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Introduction

the cosmological large-scale structure encodes a wealth of
information about the evolution and origin of the Universe

the data are plagged by many observational effects (sky mask,
radial selection, bias, shot noise ...)

statistical treatment is necessary

compare observations with theory

study structure formation
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Classes of uncertainty

intrinsic stochastic character: cosmic
variance 1

physical uncertainties: galaxy bias 2 ,
nonlinear structure formation 3

observational uncertainties: redshift
distortions (linear, non-linear) 4 , radial
selection function (magnitud limited
sample), sky mask (scanning strategy) 5

mathematical/representation
uncertainties: aliasing effects (mass
assignment scheme, pixel window) 6

scheme: FK & Ensslin 2008
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Cosmic variance

intrinsic variance: particular realization of
the Universe

observational volume variance

mathematical/representation (grid):
number of k-vectors per mode.

plot: Jasche, FK, Wandelt &
Ensslin 2010

back
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Bias
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Nonlinear clustering

Smith et al 2010; Peacock and
Dodds 94

plot: Erdogdu et al 2004

back
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Redshift distortions

take care with this picture!
Nonlinear fogs are due to virialized
random motions.

Kaiser 87; Ballinger et al 96; plots:
Hamilton 97, 98
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Redshift distortions

scheme: Stefanie Phleps
back
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Completeness: radial selection function and sky mask

FK et al 2009
back
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Aliasing: Mass assignment scheme

NGP, CIC, TSC

Hockney & Eastwood 81; plots: Jasche, FK & Ensllin 2010
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Data model: signal degradation model

Nonlinear data model: data d m-vector, signal s n-vector,
n >> m

d = R(s) + ǫ (1)

Linear data model

d = Rs+ ǫ (2)

di =
∑

j

Rijsj + ni (3)

R response operator (m × n matrix) may include: mask,
selection fnct, foregrounds, blurring fnct, PSF, pixel window ...
ǫ noise: random component, white noise, colored noise,
attention: mask, selection fnct, pixel window etc. (see Jing
2005, FK et al 2009)
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Estimate of the signal

How do we get an estimate of s: ŝ ?
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Notions of information

What is information?

How do we quantify it?

Etymology: (Latin) informare: give form to the mind

Systems theory: information is any type of pattern that

influences the formation of other patterns

J. D. Bekenstein 2003: the physical world is made of

information itself

Relation between entropy and information: Maxwell’s demon
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Information and entropy: Maxwell’s demon

Container in thermal equilibrium divided
into 2 parts A and B with a trapdoor

Demon lets faster molecules pass from B
to A

Kinematic energy is reduced in B

Violation of second law of
thermodynamics?

The information on the molecule velocities
increases the overall entropy!

Information and entropy are tightly
related.
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Information and entropy

Entropy

S = −kB
∑

i

Pi lnPi (4)

density of states Ω
S = kB ln Ω (5)
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Shannon’s entropy

Claude Elwood Shannon (April 30, 1916 February 24, 2001),
father of information theory, electronic ingeneer worked for
Bell Labs (Shannon 1948 A mathematical theory of

communication link )

Shannon’s entropy

H(x) = −
∑

i

P(xi ) logb P(xi) (6)

units of entropy: b=2: bits; b=e: nats; b=10: dits

conditional entropy

H(y|x) =
∑

i ,j

P(xi , yj ) logb
P(yj)

P(xi , yj )
(7)

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Shannon’s entropy

Kullback Leibler distance between two distributions (Jones
test!)

DKL(P ||Q) =
∑

i

Pi logb
Pi

Qj

(8)

Mutual information

I (x , y) =
∑

i ,j

P(xi , xj) logb
P(xi , xj)

P(xi )P(yj)
(9)
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Cramer-Rao inequality/lower bound

Harald Cramer (September 25, 1893 October 5, 1985)
Swedish mathematician, actuary, and statistician
Calyampudi Radhakrishna Rao (born September 10, 1920)
Indian statistician. Prof. em. at Penn State Univ. and Res.
Prof. Univ. at Buffalo (still today! look at link )
unbiased estimator

〈ŝ〉 = s (10)

〈ŝ − s〉 ≡

∫

dd P(d |s)(ŝ − s) = 0 (11)

∂/∂s →
∫

dd (ŝ − s)
∂P(d |s)

∂s
−

∫

dd P(d |s) = 0 (12)

∂P(d |s)/∂s = P(d |s)∂lnP(d |s)/∂s →
∫

[ ]

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Cramer-Rao inequality/lower bound

Cauchy Schwarz inequality, inner product:

|〈x , y〉|2 ≤ 〈x , x〉〈y , y〉 (14)

→

[

∫

dd

(

∂lnP(d |s)

∂s

)2

P(d |s)

]

[
∫

dd (ŝ − s)2P(d |s)

]

≥ 1

(15)
Mean Squared Error (MSE)

e2(s) ≡ 〈(ŝ − s)2〉 =

∫

dd (ŝ − s)2 (16)

Fisher information

I(s) ≡

∫

dd

(

∂lnP(d |s)

∂s

)2

P(d |s) ≡ 〈

(

∂lnP(d |s)

∂s

)2

〉

(17)
Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Cramer-Rao inequality/lower bound

e2I ≥ 1 (18)

If e2I = 1 → Minimum Variance Unbiased (MVU) estimator

In general there is a statistical bias B(ŝ) ≡ 〈ŝ〉 − s

MSE(ŝ) = VAR(ŝ) + B2(ŝ) (19)

VAR(ŝ) ≡ σ2(s) ≡ 〈(ŝ − 〈ŝ〉)2〉 (20)
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Fisher information

Score

S ≡
∂

∂s
lnP(d |s) =

1

P(d |s)

∂P(d |s)

∂s
(21)

Fisher information: variance of the score

I(s) ≡ 〈

(

∂lnP(d |s)

∂s

)2

〉 (22)

regularity condition
∫

dd
∂2P(d |s)

∂s2
= 0 (23)

I(s) = −〈
∂2lnP(d |s)

∂s2
〉 (24)
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Fisher information

I(s) = −〈
∂2lnP(d |s)

∂s2
〉 (25)

= −

∫

dd P(d |s)

[

∂

∂s

(

1

P(d |s)

∂P(d |s)

∂s

)]

= −

∫

dd P(d |s)

[

−
1

P(d |s)2

(

∂P(d |s)

∂s

)2

+
1

P(d |s)

∂2P(d |s)

∂s2

]

=

∫

dd P(d |s)
1

P(d |s)2

(

∂P(d |s)

∂s

)2

−

∫

dd
∂2P(d |s)

∂s2

(26)

Francisco-Shu Kitaura Statistical Analysis in Cosmology



Outline
Introduction

Information theory
Bayesian approach

Data model
Notions of information
Thermodynamics
Shannon’s entropy
Fisher information

Fisher information

Generalization to Fisher matrix

I(s)ij = −〈
∂2

∂si∂sj
lnP(d |s)〉 (27)

Information may be seen to be a measure of the
sharpness/curvature of the support curve (lnP(d |s)) near the
Maximum Likelihood estimate of s.

What is the Maximum Likelihood?

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Estimator of the signal

expectation/mean/ensemble average of s:

E[s] = 〈s〉 (28)

take care specify ensemble average!

E[s] =

∫

dsdpP(s,p|d) s = 〈s〉(s,p|d) (29)

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Probability theory axioms

Sum rule: OR (Venn diagram)

P(a1 + a2|c) = P(a1|c) + P(a2|c)− P(a1, a2|c) (30)

Product rule: AND

P(a,b|c) = P(a|b, c)P(b|c) (31)

Invariance under permutation of arguments

P(s,d|p) = P(s|d,p)P(d|p) (32)

P(d, s|p) = P(d|s,p)P(s|p), (33)

Probability distribution functions are always conditioned on
some prior information!

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Bayes theorem: the posterior/inference

Thomas Bayes (c. 1702 17 April 1761) was an English
mathematician and Presbyterian minister

P(s|d,p) =
P(s|p)P(d|s,p)

P(d|p)
(34)

posterior = prior× likelihood/evidence

Likelihood: L(s|d,p) = P(d|s,p)

update of prior with posterior → learning algorithm

Bayesian notion of information: information is encoded in
conditional probability distribution functions

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Evidence

normalization of the posterior

margnalization over the signal

P(d|p) =

∫

dsP(d, s|p) =

∫

dsP(s|p)P(d|s,p) (35)

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Bayesian inference steps

Definition of the prior: knowledge of the underlying signal

Definition of the likelihood: nature of the observed data

Linking the prior to the likelihood: link signal to the data

Bayes theorem: the posterior

Maximization of the posterior: Maximum a posteriori: MAP

Sampling the posterior: MCMC (read Neal 93), importance
sampling, population Monte Carlo (M. Kilbinger)

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Informative priors

Gaussian prior (Wiener 1949, Rybicki & Press 1992, Zaroubi
et al 1995) → Thikonov regularization

Lognormal prior/nonlinear transformation (Tarantola &
Valette 1982, FK et al 2010)

Expanded Gaussian prior (Juszkiewiz et al 95, Bernardeau &
Kofman 95, Colombi 94, FK 2010)

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Gaussian prior

Gaussian likelihood

P(d|s,p) ∝ exp

(

−
1

2
s†S−1s

)

(36)

S = 〈ss†〉(s|p)

Wiener-filter ŝ = Fd with
F = (S−1 + R†N−1R)−1R†N−1 = SR†(RSR† +N)−1

N ≡ 〈ǫǫ†〉(ǫ|p)

take care with the definition of the noise matrix

Francisco-Shu Kitaura Statistical Analysis in Cosmology



Outline
Introduction

Information theory
Bayesian approach

Conditional probabilities
Probability theory axioms
Bayes theorem
Bayesian inference steps
Informative priors
Non-informative priors

Non-informative priors

Flat prior

Jeffrey’s prior (prior for the power-spectrum: FK & Ensslin 08)

Entropic prior (Jaynes 63, Narayan & Nityananda 86, Skilling
89, FK & Ensslin 08)

(Edwin Thompson Jaynes (Waterloo, Iowa, July 5, 1922 St.
Louis, Missouri, April 30, 1998) Professor of Physics at
Washington University in St. Louis) link

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Flat prior

improper prior: integral diverges to infinity

maximization leads to maximum likelihood ML

Gaussian likelihood

P(d|s,p) ∝ exp

(

−
1

2
χ2(s)

)

(37)

χ2(s) ≡ ǫ
†N−1

ǫ

COBE-filter: F = (R†N−1R)−1R†N−1

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Flat prior

Poissonian likelihood

P(N|λ,p) = Πi exp(−λi )
λNi

i

Ni

(38)

Richardson-Lucy deconvolution algorithm (Richardson 1972,
Lucy 1974, Shepp & Vardi 1982)

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Lognormal prior

continuity equation:
dρ

dt
+

1

a
ρ∇r · v = 0, (39)

solution:

ρ = 〈ρ〉es , s = −

∫

dt
1

a
∇r · v, (40)

if s is Gaussian at all times → ρ is lognormal distributed (Coles & Jones
91)

when structures start to virialize the peculiar velocity field changes

relax the Gaussian assumption Colombi 94: skewed lognormal model with
the 1D Edgeworth exansion. (based on the skewed Gaussian Edgeworth
expansion: Juszkiewicz, Bouchet & Colombi 93)

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Multidimensional

Let me introduce here the multidimensional case:

Φi ≡ ln ρi − 〈ln ρ〉 = si − µi , νi ≡
∑

j

S
−1/2
ij Φi , (41)

si = ln(ρi/〈ρ〉) = ln(1 + δMi )

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Multidimensional

Multidimensional Edgeworth expansion

P(Φ) =
dν

dΦ
P(ν) = (det(S))−1/2

G(ν) (42)

×



1 +
1

3!

∑

ijk

〈νiνjνk〉chijk(ν) +
1

4!

∑

ijkl

〈νiνjνkνl〉chijkl(ν)

+
1

6!

∑

ijklmn





1

3!3!2

∑

j1...j6∈[1,...,6]

ǫ̃j1...j6 〈νij1νij2 νij3 〉c〈νij4 νij5νij6 〉c
]

10
hijklmn(ν) + . . .



 ,
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Lognormal model

0th order: lognormal model (G(ν) → P(δM|S))
〈ln ρi 〉 = ln〈ρ〉+ µi

P(δM|S) =
1

√

(2π)Ncellsdet(S)

∏

k

1

1 + δMk

(43)

×exp

(

−
1

2

∑

ij

(ln(1 + δMi )− µi ) S
−1
ij (ln(1 + δMj )− µj )

)

,

multidimensional implementation for matter field reconstructions:
FK, Jasche & Metcalf 2009; applied to SDSS DR7: Jasche, FK, Li & Ensslin 2010

when δM ≪ 1 → Gauss distribution

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Maximum a posteriori

Let us define the energy E (s)

E (s) ≡ − ln (P (s|d,S)) , (44)

MAP

∂E (s)

∂sl
= 0, (45)

Krylov conjugate gradient schemes (FK & Ensslin 2008; Jasche, FK, Wandelt,

Ensslin 2009; FK, Jasche, & Metcalf 2009)

s
j+1
i = s

j
i −

∑

k

Tik

∂E (s)

∂sk
, (46)

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Results: Wiener filter reconstruction of the SDSS DR6

Wiener-filter with the ARGO code: FK, Jasche, Li, Ensslin, Metcalf,

Wandelt, Lemson & White 2009
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Results: detection of a super-void in the SDSS DR6

(about 250.000 galaxies from the main sample)

FK, Jasche, Li, Ensslin, Metcalf, Wandelt, Lemson & White 2009
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Results: detection of a super-void in the SDSS DR6

(about 250.000 galaxies from the main sample)→ cluster prediction

FK, Jasche, Li, Ensslin, Metcalf, Wandelt, Lemson & White 2009
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Results: matter statistics in the SDSS DR6

FK, Jasche, Li, Ensslin, Metcalf, Wandelt, Lemson & White 2009
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Results: lognormal filter against Wiener filter and inverse
weighting

tests with the Millenium Run including selection function effects (about
350.000 mock galaxies)
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Results: lognormal filter against Wiener filter and inverse
weighting
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Results: matter statistics in the lognormal reconstruction

FK, Jasche & Metcalf 2009 (upgrade of the ARGO code)

Francisco-Shu Kitaura Statistical Analysis in Cosmology



Outline
Introduction

Information theory
Bayesian approach

Conditional probabilities
Probability theory axioms
Bayes theorem
Bayesian inference steps
Informative priors
Non-informative priors

Markov Chains

Andrey Markov (June 14, 1856 N.S. July 20, 1922) was a
Russian mathematician

Famous papers:

A.A. Markov. ”Extension of the limit theorems of probability
theory to a sum of variables connected in a chain”. reprinted
in Appendix B of: R. Howard. Dynamic Probabilistic Systems,
volume 1: Markov Chains. John Wiley and Sons, 1971.
(original in Russian 1906)
applied to language and vowels: link

Gibbs-sampling, Metropolis-Hastings, Hybrid MCMC,
Hamiltonian MCMC, etc

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Gaussian distributions: Gibbs sampling

Geman & Geman 84, Wandelt 04, Eriksen et al 07, FK &
Ensslin 08, Jasche, FK, Wandelt & Ensslin 10, (read Neal 93)

Power spectrum and map sampling

sj+1 ∼ P(s|Sj ,d) (47)

Sj+1 ∼ P(S|sj+1) (48)

Wiener filter
sj = ŝj + yj (49)

yj = ((Sj)−1 + R†N−1R)−1((Sj)−1/2x1 + R†N−1/2x2) with
Gaussian random variates x1 and x2

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Gaussian distributions: Gibbs sampling

Eriksen et al 2007

Francisco-Shu Kitaura Statistical Analysis in Cosmology



Outline
Introduction

Information theory
Bayesian approach

Conditional probabilities
Probability theory axioms
Bayes theorem
Bayesian inference steps
Informative priors
Non-informative priors

Sampling the posterior

Hamiltonian sampling (Taylor et al 2010, Jasche & FK 2010)

H(s,p) = K (p) + E (s), (50)

kinetic term with a given mass as the variance for the momenta

K (p) =
1

2
p†M−1p, (51)

Marginalization over the momenta

P(s,p) =
e−H

ZH

=
e−K

ZK

e−E

ZE

= P(p)P(s), (52)

Please note, that the kinteic PDF is a Gaussian

Marginalization occurs by drawing momenta from a Gaussian and
throwing them away after each step

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Sampling the posterior

Hamiltonian evolution equations: (s,p) → (s′,p′)

dp

dt
= −

∂H

∂s
= −

∂E

∂s
, (53)

ds

dt
=

∂H

∂p
= M−1p, (54)

Metropolis-Hastings acceptance step

pa = min(1, e−δH ), (55)

δH = H(s′,p′)− H(s,p) → we do not care about the evidence!

Francisco-Shu Kitaura Statistical Analysis in Cosmology
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Skewed matter statistics: FK tbs
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Skewed matter statistics: FK tbs
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Conclusions

There is a need to compare observations with theory as precisely as
possible.

Observations are plagued by many uncertainties which require a statistical
treatment.

The Bayesian approach is flexible and clear.

We have shown that we can deal with complex models in this framework.
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