Correlation Function and Spherical Collapse Model

March 28, 2007

1 Correlation Function

Given a spatial random field (isotropic and homogeneous) with the following Power Spectum.

$$
P(k)= \begin{cases}64 k^{-1} & k<k_{\max } \\ 0 & k>k_{\max }\end{cases}
$$

Here k is given in units of the inverse $M p c h^{-1}$. The maximum wavelenght and thus the minimum radius is $16 M p c h^{-1}$.

1. Sketch the Power Spectrum
2. Calculate the correlation function, $\xi(r)$, Sketch it.
3. Calculate the variance of the one point probability function
4. Using a sharp K-filter give the variance as function of Mass

Assume the following Einstein-de Sitter Cosmology and the growth factor is given by the following expression

$$
\begin{equation*}
D(z)=\frac{5}{2} H_{0}^{2} H(z) \int_{z}^{\infty} \frac{\left(1+z^{\prime}\right)}{H\left(z^{\prime}\right)^{3}} d z^{\prime} \tag{1}
\end{equation*}
$$

5 Calculate the growth factor $D(z)$
6 Calculate the variance at $\mathrm{a}=0.3$ (Remember the convention is that spectra, variances are written in present day values)

2 Spherical Collapse Model

$$
\begin{array}{cll}
\frac{d^{2} R}{d t^{2}}=-\frac{G M}{R^{2}} & \text { and } & \frac{1}{2}\left(\frac{d R}{d t}\right)^{2}=\frac{G M}{R}+E \\
M=\frac{4 \pi R_{i}^{3}}{3} \bar{\rho}_{i}\left(1+\Delta_{i}\right) & \text { and } & \Delta_{i}=\frac{\int_{0}^{R_{i}} d r 4 \pi r^{2} \delta_{i}(r)}{4 \pi R_{i}^{3} / 3}
\end{array}
$$

The total energy within a certain shell is assumed to be negative. Very important note: R is the physical coordinate, not the comoving one!!!

1. Prove the following relation

$$
\begin{equation*}
R \frac{d}{d t}\left(R \frac{d R}{d r}\right)=G M+2 E R \tag{4}
\end{equation*}
$$

2. Substitute the above with $t=\frac{R}{\sqrt{-2 E}} \theta$
3. Solve the above equation for $R(\theta)$ and $t(\theta)$

We can now use the following initial conditions. We may assume that the overdensity of the sphere was very small in the beginning i.e. $\Delta_{i} \ll 1$. And we assume that the initial velocity is given by the following equation:

$$
\begin{equation*}
v_{i}=\sqrt{1-\alpha_{i}} H_{i} R_{i} \tag{5}
\end{equation*}
$$

Here α is factor that determines the deviation from the Hubble flow initially. If it is zero then the sphere just moves along with the expansion of the Universe.

4 Give an expression for the initial kinetic energy K_{i}
5 Show that the initial potential energy is given by

$$
\begin{equation*}
W_{i}=-\Omega_{i}\left(1+\Delta_{i}\right) \frac{\left(H_{i} R_{i}\right)^{2}}{2} \tag{6}
\end{equation*}
$$

6 Give an expression for $R_{\max } / R_{i}$ in terms of Ω_{i}, α_{i} and $\Delta_{i}\left(R_{\max }\right.$ is the maximum physical radius attained by the sphere, $\frac{d R}{d t}$ is then zero.)

7 Assuming EdS Universe give an expression for the overdensity as function of θ

8 Give the overdensity at the maximum radius.
The linear growing mode in an EdS Universe is give according to

$$
\begin{equation*}
\Delta=\frac{3}{5} \Delta_{i}\left(\frac{t}{t_{i}}\right) \tag{7}
\end{equation*}
$$

9 Give the linear extrapolated density at turnaround
10 Same as [9] but now when the sphere has collapsed

