia term,

ρ 7−→ ρ+
P

c2
. (94)

The Euler equation also includes a pressure force term, −∇rP . Finally, the Poisson equation needs to
take into account the gravitating role of pressure. The results in the following set of three fluid equations:

∂ρrad
∂t

+ ~∇r ·
(

ρrad +
Prad

c2

)

~u = 0

∂~u

∂t
+

(

~u · ~∇r

)

~u = − 1

(ρrad + Prad/c
2)

~∇rPrad − ~∇rΦ

∇2
rΦ = 4πG

[

ρrad +
3Prad

c2

]

In the following we will discard the pressure force term in the Euler equation. This is a far more
restrictive assumption than in the case of the matter-dominated Universe. The sound velocity in light,
c/
√

3, is so large that during the radiation-dominated era the Jeans Mass is only slightly smaller than
the Horizon Mass (see chapter 6). The analysis presented in this section is therefore hardly a realistic
one, there are nearly no radiation perturbations whose evolution is not affected by the pressure in the
radiation fluid. Nonetheless, the results of our analysis do provide an interesting contrast to the ones
obtained for the matter fluctuations.
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Transforming the fluid equations from spatial coordinates and physical quantities into comoving co-
ordinates and perturbation quantities, ignoring the pressure force and using the fact that for radiation,

Prad =
1

3
ρradc

2 , (95)

we find the following set of comoving radiation fluid equations:

∂δrad
∂t

+
4

3

1

a
~∇x · (1 + δrad)~v = 0

∂~v

∂t
+

1

a

(

~v · ~∇x

)

~v +
ȧ

a
~v = −1

a
~∇xφ

∇2
xφ = 8πG a2 ρrad,u δrad

For small linear perturbations we then obtain the following set of
Linearized Radiation Fluid Equations

∂δrad
∂t

+
4

3

1

a
~∇x · ~v = 0

∂~v

∂t
+

ȧ

a
~v = −1

a
~∇φ

∇2φ = 8πG a2 ρrad,u δrad

The evolution of the linear radiation perturbations can then be obtained by solving the second order
differential equation

∂2δrad
∂t2

+ 2
ȧ

a

∂δrad
∂t

=
32π

3
Gρrad,u δrad (96)

The perturbation evolution equation for radiation is therefore almost equivalent to that for linear per-
turbations in the matter distribution. The difference concerns the factor 32π

3 in front of the gravity term.
For linear matter perturbations this factor was equal to 2π. The implied general linear solution for
radiation energy density perturbations (larger than the Jeans mass) will therefore also be the sum of
two terms of separated time and spatial functions:

δ(x, t) = Drad,1(t) ∆1(x) + Drad,2(t) ∆2(x) (97)
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where the spatial functions ∆1(x) and ∆2(x) represent the corresponding primordial radiation distribu-
tion and D1(t) and D2(t) are the universal linear radiation energy density growth factors. At the
radiation-dominated epoch the Universe is very nearly flat, having a

Ωrad ≈ 1 , (98)

with the Universe expanding according to

a(t) = (2H0 t)
1/2 ⇒ ȧ

a
=

1

2t
, (99)

and the global radiation density ρrad,u evolving according to

ρrad,u(t) ∝ 1

a4 ⇒ 32π

3
Gρrad,u =

1

t2
. (100)

This results into the radiation perturbation evolution equation

∂2δrad
∂t2

+
1

t

∂δrad
∂t

=
1

t2
δ (101)

Also the linear evolution of radiation perturbations is characterized by a growing mode solution and
a decaying mode solution. The linear growing mode factor Drad,1(t) differs somewhat from that for
matter perturbations in an equivalent Einstein-de Sitter Universe, while the decaying mode involves
a substantially more rapid decay Drad,2(t),

Drad,1(t) ∝ t−
1
2+1

2

√
5 ≈ t0.618

(102)

Drad,2(t) ∝ t−
1
2−

1
2

√
5 ≈ t−1.618

9.2. Coupled Linear Matter-Radiation Perturbations

For a complete assessment of perturbation evolution we should write out the full system of couple fluid
equations, involving separate continuity/energy equations and Euler equations for each component.
The coupling between the components is established through the induced pressure forces and of course
the combined gravitational field.

For the sake of illustration, here we focus on a simplified situation of perturbation growth in a
matter-radiation fluidum. It involves the (unjustifiable) oversimplification of negligible pressure forces,
so that it involves a situation which can hardly be identified with any realistic epoch in the Universe’s
history. Nonetheless, it proves to be illuminating with respect to the relationship between matter and
radiation perturbations. Also, we assume that matter is cosmic “dust” and does have no pressure at all.
In other words, matter is assumed to be collisionless dark matter. The continuity/energy equations,

both physical and linearized, are

∂ρm

∂t
+ ~∇r · ρm ~u = 0 ⇒ ∂δm

∂t
+

1

a
~∇x · ~v = 0

(103)

∂ρrad

∂t
+ ~∇r ·

(

ρrad +
Prad

c2

)

~u = 0 ⇒ ∂δrad

∂t
+

4

3

1

a
~∇x · ~v = 0
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while the linearized Euler equation for both radiation and matter remains the same,

∂~v

∂t
+
ȧ

a
~v = −1

a
~∇φ

The coupling between both components is established through the gravitational field, specified by the

Poisson equation,

∇2
rΦ = 4πG

[

ρm + ρrad +
3Prad

c2

]

⇓

∇2
xφ = 4πGa2 [ρm,u δm + 2 ρrad,u δrad]

From these coupled fluid equations it is straightforward to infer the coupled system of linearized pertur-

bation evolution equations,

∂2δm
∂t2

+ 2
ȧ

a

∂δm
∂t

= 4πG a2 [ρm,u δm + 2 ρrad,u δrad]

∂2δrad
∂t2

+ 2
ȧ

a

∂δrad
∂t

= 4πG a2

[

4

3
ρm,u δm +

8

3
ρrad,u δrad

]

It is particularly insightful to note that this equation may be written as a linear matrix equation, defined
throught a linear operator L,

L





δm

δrad



 = 4πG





ρm,u 2ρrad,u

4
3ρm,u

8
3ρrad,u









δm

δrad



 (104)

in which the linear evolution operator L is defined by

L ≡ ∂2

∂t2
+ 2

ȧ

a

∂

∂t
(105)

Upon closer inspection of the coupled evolution equation ?? notice the special situation of the matter
and radiation perturbations being related through a constant ratio 4

3 ,

δrad =
4

3
δm (106)
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If this is the case we find that the evolution of the matter perturbation δm and the radiation perturbation
δrad are fully coupled: matter and radiation will retain the same constant ratio of energy density pertur-
bations. This is an extremely important perturbation mode, the socalled Adiabatic Perturbation
Mode. In chapter 6 we will discuss this in somewhat more detail. In this mode the entropy per mass
S, S = S/M , remains the same: the implied perturbation in the entropy per mass is zero,

δS
S =

3

4
δrad − δm ⇒ δS

S = 0 . (107)

On the basis of the analysis of the acoustic angular fluctuations in the microwave background, measured
by balloon experiments like Boomerang and to great precision by WMAP, it is almost sure that the
primordial perturbations in our Universe are indeed adiabatic. This may be regarded as a confirmation
of inflation theory, which does predict such perturbations (ie., most models of inflation).

10. Gravity Perturbations

Following the extensive analysis of the linear evolution of density perturbations, we may proceed to find
the corresponding perturbations in the gravitational field. This involves both the gravitational potential
perturbations φ(x, t) and the peculiar gravitational acceleration g(x, t). Given a field of density pertur-
bations it is rather straightforward to determine these on the basis of the Poisson equation. Moreover, in
the linear regime we may then easily infer the corresponding (universal) time evolution of the potential
field and the peculiar gravitational acceleration.

10.1. Gravitational Potential Perturbations

The one-to-one relation between the (energy) density distribution ρ(t) and the distribution of the grav-
itational potential Φ(t) in the Universe is established via the Poisson equation. In its general (special
relativistic) form,

∇2
rΦ = 4πG

(

ρ(r, t) +
3P

c2

)

. (108)

in which the energy density ρ is composed of matter, radiation and dark energy, and only radiation and
dark energy provide a significant contribution to the pressure,

ρ(r, t) = ρm(r, t) + ρrad(r, t) + ρv(r, t)

(109)

P (r, t) ≈ Prad(r, t) + Pv(r, t)

We will concentrate on the situation for a Universe with matter and a cosmological constant, and neglect

the minor influence of radiation. Because dark energy remains a perfectly uniformly distributed medium,
the resulting Poisson equation for the perturbed potential φ, in comoving coordinates, only involves a
direct contribution by matter density perturbations,

∇2φ =
3

2
ΩmH2 a2 δm(x, t) (110)
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The solution φ can then be simply found through the integral over the Green’s function,

φ(x, t) = − 3ΩmH2

8π
a2

∫

dx′ δm(x′, t)
1

|x′ − x|
(111)

where the integral is over comoving space x′. This expression for the potential φ is generally valid, and
is independent of whether the perturbations reside in the linear or nonlinear regime.

Notice that density perturbations δ(x) throughout the whole of the observable Universe (i.e. within
the horizon) contribute to the potential. Evidently, the nearby perturbations contribute more strongly
but in principal we need to have mapped density perturbations throughout the whole cosmic volume.
In reality, the spatial distribution and nature (sizes) of the density perturbations will determine the
extent of the cosmic volume which having a significant dynamical influence. If there are no significant
perturbations exceeding a particular coherence scale and if the perturbations constitute a random process
(which they do, see chapter 5) the contribution from distant fluctuations will start cancelling each other.
Although we have not yet firmly established this scale, it seems safe to suppose it does not exceed
100− 200h−1Mpc. The integral expression also allows to immediately identify the time evolution of the

potential perturbation. The three time-dependent factors concern the cosmic density ρu ∝ ΩH2, the
expansion factor a2 and the evolving density perturbations δ(x, t). While the first two contributions
yield

ΩH2 a2 ∝ Ω0H
2
0

a3
a2 ∝ 1

a
, (112)

the evolution of δ(x, t) is only universal in the linear regime. We have seen that in that case all density
perturbations evolve according to the universal growth factor D(t),

δ(x, t) ∝ D(t) (113)

If we restrict ourselves to the growing mode solution, we find therefore that in the linear regime
potential perturbations φ also evolve according to a universal potential perturbation growth factor
Dφ(t),

φ(x, t) = Dφ(t)φ0(x, t) =
D(t)

a(t)
φ0(x, t) , (114)

in which φ0 is the linearly extrapolated potential perturbation. (extrapolated linearly towards the current
epoch t0). The linear potential perturbation growth factor Dφ is therefore given by

Dφ(t) =
D(t)

a(t)
(115)

This finding has a very interesting repercussion. In the case of an Einstein-de Sitter Universe, we
have found that the growth factor D(t) is equal to the expansion factor a(t). This means that for an
Einstein-de Sitter Universe, the potential perturbations φ remain constant in time,

Dφ,EdS = const. (116)

Because the cosmic microwave background temperature fluctuations are tightly coupled to the fluctua-
tions in the gravitational potential we these results are of substantial practical significance.
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10.1.1. Potential Fluctuations and the CMB

If a (microwave background) photon travels through the Universe from the surface of last scattering, at
around the time of recombination, towards a telescope/detector on planet Earth, some 12.7 Gyrs later,
its frequency will change while making its path through the potential landscape. As photons climb out
of a potential well they get redshifted, resulting in a cooling of the CMB temperature. The resulting
change in CMB temperature T is directly proportional to the shift in gravitational potential,

δT

T
=

1

3

δφ

c2
. (117)

The shift in temperature is the combined effect of the corresponding gravitational redshift and time
dilation (see chapter 1) and is known as the Sachs-Wolfe effect. Because in an Einstein-de Sitter
Universe φ remains constant in time, the integral over the temperature shift along the path of the
photon leads to a measured temperature shift with respect to the global CMB temperature of

∆T

T
=

1

3

(φo − φe)

c2
(118)

with φo the local potential perturbation and φe the potential perturbation at the time of emission at the
surface of last scattering. We may therefore translate directly the map of measured CMB temperature
fluctuations into a map of the gravitational potential perturbations at the epoch of recombination (and
thus into a map of the corresponding density fluctuations).

For the same token, by evaluating the density fluctuations along the path of a CMB photon one may
try to figure out the development of the potential growth factor Dφ(t). In other words, by measuring the
integrated temperature shift along the photon’s path, the socalled integrated Sachs-Wolfe effect, one
may find the corresponding potential evolution. As we appear to live in a Universe with a cosmological
constant and Ωm,0 6= 1, this function should not be constant in time. Instead, by inverting the relation we
may potentially infer the underlying cosmological parameters implying the exciting prospect of measuring
the value of the cosmological constant in a direct fashion.

10.2. Peculiar Gravity

The peculiar gravity g(x, t) is the gradient of the potential perturbation,

g(x, t) ≡ − ∇φ

a
(119)

so that we can directly derive the integral expression for the peculiar gravitational acceleration,

g(x, t) =
3ΩmH2

8π
a

∫

dx′ δm(x′, t)
(x′ − x)

|x′ − x|3
(120)

This equation is the expression of the fact that the peculiar gravitational acceleration is the inte-
grated effect of the excess gravity induced by density fluctuations throughout the observable Universe.
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Both the equation for gravitational potential perturbations (111) and the one for the peculiar gravita-
tional acceleration (120) are to be considered as the core of the theory of Gravitational Instability.
For any density perturbation field δ(x, t) they are universally valid.

It is straightforward to see that in the linear regime, the peculiar gravity therefore evolves according
to a universal gravity growth term, Dg,

Dg(t) =
D(t)

a2(t)
(121)

It may be good to note that in nearly all situations of linear structure formation the corresponding
peculiar gravitational accelerations appears to decrease in time. That even while the corresponding
density perturbations are growing incessantly. However, it is mainly a result of the continuing expansion
of the Universe and the corresponding increase in cosmic distances ! If there were no stucture growth,
the situation in an empty Universe, we find that the peculiar acceleration decreases by the expected
1/a2. If it decreases less rapidly it implies the growing density fluctuations.

10.3. Peculiar Velocity

With the density distribution determined, and the corresponding gravitational potential and acceleration
having been computed, we are set to study the repercussions of the induced forces. In the presence
of peculiar gravitational forces matter will get displaced and move from its (comoving) location. We
therefore expect a close link between the peculiar velocities and the gravitational force which has induced
them. In particularly in the linear regime this relation is very strong.

The primary equation for the development of cosmic flows is the Euler equation (see eqn. 37),

dav

dt
= −∇φ . (122)

where the time derivative d/dt is the Lagrangian time derivative

d

dt
≡ ∂

∂t
+

1

a
v · ∇ . (123)

Written in this form, the Euler equation immediately shows the direct relation between the presence of
peculiar gravitational forces and the generation of cosmic flows. If there are no forces, peculiar velocities
will not be able to develop. Before proceeding, we will look into this in somewhat more detail:

10.3.1. Velocity Decay

It is instructive to look at the imaginary situation of the presence of peculiar flows without corresponding
gravitational perturbations. Of course this is a rather unrealistic situation, as soon matter starts to move
density fluctuations will form which in turn will be a source for gravitationally induced peculiar flows.

Imagine a particle having a peculiar velocity vp in a perfectly smooth Universe. The peculiar velocity
of the particle will then evolve according to

dav

dt
= 0. (124)

so that

vp(t) ∝
1

a(t)
. (125)
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It forms a clear illustration of the “Hubble drag” resulting from the expansion of the background Universe:
as the Universe expands the particle’s velocity will decrease proportionally. This can be understood from
seeing the excess peculiar velocity of the particle against the background of the expanding Universe. As
the particle moves away from its original location its velocity gets more and more in line with the local
Hubble flow, so that its peculiar velocity will decrease accordingly.

10.3.2. Linear Peculiar Velocity: Lagrangian & Eulerian

An interesting observation is that in the linear regime we find that the Lagrangian time derivative
of the peculiar velocity v is equivalent to the Eulerian time derivative of v, because of discarding the

second order term
(

~v · ~∇x

)

~v. Therefore,

dv

dt
=

∂v

∂t
+

(

~v · ~∇x

)

~v ≈ ∂v

∂t

⇓ (126)

dav

dt
=

∂av

∂t
(127)

The displacement of mass elements in the linear regime are so small that for the corresponding change

of peculiar velocity v we do not need to take into account the displacement term
(

~v · ~∇x

)

.

Because here we are dealing with the linear perturbation regime we will resort to the partial time
derivative of the Eulerian formulation, and use the linear expression for the Euler equation,

∂av

∂t
= −∇φ . (128)

10.3.3. Potential and Vorticity Flow

A velocity flow can always be decomposed into a potential flow component v‖ and a rotational flow
component v⊥,

v = v‖ + v⊥ , (129)

The potential flow v‖ can be written as the gradient of a scalar velocity potential ψ, while the “rotational”
vorticity flow is the curl of some vector potential Av,

v‖ = ~∇ψ
v⊥ = ∇ × Av . (130)

Because
∇ · v⊥ = ∇ · (∇×Av) = 0 (131)

we can infer from the linearized continuity equation that in the linear regime it is only the potential flow
v‖ which couples to the growing density perturbations,

∇ · v = −a ∂δ
∂t

⇓ (132)

∇ · v‖ = −a ∂δ
∂t
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Using this observation, we find that the Poisson equation implies that only v‖ couples to the gravitational
potential φ.

∇ · v‖ = −a ∂δ
∂t

(133)

= −a ∇ · ∂
∂t

( ∇φ
4πGρua

2

)

The evolution of both the potential component and the vorticity component of the velocity field can
thus be formulated separately, through the Euler equation,

∂av‖

∂t
= −∇φ

(134)

∂av⊥

∂t
= 0

The second of these equations shows that the curl part of the velocity decays as

v⊥ ∝
1

a
(135)

as the Universe expands. If there were vorticity flows in the primordial Universe they would have decayed
to zero, unless there were a mechanism to generate vorticity. It is only in advanced nonlinear stages of
clustering that this may happen: in the linear regime there is no vorticity !!!! Thus, if only gravity
operates (i.e. no pressure forces and dissipative effects,

in Linear Regime:

Peculiar Velocity = pure gradient Potential Flow

In other words, in the linear regime we can continue with the finding that

v = v‖ . (136)

10.3.4. Peculiar Velocity & Peculiar Gravity

The relation between the peculiar gravitational acceleration,

g = −∇φ
a
, (137)

and the induced velocity flow v in the linear regime is expressed by the Poisson equation (134):

∇ · v = −a∇ · ∂
∂t

{ ∇φ
4πGρua

2

}

= a∇ · ∂
∂t

{

g

4πGρua

}

43



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 8. Dimensionless Linear Velocity Growth Factor: comparison with the approximation f(Ω) ≈ Ω0.6

Because both g and v are gradients of a potential (the gravitational potential φ and the velocity potential
ψ respectively), this leads to the finding that:

v = a
∂

∂t

{

g

4πGρua

}

. (138)

We have found earlier that in the linear regime g grows with a universal gravity growth factor Dg,

g(t) ∝ Dg(t) ∝
D

a2 ⇒ g

4πGρua
∝ D(t) (139)

in which D(t) is the linear density growth factor. Thus,

v = a
∂

∂t

{

g

4πGρua

}

=
1

D

dD

dt

{

g

4πGρu

}

(140)

We have now arrived at one of the most important results in the theory of linear structure formation,
the fact that the induced peculiar velocity is directly and linearly proportional to the generating
peculiar gravitational acceleration !!!! The factor of proportionality between v and g,

1

D

dD

dt
=

1

a

a

D

dD

da

da

dt
= H(t)

a

D

dD

da
≡ H f , (141)

which includes the dimensionless linear velocity growth factor f , undoubtedly one of the most
fundamental concept within the theory of linear structure formation (see next subsection). The linear
relation between peculiar velocity and gravitational acceleration is thus found to be:
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Figure 9. Dimensionless Linear Velocity Growth Factor: Testing the approximation f(Ω) ≈ Ω0.6 in
various regimes.

v =
H f

4πG ρu
g =

2 f

3HΩ
g (142)

10.3.5. Dimensionless Linear Velocity Growth Factor f(Ω)

In the above we found that the dimensionless linear velocity growth factor is a very important concept
in the linear theory of structure formation,

f ≡ a

D

dD

da
=

d log D

d log a
(143)
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In the standard pressureless matter-dominated cosmology the dimensionless growth rate f is an analytical
function of Ωm (see fig. ??). For Ωm . 1 Peebles (see Peebles 1980) found a celebrated approximation
as a power law,

f(Ωm) ≈ Ω0.6
m (144)

The validity of this approximation may be appreciated from figure (??). It is an extremely good approx-
imation for Ωm . 1 and therefore in nearly all conceivably plausible cosmologies. For academic purposes
figure (9) shows that the approximation breaks down as Ωm becomes very large.

We will notice that the factor f(Ωm) and in particular its approximation by f(Ωm) ≈ Ω0.6
m will return

in nearly every context involving the analysis of peculiar motions.
An approximation for f(Ωm,ΩΛ) in the case of a Universe with matter and a cosmological constant

Λ, Lahav et al. (1991) found an approximation

f(Ωm,ΩΛ) ≈ Ω0.6
m +

ΩΛ

70

(

1 +
Ωm

2

)

(145)

This clearly shows that the growth rate f mainly depends on the matter density Ωm. It is only (very)
weakly dependent on the cosmological constant. This confirms our expectation, given our earlier finding
that the uniformly distributed dark energy component does not participate itself in the growth of pertur-
bations and influences structure growth mainly through its impact on the expansion of the background
Universe.

To first order we may therefore keep using the approximation f(Ωm) ≈ Ω0.6
m for linear velocities in a

Universe with a cosmological constant.

10.3.6. Linear Velocity Growth

From the proportionality between peculiar velocity and peculiar gravity we can infer the linear growth
rate for peculiar velocities,

v =
2 f

3HΩ
g

(146)

∝ Hf(Ωm)

ΩH2

D

a2 ∝ aDHf(Ωm) , (147)

so that we may conclude that the linear velocity growth factor Dv in a matter-dominated Universe is
equal to

Dv(t) = aD Hf(Ωm) (148)

In an Einstein-de Sitter Universe, for which H(t) ∝ a−3/2 and f(Ωm) = 1, we therefore find that the
peculiar velocity is continuously and vigorously growing with time,

Ω0 = 1 ⇒ v(t) ∝ a1/2 . (149)

It is also interesting to see that this implies that the “velocity” in comoving space is even slowing down
in an Einstein-de Sitter Universe,

ẋ =
v

a
∝ 1

a1/2
. (150)
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Figure 10. DTFE density and velocity fields projected along the z−supergalactic plane in a thin slice.
The color bar indicates the plotted density scale. Velocities have been normalized to the maximum
plotted velocity.
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Indeed, this is what one observes when studying computer simulations of structure formation. Usually
the particles are plotted in comoving coordinates (so that the simulation box retains the same size): the
cosmic migrations on large linear scales are then gradually slowing down within these comoving volumes.
On the other hand, in an open Universe with Ω0 < 1, the fact that structure growth will cease once the
Universe gets into a free expansion mode also involves the decay and gradual diminishment of peculiar
velocities. For the asymptotic limit a ← ∞, for which Ω(t) ∝ Ω0/a and H ∝ 1/a, we find that the
peculiar velocity is decreasing according to

Ω0 < 1 ⇒ v(t) ∝ a−0.6 . (151)

10.3.7. Cosmic Flows and the Cosmic Density Fields

The direct measurement of gravitational accelerations g(x) throughout the (nearby) Universe is not
really feasible. Evidently, one may seek to measure the spatial matter distribution in a suitably large
volume of space and from this calculate the implied acceleration g within the region for which the
measured mass distribution is sufficiently extended to be dynamically representative (this, by the way,
is not a trivial issue and still leads to vigorous discussion). However, now we have found that there is
a direct linear relationship between peculiar velocities v and the peculiar gravitational acceleration g
(equation 142),

v =
2 f

3HΩ
g (152)

we have found a wonderful means of mapping the gravitational acceleration throughout the local Uni-
verse. In fact, via this relation we can establish the direct link between the mass distribution δ(x, t) in
the Universe and v by using the integral expression (120) for the gravitational acceleration g,

v(x, t) =
Hf (Ωm)

4π
a

∫

dx′ δm(x′, t)
(x′ − x)

|x′ − x|3
(153)

The repercussions of this finding are far-reaching and of great importance. It provides us with a means
to “weigh” the Universe, i.e. a way to determine the cosmological density parameter Ωm. It is a telltale
illustration of the observation that one may infer the global properties of a system by studying its
perturbations. In other words, an advanced affiliate of professor Zonnebloem’s favorite instrument, the
pendulum, for measuring the gravitational field of the Earth ! Also, it shows why the study of cosmic
large scale structure plays such a central role within cosmology.

10.3.8. Peculiar Velocities and the Local Galaxy Distribution

First let us investigate how we may infer the cosmic density parameter Ωm. Imagine that the spatial
distribution of galaxies would be a fair discrete representation of the underlying mass distribution, and
that we have access to the database of a large galaxy survey (such as the PSCz, 2dFGRS and SDSS
redshift survey catalogues). If it would indeed be an unbiased reflection of the cosmic density field, it
would mean the galaxy distribution to be a Poisson sample of the underlying continuous density δ(x)
and its local number density n(x to be a direct reflection of δ(x),

δn(x)

nu
= δ(x) , (154)
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in which nu(t) is the average number density of the galaxy distribution.
By counting the galaxies at a large number of locations within the survey volume Vgalsur we may thus

infer the mass density field δ(x). Assume that Vgalsur is indeed a sufficiently large volume. This means
that it includes all structures whose influence is of importance for the dynamics of the local volume
Vgalvel in which we have measured peculiar velocities. This local volume Vgalvel may even be only our
own Galaxy or Local Group. Indeed, as we know via the dipole moment in the angular distribution of
the cosmic microwave background the peculiar velocity of our own Galaxy to great accuracy, and we
have a clear and well-defined mapping of the surrounding matter distribution there has been a lot of
effort in determining Ωm from these measurements (see subsection ??). It is important to notice that the
galaxy survey has to be cleanly defined, ideally with a uniform coverage throughout the survey volume,
at least with a well-defined and well understood selection function. This allows us to transform the
galaxy counts into a density field.

The velocity velocity field v(x) within the sampled cosmic volume may then be computed – through
smart filtering and interpolation techniques – from the measured peculiar velocities vi within the region
Vgalvel. For this one does not necessarily need a uniformly defined sample of galaxy peculiar velocities,
and in the case of the dipole motion of our own Galaxy we may even restrict the analysis just to one
galaxies’ velocity.

Having determined the velocity field v(x) within Vgalvel, and comparing this with the computed
acceleration field for the density field δ(x′), by computing the integral (153) for the locations x in Vgalvel,
we are left with one unknown factor. The ratio between the two fields involves the ratio

Hf(Ωm)

4π
(155)

and from this we can immediately derive the value of f(Ωm) and thus of Ωm !!!!

10.3.9. Galaxy Bias

In the above we made one crucial assumption which may not at all be warranted. We assumed that indeed
the galaxy distribution is directly and linearly proportional to the matter density field. However, this is
an a priori unjustified assumption. Because we do not have any compelling theory of galaxy formation
we cannot be sure of the connection between the matter distribution and the galaxy distribution. It
seems quite plausible to assume that on average a region with a higher matter density will be marked by
the presence of more galaxies, as there was simply more matter available for these objects to condense
out, but we cannot really say much more. Certainly, we may not say that we can simply infer the matter
perturbation field δ(x) can be determined from the galaxy number densities,

δ(x) =
δn(x)

nu
. (156)

To circumvent this unwarranted assumption cosmologists have introduced a rather simplistic way of
parameterizing their ignorance over the galaxy-matter relationship. This assumption, Linear Bias,
says that the density fluctuations δgal in the galaxy distribution do form a biased reflection of underlying
matter density fluctuations,

δgal(x) ≡ δn(x)

nu
≡ b δ(x) . (157)

In other words, for positive b > 1 the galaxy distribution would be enhanced if located in a high-
density region. In underdense void regions, on other hand, it would get extra suppressed. It is not
inconceivable that something like this may have been a characteristic of the galaxy formation process.
In special circumstances one may also think of antibias, b < 0). In the vicinity of a very bright quasar
the formation of galaxies may have been suppressed because its intense radiation may have prevented
collapse of gas clouds.
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Even while the concept of the linear bias factor b is of course a strong oversimplification, there are
both some theoretical reasons as well as observational indications for it not to be a useful approximation
for galaxy clustering on Megaparsec scales. In chapter 5 we will see that cosmic structure has arisen out of
a random field of primordial Gaussian perturbations. Cosmic objects will probably have formed from the
peaks in these primordial fields, the nature of the object first and foremost determined by the scale of the
fluctuations. In 1984 Kaiser proved that peaks in such random fields are more strongly clustered than the
average mass distribution. Moreover, mathematically he demonstrated that a reasonable approximation
for the clustering of moderately high peaks, corresponding to galaxies (or halos of galaxies), is equal to
that expected for a linearly biased population of objects. Tying in with this idea is the expectation that
different objects will be differently biased: they will have formed from a different set of peaks. This is
indeed what one appears to observe in reality. Clustering is seen to be dependent on galaxy type (and
may be dependent on the luminosity of galaxies, though this has proved harder to confirm). Early-type
galaxies have a considerably more pronounced spatial distribution than the more smoothly distributed
late-type galaxies. The factor b for the early-type galaxies may therefore be expected to be higher. We
should think about a factor b ≈ 2 for early-type galaxies, while late-type galaxies seem to tend towards
b ≈ 1. However, as we start to get a better insight into the nature of the galaxy distribution, and thus
touch upon the more profound aspects of galaxy formation, there appear more and more complications
for the linear bias description.

If we subsequently work from the galaxy density field δgal and seek to find the corresponding velocity
field v, we arrive at a modified relation of eqn. (153)

v(x, t) =
H

4π

f (Ωm)

b
a

∫

dx′ δgal(x
′, t)

(x′ − x)

|x′ − x|3
(158)

If we then combine measured peculiar velocities of galaxies with the galaxy density distribution δgal we
cannot infer f(Ω) directly. We are left with the socalled β parameter which combines the cosmic mass
density parameter Ωm and the linear bias factor b,

β ≡ f (Ωm)

b
∼ Ω0.6

m

b
(159)

There is no way to break the degeneracy between Ωm and b in the β parameter. Thus, while we do not
have an a priori idea of the value of b we are set with a corresponding uncertainty in our estimate of Ωm.
Only via other techniques we may hope to solve this issue. One possibility is to look into the deviations
from Gaussianity in the velocity field, whose first orders involve quantities solely dependent on Ωm (in
particular the third order moment called S3, the skewness). An even more promising way is the exciting
possibility to map the matter distribution directly through the study of its influence on the the paths
of photons through the Universe. The study of gravitational lensing has in recent years already lead to
impressive breakthroughs and is due to yield much more in the years ahead.
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Figure 11. The Cosmic Microwave Background dipole as measured by the DMR instrument of the COBE
microwave background satellite (see also Kogut et al. 1993)

10.3.10. Peculiar Velocities and the Galaxy Distribution

There are a few ways in which one may exploit the measured peculiar velocities of galaxies. One may
seek to determine Ωm by determining the peculiar velocities of galaxies and combining these with the
mapping of the spatial matter distribution in the dynamically relevant region (i.e. the region containing
all features in the matter distribution involved in generating the measured galaxy regions. One may also
seek to invert the relationship and determine the mass distribution from the measured velocity field, or
at least identify the

10.3.11. Mapping the Dynamics of the Local Universe

10.3.12. The Local Cosmic Acceleration: the Cosmic Dipole

While measuring the peculiar velocities of galaxies is extremely cumbersome, there is one peculiar velocity
known to great precision. This is the velocity of our own Galaxy, or our Local Group, with respect to
the Universe.

Because of our motion through the Universe the isotropically distributed CMB radiation gets Doppler
shifted, resulting in a dipolar pattern over the sky.

and as well computed involving the densities over the volume Vgalsur for the locations in the volume.
in the nearby Universe. We could then combine the local velocity field with the measured mass

distribution and infer from equation (153) the as yet unknown factor f(Ωm) and from this the cosmic
density Ωm.

Once it became possible to determine relatively accurately the peculiar velocities of galaxies, from the
mid eighties of the last century onward, astronomers had a way to determine the cosmic matter density
! It may be no surprise that at the time this triggered tremendous activity in the community. Lately
the enthusiasm has lured somewhat as it is hardly possible to measure peculiar velocities of galaxies to
better than 20% accuracy.

the same volume
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Figure 12. The velocity dipole coefficients inferred from the PSCz (continuous) and 1.2 Jy QDOT
survey. The inferred dipole velocities along the three Galactic Cartesian components GX, GY and GZ
are shown in the top-left, top-right and bottom-right panel respectively. The total amplitude is shown
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Figure 13. The 2mass near infrared flux distribution
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We should stress the “in principle”, the practical complications involved with measuring peculiar
velocities are enormous.

Measuring the peculiar velocities throughout a representative volume of the nearby Universe is fea-
sible.

11. Linear Theory: Fourier Mode Evolution

Once density perturbations become of the order unity, δ(x, t) ≈ 1, it is no longer possible to use the
basic linear theory of clustering. Different modes of the density fields will start to interact, resulting in
mutual “power transfer”.

Restricting ourselves to a pure matter-dominated Universe, the linear fluid evolution equations,

∂δ

∂t
+

1

a
~∇x · ~v = 0

∂~v

∂t
+

ȧ

a
~v = −1

a
~∇xφ (160)

∇2
xφ = 4πG a2 ρu δ

Rewriting these equations in their corresponding Fourier expressions provides a direct insight into the
complications that go along with the growing nonlinearity of a gravitationally evolving system. The
Fourier expressions for the density field δ(x, t), velocity field v(x, t), and potential field φ(x, t are

δ(x) =

∫

dk

(2π)3 δ̂(k) e−ik·x ⇐⇒ δ̂(k) =

∫

dx δ(x) eik·x

v(x) =

∫

dk

(2π)3 v̂(k) e−ik·x ⇐⇒ v̂(k) =

∫

dx v(x) eik·x (161)

φ(x) =

∫

dk

(2π)3 φ̂(k) e−ik·x ⇐⇒ φ̂(k) =

∫

dx φ(x) eik·x

By inserting the Fourier definitions (162) in the linear fluid equations (161), and using the virtuous
circumstance that spatial derivatives correspond to mere multiplications in Fourier space,

f(x) =

∫

dk

(2π)3
f̂(k) e−ik·x

∇f(x) =

∫

dk

(2π)3
− ik f̂(k) e−ik·x (162)

∇2f(x) =

∫

dk

(2π)3
k2 f̂(k) e−ik·x (163)
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it is straightforward to infer the set of fluid equations formulated in Fourier space. The Fourier versions
of the linearized continuity/energy equation, the Euler equation and the Poisson equation are

dδ̂(k)

dt
− 1

a
ik · v̂(k) = 0

dv̂(k)

dt
+

ȧ

a
v(k) =

1

a
ik · φ̂(k) (164)

φ̂(k)

a2 = −4πGρu
δ̂(k)

k2

This brings us to the crucial observation that in the linear regime each Fourier mode k is evolving
independently of the other modes !!!

Linear Regime:

All Fourier Modes evolve independently
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