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Abstract
The discovery that the cosmic expansion is accelerating has been followed by
an intense theoretical and experimental response in physics and astronomy.
The discovery implies that our most basic notions about how gravity works
are violated on cosmological distance scales. A simple fix is to introduce
a cosmological constant into the field equations for general relativity.
However, the extremely small value of the cosmological constant, relative
to theoretical expectations, has led theorists to explore numerous alter-
native explanations that involve the introduction of an exotic negative-
pressure fluid or a modification of general relativity. Here we review the
evidence for cosmic acceleration. We then survey some of the theoretical at-
tempts to account for it, including the cosmological constant, quintessence
and its variants, mass-varying neutrinos, and modifications of general
relativity. We discuss experimental and observational tests that may allow us
to distinguish among some of the theoretical ideas that have been proposed.
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Dark energy:
a negative-pressure
fluid comprising
∼75% of the cosmic
energy budget,
postulated to account
for the accelerated
cosmic expansion

GR: general relativity

CMB: cosmic
microwave
background

BAO: baryon acoustic
oscillations
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1. INTRODUCTION

The cosmic-acceleration puzzle is among the most viscerally compelling problems in physics. Our
deepest intuition about gravity—that all objects should be attracted to one another—simply does
not apply at cosmological distance scales. Rather than slowing, as Newtonian gravity predicts, the
relative velocities of distant galaxies are increasing. The implication is either that gravity behaves
far differently than we had previously thought or that some mysterious fluid (dark energy) with
exotic gravitational properties fills the universe. Either way, there is new physics beyond the
four fundamental forces described by the Standard Model and general relativity (GR). Cosmic
acceleration thus motivates a considerable fraction of current physical cosmology research, and it
has become a major focus of particle- and string-theory efforts.

There had long been hints, stemming primarily from the disparity among the values �m �
0.1−0.3 of the nonrelativistic mass density found by dynamical measurements and the theoretical
preference for a flat universe, �tot = 1, that there may be a cosmological constant. However,
direct measurements with distant supernovae of a negative deceleration parameter provided the
“shot heard ’round the world” (1, 2). The case for an accelerated expansion was dramatically
bolstered in 2000 with the cosmic microwave background (CMB) discovery of a flat universe
(3). A combination of observations, based on galaxy surveys, the Lyman-alpha forest, and baryon
acoustic oscillations (BAO), but primarily on the CMB, now provide constraints to cosmological
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Equation-of-state
parameter: the ratio
of the homogeneous
pressure to the energy
density, denoted w =
p/ρ

PROBLEMS WITH THE COSMOLOGICAL CONSTANT

A cosmological constant with � = 3�� H2
0 /c 2 provides a phenomenological description of dark energy; it implies

that the vacuum “weighs” something—that is, that the vacuum gravitates. However, there is no physical understand-
ing for why empty space would act as a source for the gravitational field. The particle physics vacuum contributes
an effective cosmological constant, but with an energy density many orders of magnitude larger than is observed.
This gross mismatch between theory and observation—noted by both Pauli (5) and Zeldovich (6)—is one of the
deepest physical enigmas of our time. In quantum field theory, renormalization allows us to reset the energy density
of the vacuum to zero, and for many years it was generally assumed that some mechanism made this cancellation
precise and stable. However, the discovery of cosmic acceleration suggests that the cosmological constant is (in the
absence of quintessence or some alternative gravity explanation for cosmic acceleration) small, but nonzero, and
this has now changed the character of the cosmological constant problem. If the observational trend continues to
favor dark energy with wQ consistent with −1, the challenge will be to explain why the cosmological constant is so
small, yet nonzero.

parameters at a precision that was almost unimaginable a decade ago. The evidence for cosmic
acceleration exists now at the ≥10-σ level (4). It can no longer be ignored.

The simplest solution involves no more than the addition of a cosmological constant � (with
units of curvature, or length−2) to Einstein’s equation. But the value required to explain cosmic
acceleration is, in units where G = c = � = 1, of order 10−120. This is not a problem in the
classical world, but the quantum field theory expectation is that the cosmological constant should
be of order unity, or possibly zero, should some symmetry or dynamical mechanism operate. The
gravitational effects of a cosmological constant are equivalent to those of the virtual particles that
continually pop in and out of existence in quantum field theory. Renormalization allows us to
choose the zero point of this virtual-particle energy density, but doing so implies a cancellation of
terms in the fundamental Lagrangian to one part in 10120.

Dark energy theories dodge this question. The effects of a cosmological constant in Einstein’s
equation can also be reproduced precisely by a homogeneous fluid of energy density ρ� =
�c 4/8πG and pressure p� = −ρ�. Dark energy theories postulate that the vacuum itself does
not gravitate (by virtue of some unspecified symmetry or dynamical mechanism), but that the
universe is filled with dark energy, an exotic negative-pressure fluid that provides the impetus
for cosmic acceleration. Alternative gravity theories investigated in this connection propose that
an accelerated expansion may simply be the vacuum solution of the theory. The aim of the vast
observational/experimental dark energy effort is to determine the physics of cosmic acceleration.
See the sidebar, Problems with the Cosmological Constant, for further discussion.

Although dark energy and/or alternative gravity theories preclude the need for a cosmological
constant, those that have been developed so far require (as we discuss below) the introduction
of unusually tiny parameters and/or finely tuned initial conditions. They also introduce a new
question, the so-called coincidence problem: Why has the universe transitioned from deceleration
to acceleration so recently? None of the current models answers this question fully, although some
(e.g., the tracker field models discussed below) do address it.

Theorists may debate the relative merits of various cosmic-acceleration theories—cosmological
constant, dark energy, alternative gravity, anthropic arguments, etc.—but it is ultimately up to
experiment to decide which is correct. The most telling empirical quantity in this regard is the
(effective) dark energy equation-of-state parameter wQ ≡ pQ/ρQ , where pQ and ρQ are the dark
energy pressure and energy density, respectively. The parameter wQ can be determined from the

www.annualreviews.org • The Physics of Cosmic Acceleration 399

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt

. S
ci

. 2
00

9.
59

:3
97

-4
29

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f 
G

ro
ni

ng
en

 o
n 

11
/1

2/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



ANRV391-NS59-18 ARI 16 September 2009 14:37

expansion history; i.e., by how the cosmic acceleration changes with time. If cosmic acceleration
is due to a cosmological constant, then wQ = −1, and the future expansion is de Sitter–like (i.e.,
exponentially expanding). In contrast, dark energy and alternative gravity theories predict wQ �=
−1. Current constraints are wQ � −1 ± 0.1. The precise value of wQ (and its evolution with
time) depends on the particular cosmic acceleration theory. There is no consensus on how far
from −1 this value should be, but we can provide some classification of theoretical predictions. Of
course, cosmic acceleration theories require new physics, and this new physics may also be probed
experimentally in other ways, beyond merely the expansion history.

This review is intended primarily to survey some of the theoretical explanations, involving
both dark energy and alternative gravity, for cosmic acceleration, and secondarily to highlight
the observational and experimental tests that may be pursued to test the theories. We begin
with some background and a summary of the observational evidence for cosmic acceleration.
We then review models that explain cosmic acceleration by the introduction of a new exotic
fluid and those that work by modifying gravity. We close with a brief review of some of the
observational/experimental ways forward. References 7–9 complement this review by providing
deeper analyses of observational approaches to dark energy, whereas others (10–12) provide more
details about recent dynamical models for dark energy.

2. BACKGROUND AND EVIDENCE

2.1. The Friedmann–Robertson–Walker Cosmology

We begin by reviewing the essentials of the standard cosmological model. We refer the reader to
Chapter 13 in Reference 13 for more details.

2.1.1. Kinematics. An isotropic and homogeneous expanding universe with spatial coordinates
xi is described by the Robertson–Walker metric,1 ds 2 = −dt2 + a2(t)[dr2 + r2(dθ2 + sin2 θ dφ2)].
The scale factor a(t) is a function of time t, where a(t0) = a0 at the present time t0. Cosmologists
use the redshift z ≡ (a0/a) − 1 as a proxy for the age or scale factor. The redshift can be measured
for distant sources; it is the fractional amount by which the wavelength of a photon has been
stretched by the expansion between the time the photon is emitted and the time it is received.

The expansion rate H ≡ ȧ/a is a function of time, with the value H0 � 70 km s−1 Mpc−1

(the Hubble constant) and where the dot denotes a derivative with respect to t. The deceleration
parameter is then q ≡ −(ä/a)/H 2 = (1 + z)H ′/H − 1, where the prime denotes a derivative
with respect to z. The luminosity distance of an object of luminosity L at a redshift z is defined as
dL ≡ (L/4π F )1/2, where F is the energy flux received from that object. The luminosity distance
is given (in a flat universe) by

dL(z) = (1 + z)c
∫ z

0

d z′

H(z′)
. 1.

Thus, measurement of the apparent brightness of sources of known luminosity (standard candles)
at a variety of redshifts z can be used to determine or constrain the expansion history.

The quantity [H(z)(1 + z)]−1d z determines the time that evolves between redshifts z and z +
dz; thus, it also determines the physical distance in this redshift interval and therefore the physical
volume in a given redshift interval and angular aperture. Likewise, a(t) [which can be derived
from H(z)] determines the angular sizes of standard rods, objects of fixed physical sizes. The

1Given the observational evidence for negligible spatial curvature, we assume throughout a flat universe. This simplifies
considerably many of the equations. The effects of nonzero curvature are discussed in Reference 14.
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DGP: Dvali–
Gabadadze–Porrati

angular-diameter distance is defined as dA(z) ≡ lprop/θ , where lprop is the proper size of an object
and where θ is the angle it subtends on the sky. The angular-diameter distance is related to dL

through dA(z) = (1 + z)−2dL(z). As discussed below, measurements of the volume and luminosity
and angular-diameter distances can also be used to determine the expansion history.

The integral expression for dL(z) can be Taylor expanded about z = 0 to quadratic order as
H0dL(z) = c z[1+ (1/2)(1−q0)z+· · ·]. The term linear in z is the well-known Hubble law. [Spatial
curvature affects dL(z) only at cubic or higher order (14).] In 1998, two groups independently used
supernovae as standard candles to find better than 3-σ evidence for a negative value for q0 (1, 2),
the implications of which we explain in the following subsections.

2.1.2. Dynamics. The Friedmann equation,

H2 =
(

ȧ
a

)2

= 8πG
3

∑
i

ρi , 2.

is the general-relativistic equation of motion for a(t) for a flat universe filled with fluids i (e.g.,
nonrelativistic matter, radiation, and dark energy) of energy densities ρ i. If the fluids have
pressures pi, then the change d(ρa3) in the total energy (ρ = ∑

i ρi ) per comoving volume is equal
to the work −pd(a3), where p = ∑

i pi done by the fluid. This relation allows us to rewrite the
Friedmann equation as

ä
a

= −4πG
3

∑
i

(ρi + 3pi ). 3.

A nonrelativistic source has pressure p = 0, implying that ä < 0. In other words, the relative
velocities between any two galaxies should be decreasing, in agreement with our Newtonian
intuition.

If we define equation-of-state parameters wi ≡ pi/ρi (e.g., wm = 0 for matter and wr =
1/3 for radiation), then the second form (Equation 3) of the Friedmann equation can be written
q0 = (1 + 3wt)/2, where wt ≡ p/ρ is the net equation-of-state parameter. Thus, if GR is correct,
the observations require that the universe has wt < −1/3. Thus, some dark energy, a negative-
pressure fluid, is postulated to account for cosmic acceleration.

2.1.3. Expansion history. Although the original supernova measurements determined only q0,
future measurements will aim to determine the full functional dependence of dL(z) [or, equivalently,
H(z)] over the redshift range 0 < z ≤ few. [The cubic correction to dL(z) was first obtained
observationally in 2004 (15).] If the universe consists today of nonrelativistic matter (baryons and
dark matter; wm = 0) with current energy density �m ≡ ρm/ρc (in units of the critical density
ρc = 3H2

0 /8πG) and some other exotic fluid with energy density �Q = 1 − �m and an equation-
of-state parameter wQ , then H(z) = H0[�m(1 + z)3 + (1 − �m)(1 + z)3(1+wQ )]1/2. In a flat universe,
�m + �Q = 1, the deceleration parameter is then q0 = (1+3wQ�Q)/2. The cosmological constant
is equivalent to a fluid with wQ = −1; in this case, q0 = (3/2)�m − 1.

Note, however, that there is no reason to expect wQ to be constant (unless wQ = −1 precisely);
this assumption is the simplest parameterization of a time-varying dark energy density. In much
of the current literature [including the Dark Energy Task Force Report (7)], the time evolution
of wQ is parameterized as wQ = w0 + wa (1 − a/a0). Generally, though, wQ(z) may be an arbitrary
function of z; it is up to the dark energy theory (which we have not yet specified) to predict.
Figure 1 shows the expansion history H(z), luminosity distance dL(z), and deceleration parameter
q(z) for four different models. The first three models are constant-wQ models, and the fourth
model is an alternative gravity model (DGP gravity), described in Section 7.1 below, with variable
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Figure 1
Examples of the expansion history H(z), luminosity distance dL(z), and deceleration q(z) are shown for
several different dark energy models. The red, gray, and blue curves correspond to dark energy models with
equation-of-state parameters wQ = −1.2, −1, and −0.8, respectively. The brown curve is for a Dvali–
Gabadadze–Porrati (DGP) alternative gravity model. All models have the same matter density and assume
spatial flatness. The thickness of the curve areas indicates the uncertainties that arise from the current
uncertainty in the nonrelativistic matter density �m.

wQ . Measurement of wQ(a) is the aim of observational efforts to probe the physics of cosmic
acceleration.

2.1.4. Growth of structure. So far, we have assumed that the universe is perfectly homogeneous,
but this is only an approximation; the fractional density perturbation δm(	x, t) ≡ [ρm(	x, t)− ρ̄m]/ρ̄m,
where ρ̄m is the mean density, is not zero. At sufficiently early times, or when smoothed on
sufficiently large scales, the fractional density perturbation is δm 
 1. In this linear regime, the
density perturbation satisfies an evolution equation,

δ̈m + 2Hδ̇m − (3/2)�m H2δm = 0. 4.
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Quintessence: a
dynamical dark energy;
literally, the fifth
element in the cosmic
energy budget (in
addition to radiation,
baryons, neutrinos,
and dark matter)

This equation has a growing-mode solution (as a function of z) δm(z) ∝ D(z), and this evolution
can be determined with large-scale structure measurements. In the standard cosmological model
(i.e., wQ = −1), the linear theory growth factor

D(z) ∝ H(z)(5�m/2)
∫ ∞

z
(1 + z)[H(z)]−3 d z.

However, this expression is invalid if wQ �= −1 (16), and D(z) generally varies for different wQ .
Moreover, Equation 4 is derived assuming that the dark energy remains perfectly homogeneous.
If dark energy clusters, there may be a source for this equation (i.e., the right-hand side may
be nonzero), in which case D(z) may be further affected. Alternative theories of gravity in-
voked to explain cosmic acceleration may predict a different D(z), even for the same expansion
history.

2.2. The Evidence

Evidence for accelerated expansion comes from the aforementioned direct measurements of dL(z)
using Type Ia supernovae, which now suggest q0 � −0.7 ± 0.1 (1-σ errors) (17). However,
the case for accelerated expansion is dramatically bolstered by other observations. Chief among
these is the CMB measurement of a flat universe (3), obtained by locating the first acoustic
peak in the CMB power spectrum (18); this implies a total density �m + �Q � 1 that is much
greater than the matter density �m � 0.3 indicated by dynamical measurements. Current CMB
measurements alone are now sufficiently precise that they can determine a dark energy density
�Q = 0.742 ± 0.030 (for wQ = −1 and a flat universe) (4), a measurement that is made still more
precise with the addition of data from large-scale structure, the Lyman-alpha forest, BAO, the
cluster abundance, and supernovae. In particular, supernova measurements provide a constraint
(again, assuming wQ = −1) q0 = (�m/2) − �Q � −0.7 that is nearly orthogonal to the CMB
contour �m + �Q � 1, and so CMB and supernovae together provide tight limits in the �m−�Q

plane. The consistency of a spatially flat universe with dark matter and a cosmological constant
with a wealth of precise data has led to the adoption of a concordance model, our current standard
cosmological model. Current values for the parameters of this model are provided in References 4
and 19.

The concordance model assumption wQ = −1 can be tested quantitatively with the data. If
the universe is flat, then the deceleration parameter is q0 = (1/2)(1 + 3wQ�Q). If q0 < 0, then
wQ < −(1/3)(1 − �m)−1, or wQ ≤ −0.5 for �m ≤ 0.3. The observed value q0 � −0.7 requires an
even more negative pressure, with wQ � −1. The current constraints to the � m −wQ parameter
space, assuming a constant wQ and a flat universe, are shown in Figure 2. Very little is reliably
known about the behavior of dark energy at z ≥ 1, except that it does not appear to have played
any significant role in cosmic evolution at earlier times. We discuss other probes of the expansion
history in Section 9.

3. QUINTESSENCE

If the history of particle physics is any guide, then one can assume that the dark energy is due to
a new field. For cosmology, the simplest field that can both provide the missing energy between
the matter density and the critical density and drive cosmic acceleration is a scalar field. Such a
field in this role is sometimes referred to as quintessence to help distinguish it from other fields
or other forms of dark energy (20).
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Figure 2
Shown are the 68.3%–, 95.4%–, and 99.7%–confidence level contours for wQ and �m, assuming a flat
universe. The individual constraints from large-scale structure [using baryon acoustic oscillations (BAO)],
the cosmic microwave background (CMB), and the Union Supernova data set are shown, as are the
combined constraints. Reproduced from Reference 17 with permission.

3.1. Basic Equations

Here we review the basic equations of quintessence, beginning with those that describe the back-
ground evolution and its relation to the quintessence potential and then those that describe the
evolution of perturbations to the quintessence field.

3.1.1. Background evolution. The formal description of quintessence begins with the action

S =
∫

d 4x
√−g

(
R

16πG
+ LSM + LQ

)
, 5.

where R is the Ricci scalar and where g is the determinant of the metric. Here, the quintessence
Lagrangian is LQ = −1/2(∇μ Q)(∇μ Q) − V(Q), and LSM is the Lagrangian for Standard Model
particles. The field obeys the Klein-Gordon equation, � Q = V,Q , where � is the d’Alembertian
and V,Q ≡ ∂V/∂ Q, and it carries stress-energy Tμν = (∇μ Q)(∇ν Q) + gμνLQ . Note that we use
metric signature (− + + +) and adopt the curvature conventions used in Reference 21.

The spatially homogeneous cosmic scalar is guided by the equation of motion, Q̈+3HQ̇+V,Q =
0, with energy density and pressure

ρQ = 1
2

Q̇2 + V(Q) and pQ = 1
2

Q̇2 − V(Q). 6.

An equation-of-state parameter wQ < −1/3 is obtained when Q̇2 < V . The mechanism for
obtaining Q̇2 
 V is similar to the slow-roll mechanism in inflation (although not precisely the
same, given that a fraction �m � 0.25 of the current cosmological density is nonrelativistic matter).
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We illustrate with the simple example of a potential V(Q) = (1/2)m2 Q2. In the absence of the
Hubble-friction term (3HQ̇) in the scalar field equation of motion, the field simply oscillates in
this quadratic potential. However, if m 
 H, then the Hubble friction overdamps the oscillator.
In this case, Q̈ 
 HQ̇, V,Q , and 3HQ̇ � −m2 Q. The field then moves little over a Hubble time,
and Q̇2 
 V is achieved. More generally, quintessence potentials are required to be very flat (i.e.,
to have effective masses mQ ≡ √

V,QQ 
 H ) to work.

3.1.2. Expansion history and the quintessence potential. A given quintessence potential deter-
mines the expansion history and vice versa. For example, if quintessence has an equation-of-state
parameter w(a) as a function of scale factor a, then the energy density can be reconstructed as

ρQ(a) = �Qρc exp
(

3
∫ a0

a
[1 + w(a)] d ln a

)
. 7.

The potential and field evolution for this equation-of-state parameter can then be reconstructed
from

V(a) = 1
2

[1 − w(a)]ρ(a),

Q(a) =
∫

d ã

√
1 + w(ã)
ã H(ã)

√
ρ(ã). 8.

The equivalence w(a) ↔ V(Q[a]) is valid provided that Q̇ �= 0. For most quintessence models, in
which the field evolves monotonically down a potential, this condition is satisfied.

3.1.3. Quintessence perturbations. If the quintessence field can vary in time, then it can gener-
ally vary in space. Linearized spatial fluctuations δQ of the quintessence field follow the evolution
equation

δQ̈ + 3HδQ̇ +
(

V,QQ − 1
a2

∇2
)

δQ = δ̇m Q̇, 9.

where ∇2 is the spatial Laplace operator in comoving coordinates and where δm is the nonrelativistic
matter perturbation. Quintessence therefore responds to inhomogeneities in dark matter and
baryons. Furthermore, the source term depends on Q̇, so the closer wQ is to −1, the weaker the
driving term is. The nature of the response is determined by mQ or by the quintessence Compton
wavelength λQ = m−1

Q . In the case of constant wQ , there is a simplification that can be written as

V,QQ = −3
2

(1 − wQ)
[

Ḣ − 3
2

(1 + wQ)H2
]

. 10.

For a slowly varying equation-of-state parameter, V,QQ ∝ H2 and λQ ∼ H−1. From the above
equations, this means that fluctuations on scales smaller than the Hubble scale dissipate with
sound speed equal to the speed of light because the coefficient of ∇2/a2 in Equation 9 is unity;
hence, the field remains a smooth, nonclustering component. Any initial fluctuations in the
quintessence field are damped out rapidly (22). In principle, perturbations to the quintessence
field serve as a source for matter perturbations—i.e., they show up as a nonzero right-hand side to
Equation 4—and thus affect the linear theory growth factor D(z). However, the damping of
small-scale quintessence perturbations implies that this is generically a small effect. On scales
≥ H−1, the field is gravitationally unstable. The growth of these long-wavelength perturbations to
quintessence may leave an imprint on the large-angle CMB-anisotropy pattern, which we discuss
in Section 3.4.
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3.2. Representative Models

Embedding scalar field dark energy in a realistic extension of the Standard Model poses a number
of challenges. A viable scenario generically requires an ultralight scalar (mQ ≤ H ∼ 10−42 GeV),
with Planckian amplitude (Q ∼ 1019 GeV), that remains noninteracting with the Standard Model
and therefore “dark” (23–26). A second challenge comes from the coincidence problem—Why is
dark energy becoming dominant today? Ideally, the theory would have order-unity parameters at,
say, the Planck scale, and the dark energy density today would be insensitive to the field’s initial
conditions. However, in existing models, the parameters of the potential are specially chosen so
that quintessence provides acceleration today. Moreover, the scalar field generically requires finely
tuned initial conditions if the field is to achieve the desired dynamics. Despite these difficulties,
many models of quintessence have been proposed. Here we focus on a few representative models.

3.2.1. Cosmic axion. A cosmic axion, or pseudo-Nambu-Goldstone boson (PNGB), is one way
to have a scalar of extremely low mass and to keep it dark. The first such models (27) considered
a PNGB associated with a unification scale f mediating a breakdown of a global symmetry in a
family of neutrinos at a scale μ ∼ m2

ν/ f , thereby helping to explain the very light mass of the
quintessence field. Models have been proposed employing string or M-theory moduli fields (28,
29) as well. The resulting scalar potential, V = μ4(1 + cos Q/ f ), remains stable against loop
corrections [although not necessarily against quantum gravity effects (30, 31)], thereby protecting
the mass μ. The shift symmetry, Q → Q + 2π f, disables couplings to Standard Model fields that
would otherwise spoil the “darkness.” A viable scenario requires μ � 0.002 eV and f ∼ 1018 GeV
(32–34). The cosmic evolution of the field is as follows: (a) The field has been frozen by Hubble
friction through most of cosmic history; (b) as the Hubble friction relaxes, the field begins to
slowly relax towards its ground state, as illustrated in Figure 3; and (c) in the future, the field will
oscillate at the bottom of the potential, with its energy redshifting away like nonrelativistic matter.
That the mass scales f and μ are derived from the energy scale of other physics alleviates some of
the need to explain the coincidence problem. The initial position of Q on the potential directly
determines the present-day properties of dark energy. However, the fine-tuning problem is eased
because the PNGB potential is periodic; the range of starting values of Q that produces a viable
scenario is a nonnegligible portion of the allowed range Q ∈ [0, 2π f ].

3.2.2. Tracker fields. Condensation of hidden-sector quark-antiquark pairs in a supersymmetric
version of quantum chromodynamics has been shown to give rise to a pionlike scalar field with

V

a b
V

Q Q

Figure 3
Two examples of potentials for the quintessence field. (a) One representative of a conventional massive scalar
or pseudo-Nambu-Goldstone boson. The field is relaxing toward the local minimum. (b) One representative
of vacuumless potentials such as the tracker. The field is evolving toward the global minimum.
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an effective potential V = M 4(Q/MP )−n with n > 0 (35, 36). The index n is determined by
the number of fermion families and colors, and M is set by the cutoff scale. The cosmological
dynamics of such a scalar are quite novel (37–40): For a broad range of initial conditions, the
evolution of the field approaches, and then locks onto, a universal track with a negative equation-
of-state parameter such that it inevitably dominates at late times. When the scalar field energy
density is subdominant, its equation-of-state parameter is wQ ≈ (nwB − 2)/(n + 2), where wB is
the equation-of-state parameter of the dominant or background component. Thus, the field has
been rolling down the potential for most of its history, as illustrated in Figure 3, but it is now
beginning to slow. As the scalar field comes to dominate, its equation-of-state parameter grows
more negative and goes asymptotically to wQ → −1 in the future. The universal track is uniquely
determined by the mass M and index n, so there is a one-to-one relationship between �Q and
wQ as a function of time. A viable model requires 0 < n < 1 and M � 0.002 eV. The broad
insensitivity of the late-time behavior to the initial conditions is appealing—this model solves the
abovementioned fine-tuning problem. Another feature of this model is that it helps to address the
coincidence problem by allowing the dark energy density to track the matter/radiation density
over long periods of cosmological history. Still, there is no explanation as to why the acceleration
is happening now, as opposed to some later time.

3.2.3. Exponential potential. A scalar field with an exponential potential, V = M 4e−λQ/mPl ,
arises in a wide variety of extensions of Standard Model physics. In one particular case, the scalar
field is the dilaton, a pionlike condensate of supersymmetric gaugino particles (36, 41). The
dynamics of this model are as follows: (a) For λ2 > 3(1 + wB ) the scalar field energy density
tracks the background fluid with wQ = wB , and (b) for λ2 < 2, there are accelerating solutions
(42). However, the scaling solutions do not satisfactorily convert into dark energy at late times; a
viable model requires λ2 < 2 and finely tuned initial conditions for Q and Q̇. Phenomenological
variations on this model have been explored in, for example, Reference 43. These models feature
a local minimum in the exponentially decaying potential, where the field can relax and produce
potential-dominated accelerating expansion.

3.2.4. Spintessence. A scalar field with internal degrees of freedom has been considered as a dark
energy candidate; one particular example is termed spintessence (44), a complex field Q = Rei

spinning in a U(1)-symmetric potential V = V(R). If the spin frequency is high enough, ̇ � H,
then it is rotation, rather than Hubble friction, that prevents the field from rolling immediately to
its minimum. The equation-of-state parameter is w ≈ (RV ′ − V)/(RV ′ + V). Thus, a potential
with shape RV ′ < V/2 can provide wQ < − 1

3 . However, the field is generically unstable to the
formation of Q-balls (nontopological solitons) (44, 45), rendering this solution to the dark energy
problem unworkable. A gas of cold particles with an attractive interaction can also yield negative
pressure (46), but in the relativistic regime required for cosmic acceleration, the theory resembles
(47) spintessence. A related idea, termed oscillescence, is that a single real scalar field oscillates in
a confining potential V(Q) ∝ |Q|n. This field acts like a fluid, with wQ = (n − 2)/(n + 2) (48), and
thus gives wQ < − 1

3 for n > 1. Again, though, this model is unstable to small-scale perturbations
(49).

3.2.5. k-Essence. Dark energy models with scalar degrees of freedom with noncanonical ki-
netic terms in the Lagrangian display novel dynamics. k-Essence defines a class of models with
a Lagrangian L(Q, X) built from nonlinear functions of Q and X ≡ −(1/2)(∇μ Q)(∇μ Q). The
resulting stress-energy tensor is Tμν = L,X(∇μφ)(∇νφ) + Lgμν , so the cosmic pressure is simply
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Braneworld: scenario
in which Standard
Model fields are
confined to a
membrane in a
higher-dimensional
spacetime but gravity
propagates everywhere

p = L and the energy density is ρ = 2Xp,X − p . The motivation for these models is largely
phenomenological, although in string-inspired models the scalar is identified with the dilaton
or other moduli fields (50). Purely kinetic k-essence, with L = L(X), behaves as a barotropic
fluid (51). A k-essence counterpart to the potential-dominated tracker has L = f (φ)(−X + X 2)
with f ∝ φ−n. For 0 < n < 2, k-essence evolves with a constant equation-of-state parameter
wQ = −1 + (n/2)(1 + wB ) until it comes to dominate the universe, whereupon wQ → −1 (52).
Models with multiple attractor solutions, such that the field scales with an equation-of-state pa-
rameter wQ = 1/3 during the radiation era, but then runs off to a de Sitter–like solution after the
onset of matter domination, have been proposed as possible solutions of the coincidence problem
(53). However, there is another aspect of k-essence that must be considered: The sound speed for
the propagation of high-frequency perturbations is v2 = p,X/ρ,X. The canonical scalar field has
v2 = 1. The k-essence models that predict v2 < 0 can be eliminated because they are unstable
to the growth of fluctuations. Density fluctuations in models with 0 < v2 
 1 can leave a strong
imprint on the CMB and large-scale structure. The apparent violation of causality in models with
v2 > 1, including models that pass from scaling in the radiation era to a present-day accelerating
solution (54), suggests that additional analysis is required to understand the phenomenology of
these models (55).

3.2.6. Ghost condensate. Dark energy scalar field theories built from higher-order derivatives
have also been studied. As an extension of k-essence, these models are also motivated by string field
theory or braneworld scenarios and typically consist of a Lagrangian that is a nonlinear function
of X, � Q, (∇μ∇ν Q)(∇μ∇ν Q), etc. In certain cases, these higher-derivative terms can stabilize
theories with a leading-order kinetic term of the wrong sign (hence, a ghost). One such case, a
ghost condensate (56), has an equation-of-state parameter wQ = −1 but carries fluctuations with
a nonlinear dispersion relation ω2 ∝ k4. This fluid contributes to the overall inhomogeneous
density field, yet the higher-derivative terms mean that its fluctuations are sourced by higher
derivatives of the local gravitational fields. Generally, the additional dynamics resulting from the
higher-derivative terms allow novel behavior such as wQ ≤ −1 with a stable but vanishing sound
speed, v2→0 (57). Stable, nonrelativistic fluctuations contribute like a new species of dark matter
inhomogeneties.

3.3. Thawing and Freezing Models

The equation-of-state parameter for dynamical dark energy is unlikely to be a constant. Using the
cosmic axion and the tracker field as guides, we may identify two classes of quintessence models,
thawing and freezing. Thawing models have a potential with a V = 0 minimum accessible within
a finite range of Q. The field starts high up the potential, frozen by Hubble friction, with an
equation-of-state parameter wQ = −1. As the Hubble constant decays, the field begins to thaw
and roll down toward wQ = 0. Freezing models are said to be vacuumless, as the minimum is
not accessible within a finite range of Q, although there are no barriers; the field rolls down
the potential, but decelerates so that the equation-of-state parameter evolves towards wQ → −1.
This ignores models with nonzero local minima of the potential, but these models are equivalent
to a cosmological constant with massive scalar field excitations. The trajectories of thawing and
freezing models occupy rather well-defined regions of the wQ versus dwQ/d ln a parameter plane
(58), which are illustrated in Figure 4. [Plenty of models lie outside these regions (59, 60), although
they tend to have metastable minima, e.g., a cosmological constant or noncanonical kinetic terms.]
These regions can be used as a guide for assessing the sensitivity of methods to test for dynamical
dark energy.
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Figure 4
Shown is the wQ versus dwQ/d ln a parameter plane of dynamical dark energy models. (a) The likely range of thawing and freezing
models. (b) The current 68.3%–, 95.4%–, and 99.7%–confidence level constraints on the dark energy parameterization wQ = w0 +
wa (1 − a/a0) (17) have been converted into the present-day values of wQ, dwQ/d ln a . The dashed lines show the direction of
evolution of models located at particular points on the 99.7%–confidence level boundary.

MaVaN: mass-
varying neutrino

3.4. Observables of the Models

The dark energy observables are the energy density �Q, equation-of-state parameters w0 and wa ,
and the growth factor D(z), which is determined by the fluctuation sound speed v. The models
described in this section predict some time evolution a(t), which can then be recast in terms of
w0, wa . The models also predict fluctuations of the dark energy density that propagate at a sound
speed v = 1 for quintessence, or more generally v ≥ 0 for k-essence. The dark energy density
and equation-of-state parameter affect the expansion history H(z). The growth rate of baryonic
and dark matter perturbations, as well as the gravitational potentials sampled by CMB photons,
are sensitive to the expansion history. Fluctuations in the dark energy, dependent upon the dark
energy density, equation-of-state parameter, and sound speed, can leave an imprint on large-scale
structure and the CMB. The impacts of these phenomena on the CMB power spectrum are
illustrated in Figure 5. A further discussion of observational approaches is provided in Section 9.

4. MASS-VARYING NEUTRINOS

The coincidence between the mass scale m� ≡ �1/4 ∼ 10−3 eV of the cosmological constant and
that of neutrino masses motivates a solution that connects cosmic acceleration to neutrino physics.
This idea was pursued in References 62 and 63 in the idea of mass-varying neutrinos (MaVaNs).
Like quintessence, the theory introduces a slowly varying scalar field, dubbed the acceleron, whose
value determines the neutrino mass mν . The increased energy density associated with larger mν

affects the acceleron dynamics in such a way that the slow variation of the dark energy density can
be achieved without an extremely flat scalar field potential.
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Figure 5
The effects of dynamical dark energy on the cosmic microwave background (CMB) temperature power
spectrum are broadly illustrated. The dark energy, through its abundance and equation of state, indicated by
�Q and wQ , influences the angular-diameter distance to last scattering, which sets the acoustic-peak
multipole location. Similarly, dark energy influences the growth rate of perturbations, affecting the CMB
anisotropies created at late times on large angular scales. Fluctuations in the dark energy, indicated by δ, also
contribute to the anisotropy pattern. Dark energy can also influence the acoustic peak structure if it has a
nonnegligible abundance at recombination (61).

More quantitatively, the energy density of the neutrino–dark energy fluid is ρdark = mνnν +
ρa (mν ), where nν is the neutrino number density and where ρa is the acceleron density. For the sake
of simplicity, the neutrinos are assumed to be nonrelativistic. The fields of the theory are designed
so that the acceleron relaxes to the value that minimizes ρdark, and the field value is thus fixed by
the condition (∂ρdark/∂mν ) = nν + (∂ρa/∂mν ) = 0. Combining this with the energy-conservation
equation ρ̇dark = −3H(ρdark + pdark), one finds that the dark sector equation-of-state parameter is

w ≡ pdark

ρdark
= −1 + mνnν

mνnν + ρa
, 11.

which gives w � −1.
Specific implementations of the theory may have testable consequences for neutrino-oscillation

experiments (64). Unfortunately, however, the MaVaN idea suffers from a generic instability
(65, 66) to the growth of perturbations that renders it unsuitable for explaining cosmic acceleration.
The dark energy density at any given point is determined exclusively by the neutrino number
density. The gradient-energy density in this model is too small to prevent the growth of spatial
fluctuations. Thus, the sound speed is c 2

s = w < 0, giving rise to a dynamical instability to the
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rapid growth of perturbations to the MaVaN energy density. A similar instability arises generically
in other models that similarly attempt to couple dark matter and dark energy (67, 68).

5. PHANTOM ENERGY

The simplest dark energy models (single-field models with canonical kinetic terms) have wQ ≥ −1.
However, current data are consistent with wQ < −1; for example, a recent analysis finds −1.14 <

wQ < −0.88 (95% CL) (19). What if the dark energy is phantom energy (69)? In other words,
what if it has an equation-of-state parameter wQ < −1? Generally, dark energy with wQ < −1 fits
to observational data with a slightly lower energy density �Q than does dark energy with wQ >

−1. There are important differences, though, that stem from the fact that wQ < −1 implies a
violation of the null energy condition. This means the energy density grows, rather than decays,
with time. In a phantom-dominated universe, the scale factor and expansion rate diverge in finite
time, ripping apart everything—galaxies, stars, atoms—before the universe terminates in a “big
rip” singularity (70, 71). For example, assuming the equation-of-state parameter maintains the
constant value wQ = −1.1, the end would arrive in ∼100 gigayears (Ga). Spacetime diagrams
classifying the fate of the universe with different types of dark energy are given in Reference 72.

Theoretical models of phantom dark energy require exotic physics, such as a scalar field with
negative kinetic energy or higher-derivative terms (69, 73). A quantum field with negative kinetic
energy is unstable; even if it is dark, gravitational interactions—unless cut off at a sufficiently low
energy scale (73, 74)—can catalyze a catastrophe. Curved-space quantum field–theory models of
phantom energy are discussed in References 75 and 76. Quantum effects may strengthen a big
rip or a sudden singularity (a singularity in which the scale factor remains finite but where its
derivatives diverge) (77) when the spacetime-curvature radius shrinks to Planckian radius (78, 79).
There are other mechanisms that could masquerade as phantom energy, such as novel photon
(80) or dark matter interactions (81), as well as new gravitational phenomena (75). Although a
canonical or k-essence scalar cannot cross the wQ = −1 barrier (82–84), such evolution may be
achieved in the presence of higher-derivative terms (85).

6. SCALAR-TENSOR AND f (R) THEORIES

An alternative approach to cosmic acceleration is to change gravity. With quintessence, we assume
that GR is correct but that the universe contains some exotic new substance that drives cosmic
acceleration. Specifically, the left-hand side (Gμν ) of Einstein’s equation remains unaltered, but
we introduce a new source Tμν for the right-hand side. Here we alter GR, that is, replace the
left-hand side of Einstein’s equation, or change gravity even further.

6.1. Scalar-Tensor Theories

We begin by reviewing scalar-tensor theories, perhaps the most widely studied class of alternative
gravity theories. A wide array of experimental tests of such theories have been investigated in detail
(21). Scalar-tensor theories appear as low-energy limits of string theories, and other alternative
gravity theories, such as f (R) theories (discussed below), can be recast as scalar-tensor theories.
They can be understood heuristically as models of gravity with a variable Newton’s constant.

6.1.1. The action and field equations. In scalar-tensor theories, the Einstein–Hilbert action
SEH = (16πG)−1

∫
d 4x

√−g R for gravity is replaced by an action (see, e.g., Reference 86)

S =
∫

d 4x
√−g

[
b(λ)R − 1

2
h(λ)gμν (∂μλ)(∂νλ) − U(λ) + LM(gμν, ψi )

]
, 12.
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where λ(	x, t) is the eponymous scalar field; L(gμν, ψi ), the matter Lagrangian, is a function of the
metric and matter fields ψ i; and b(λ), h(λ), and U(λ) are functions that determine the form of the
scalar-tensor theory. The presence of a spatially varying field b(λ) that multiplies the curvature R
in Equation 12 implies that scalar-tensor theories are theories of gravity with a Newton’s constant
that depends on b(λ). The other terms in the action are then kinetic- and potential-energy terms
for the new field. Although Equation 12 suggests that three functions [b(λ), h(λ), and U(λ)] are
required to specify the theory, we can redefine b to be the new field and then derive new functions
U(b) and h(b).

Variation of the action with respect to the metric leads to the equation of motion (the gener-
alization of Einstein’s equation),

Gμν = b−1(λ)
[

1
2

T(M)
μν + 1

2
T(λ)

μν + ∇μ∇νb − gμν�b
]

, 13.

where Gμν is the Einstein tensor, T(M)
μν is the stress tensor for matter, and

T(λ)
μν = h(λ)(∇μλ)(∇νλ) − gμν

[
1
2

h(λ)gρσ (∇ρλ)(∇σ λ) + U(λ)
]

14.

is the stress tensor for the scalar field. There is also an equation of motion,

h�λ + 1
2

h′gμν (∇μλ)(∇νλ) − U ′ + b ′ R = 0, 15.

for the scalar field, where ′ ≡ d/dλ.

6.1.2. Friedmann equations. The equation of motion for the scale factor a(t) in a spatially flat
Robertson–Walker universe is

H2 ≡
(

ȧ
a

)2

= ρ

6b
+ hλ̇2

6b
− H

ḃ
b

+ U
6b

, 16.

with scalar field equation of motion

λ̈ + 3Hλ̇ = 3
b ′

h
(
Ḣ + 2H2) − h′λ̇2

2h
− 1

2
U ′

h
. 17.

Several things are made clear by these equations. First, there is considerable freedom in the
choice of the functions b(λ), h(λ), and U(λ), so it is difficult to make general statements about
the validity of scalar-tensor theories. Second, specification of these functions alone does not de-
termine the phenomenology; the initial conditions for the new scalar degree of freedom must also
be specified.

Although the detailed Friedmann and scalar field equations are different, there are explanations
for cosmic acceleration in these theories analogous to those in ordinary quintessence theories. For
example, if U(λ) is sufficiently shallow, there may be solutions to the equations of motion in which
λ is displaced from the minimum of U(λ) and rolls slowly. In this case, the time derivatives in
the equations of motion will become negligible, the Friedmann equation becomes approximately
H2 � U/(6b) � constant, and a roughly de Sitter expansion ensues. Given the additional terms
in the Friedmann equation and scalar field equation of motion that depend on derivatives of
b and h, the details may differ, and a wider range of behaviors may be possible. However, the
form of the left-hand side of Equation 17 implies that the rolling of the scalar field generically
slows with time; a general-relativistic cosmological behavior is consequently an attractor in many
scalar-tensor theories (87).
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PPN: parameterized
post-Newtonian

6.1.3. Brans–Dicke theory and Solar System tests. The Brans–Dicke theory is defined by
b(λ) = λ/(16πG), h(λ) = ω/(8πλG), and U(λ) = 0, where the Brans–Dicke parameter ω is a
constant. Solution of the field equations in the Solar System gives rise to a parameterized post-
Newtonian (PPN) parameter γ = (ω + 1)/(ω + 2) for this theory. This parameter is measured in
time-delay experiments in the Solar System to be γ = 1 + (2.1 ± 2.3) × 10−5 (88), leading to a
bound ω ≥ 5 × 104. The generalization of this Solar System constraint to scalar-tensor theories
with other choices of b(λ), h(λ), and U(λ) depends on the specifics of those functions. Generally
speaking, however, the bound applies as long as the curvature at the minimum of U(λ) is sufficiently
shallow so that the motion of λ within the Solar System is not restricted; below, this condition is
quantified more precisely for f (R) theories.

6.2. f(R) Theories

One class of alternative gravity theories that has received considerable attention in recent years
includes the f (R) theories. We discuss these theories in the remainder of this section.

6.2.1. The action and field equations. The Einstein–Hilbert action of GR is replaced by an
action (89)

S = 1
16πG

∫
d 4x

√−g f (R) + Smatter, 18.

where f (R) is a function whose form defines the theory. Such actions, which generalize the
Einstein–Hilbert action, may arise as low-energy limits of string theory. Note that the G in this
action is not necessarily the Newton’s constant measured in terrestrial experiments.

The field equations are obtained by varying the action with respect to gμν ; the result is

f ′(R)Rμν − 1
2

f gμν − ∇μ∇ν f ′(R) + � f ′(R)gμν = 8πGTμν. 19.

Taking the trace and setting Tμν = 0, we find a constant-curvature vacuum solution (i.e., a de
Sitter spacetime) with scalar curvature R0 and with f ′(R0)R0 = 2 f (R0).

6.2.2. 1/R gravity. For example, in 1/R gravity (90), we choose f (R) = R − μ4/R, where μ is a
constant; this theory has a self-accelerating vacuum solution with R = 12H2 = √

3μ2. The field
equation for this theory is

8πGTμν =
(

1 + μ4

R2

)
Rμν − 1

2

(
1 − μ4

R2

)
Rgμν + μ4 (

gμν − ∇(μ∇ν)
)

R−2. 20.

Some intuition about the model can be obtained from the trace,

�
μ4

R2
− R

3
+ μ4

R
= 8πGT

3
, 21.

where T = gμνTμν . For an effectively pressureless source (e.g., the Sun), T = −ρ, where ρ is
the mass density. This trace should be compared with the general-relativistic Einstein equation
trace, R = 8πGρ. Note that (for constant R) the new equation is quadratic, rather than linear, in
R, suggesting that there may be two different constant-curvature solutions for the same ρ. Given
that μ2 ∼ H 
 Gρ in the Solar System, it is tempting to assume an approximate GR-like solution
R � 8πGρ. However, this solution is violently unstable to small-wavelength perturbations (91),
and it produces the wrong spacetime outside the Sun. The other solution, which has R � μ2

everywhere throughout the Solar System (and which is very different from R ∼ Gρ), is stable.
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JBD: Jordan–Brans–
Dicke

However, this solution predicts a PPN parameter γ = 1/2, which disagrees with experimental
constraints (92, 93).

The other significant (and perhaps more important) difference between 1/R gravity and GR
arises from the term � (μ4/R2) in Equation 21. In GR, the trace equation, R = 8πGρ, is a
constraint equation that determines R uniquely. However, in 1/R gravity, the scalar curvature R
becomes a dynamical variable; in other words, there is a new scalar degree of freedom.

The original 1/R gravity theory is just one example of an f (R) theory. Given the flexibility
allowed in the choice of f (R), it is unwise to draw general conclusions about f (R) theories from
1/R gravity. Still, there are several lessons to be learned: (a) If the f (R) theory is to explain cosmic
acceleration, there are likely to be mass parameters comparable to H in the theory, (b) there is
a scalar degree of freedom, dormant in GR, that comes to life in f (R) theories, (c) Solar System
constraints on the theory may be severe, (d ) there may be more than one solution, for the same
source, to the field equations, and (e) one of the solutions may be unstable to small-wavelength
perturbations.

6.2.3. The equivalence between f (R) and scalar-tensor theories. In the general case, the
physics of f (R) theories can be understood by noting that they are equivalent to scalar-tensor
theories (92). Consider the following action for gravity with a scalar field λ:

S = 1
16πG

∫
d 4x

√−g
[

f (λ) + f ′(λ)(R − λ)
] + Smatter. 22.

The λ equation of motion gives λ = R if f ′′(λ) �= 0, demonstrating the equivalence with Equation
18. Equation 22 is thus equivalent to the scalar-tensor action, Equation 12, if we identify b(λ) =
f ′(λ), U(λ) = − f (λ)+λ f ′(λ), and h(λ) = 0. In other words, f (R) theories are equivalent to scalar-
tensor theories with vanishing kinetic terms. The absence of a kinetic term seems to suggest that
the scalar degree of freedom remains dormant, but if we change to an Einstein-frame metric
g E

μν = b ′(λ)gμν and canonical scalar field ϕ through f ′(λ) = exp(
√

16πG/3ϕ), then the Jordan–
Brans–Dicke–frame ( JBD-frame) action (Equation 22) becomes, in the Einstein frame,

S =
∫

d 4x
√−gE

[
1

16πG
RE − 1

2
gμν

E (∂μϕ)(∂νϕ) − V(ϕ)
]
, 23.

where

V(ϕ) = λ(ϕ) f ′ (λ(ϕ)) − f (λ(ϕ))
16πG[ f ′ (λ(ϕ))]2

. 24.

In this frame, the propagating scalar degree of freedom is apparent.
In the Einstein frame, scalar-tensor theories resemble GR with a canonical scalar field. The

difference, though, is that the Einstein-frame metric gE is not the metric whose geodesics determine
particle orbits; it is the JBD-frame metric g. Thus, scalar-tensor theories in the Einstein frame
resemble GR with an extra, nongeodesic force on the particle. These may also be generalized
by “chameleon” theories (94), in which the scalar coupling to matter may differ for different
matter fields. Viewed in the JBD frame, scalar-tensor theories are those in which there is a new
propagating scalar degree of freedom, in addition to the usual two propagating tensorial degrees
of freedom.

6.2.4. Friedmann equations. The Friedmann equations for f (R) theory can now be obtained
from Equation 16,

H2 = 1
6

ρ

f ′(λ)
− H

d
dt

ln f ′(λ) + 1
6

λ f ′(λ) − f (λ)
f ′(λ)

, 25.
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and the scalar-field equation of motion, Equation 17, now provides the constraint λ = 12H2 +6Ḣ.
The self-accelerating solution, H2 = λ/12, can be obtained by setting ρ = 0 and time derivatives
equal to zero in these equations. Also, it is the scalar-field potential, U(λ) = λ f ′(λ) − f (λ), in the
last term of Equation 25 that is driving the accelerated expansion.

6.2.5. Solar System constraints. The absence of a kinetic term for λ implies a Brans–Dicke
parameter ω = 0 and thus a PPN parameter γ = 1/2 for f (R) gravity, generalizing the result for
1/R gravity. However, as discussed above, this Solar System constraint only applies if the function
U(λ) in the scalar-tensor theory is sufficiently close to flat that the scalar field can move freely in
the Solar System. This is true if the following four conditions are satisfied (95): (a) f (R) is analytic
at R = R0, where R0 is the background value of R; (b) f ′′(R0) �= 0; (c) | f ′(R0)/ f ′′(R0)|r2

SS 
 1,
where where rSS ∼ AU is the distance scale over which the Solar System tests are carried out;
and (d ) | f ′(R0)/ f ′′(R0)| 
 R0(r�/GM�). If these conditions are violated, then the linear theory
analysis that concludes that γ = 1/2 breaks down. In this case, a fully nonlinear analysis is required
to determine γ .

Theories can be constructed, by violating the fourth condition above, that exhibit a
“chameleon” mechanism whereby the nonlinear solution satisfies Solar System constraints (96–98).
These theories require the effective mass to be large in the Solar System and small in intergalac-
tic space. The GR-like solution R � 8πGρ inside the Sun matches the GR-like solution with
ρ � ρMW (where ρMW is the mass density in the Milky Way) outside the Sun, but within the Milky
Way. That solution then transitions to the cosmological solution in intergalactic space. Functional
forms for f (R) that allow such behavior require several small parameters. Reference 99 provides a
classification of such models. For example, an f (R) that resembles a broken power law, in which
f (R) ∝ Rn (with n > 0) as R → 0 and f (R) ∝ a + b/Rn (where a and b are appropriately chosen
constants), may work (96, 98). In these theories, the scalar field dynamics on cosmological scales
become very stiff; in other words, the phenomenology of these theories is almost indistinguishable
from those in which there is simply a cosmological constant (100).

These models also imply a tail-wags-the-dog effect whereby a change in the ambient density
surrounding the Solar System, from interstellar medium densities to intergalactic medium den-
sities, can change the results of PPN tests by five orders of magnitude. In some f (R) theories,
particularly those with a chameleon mechanism, the usual 1/r2-force law of gravity is modified.
This seemingly trivial change may have profound implications for almost every area of astro-
physics, from Solar System scales to the dynamics of galaxy clusters, few of which have yet to be
thought through carefully.

6.2.6. Palatini formalism. In the usual formulation (the metric formalism) of GR, the Einstein–
Hilbert action is varied with respect to the metric gμν to obtain Einstein’s equations. However,
an alternative approach, the Palatini formalism, is to vary the action with respect to both the
connection �ρ

μν and the metric. If applied to the Einstein–Hilbert action, this approach results in
the same gravitational field equations, and it also yields the standard relation between the metric
and the connection. However, for a more general f (R) action, the Palatini formalism gives rise to a
different theory. Solutions to cosmic acceleration may also be obtained with the Palatini formalism
(101), possibly without violating Solar System constraints. However, the Christoffel symbol is now
evaluated using a different metric, g̃μν = f ′(R)gμν , whereas particle trajectories still follow the
geodesics of gμν . Moreover, R is obtained from the algebraic relation R f ′(R) − 2 f (R) = 8πGT
between the Ricci scalar and the trace of the stress-energy tensor. The gravitational implications
depend sensitively on the source stress tensor. At the quantum level, these theories generally result
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in new matter couplings that may have even more dire empirical consequences (102) in the form
of violations of the equivalence principle (103).

7. BRANEWORLD GRAVITY AND RELATED IDEAS

The alternative gravity theories discussed above introduce a new scalar degree of freedom. Another
possibility is to modify gravity by changing the dimensionality of space. In this section, we discuss
such braneworld scenarios, as well as braneworld-inspired ideas. In braneworld scenarios, our
(3 + 1) − d world is a subspace of a higher-dimensional spacetime. Unlike earlier extradimensional
models (e.g., Kaluza–Klein theories), Standard Model fields may be restricted to lie on our brane,
and gravitational fields may propagate in the extra dimensions (known as the bulk) as well.

7.1. Dvali–Gabadadze–Porrati Gravity

DGP (for Dvali–Gabadadze–Porrati) gravity (104, 105) postulates a (4 + 1)-dimensional universe
in which the bulk of the five-dimensional spacetime is Minkowski space with an embedded (3 +
1)-dimensional brane (our universe) on which matter fields live.

7.1.1. The action. The gravitational action is

S(5) =
∫

d 5x
√−g

R
16πG(5)

+
∫

d 4x
√

−g (4)

[
R(4)

16πG
+ LSM

]
, 26.

where G(5) is the five-dimensional gravitational constant (note that its dimensions are different
from those of G), g(R) is the five-dimensional metric determinant (Ricci scalar), and g(4)(R(4)) is
the induced metric determinant (Ricci scalar) on the brane.

7.1.2. Heuristic picture. Before proceeding with the cosmological solution, consider DGP grav-
ity in the weak field limit. If we take gAB = ηAB + h AB , where |h AB | 
 1, then the linearized field
equations tell us that the four-dimensional metric components hμν , wherein resides the nonrela-
tivistic potential, have Fourier ( pμ) components,

hμν (p) = 8πG
p2 + 2(G/G(5))p

[
Tμν (p) − 1

3
ημνTα

α (p)
]

, 27.

for a stress-energy source Tμν on the brane. This suggests a crossover distance r0 = (1/2)(G(5)/G).
For Fourier modes p � r−1

0 , hμν (p) ∝ p−2, implying the usual static gravitational potential
V(r) ∝ r−1 for r 
 r0. But for Fourier modes p 
 r−1

0 , hμν (p) ∝ p−1, implying V(r) ∝ r−2 at
larger distances. In other words, gravity is weaker at distances r ≥ r0.

The static gravitational potential in DGP gravity differs from that in fundamental theories
with small extra dimensions. If there is an extra dimension curled up into a size R5 ∼ mm, and
if the graviton is free to propagate equally in our three spatial dimensions and this extra small
dimension, then the gravitational force law steepens to r−3 at distances ∼mm. In DGP gravity,
however, the extra dimension is large, not small, and there is an energy cost for the propagation
of gravitons with wavelengths ≤ r0 into the bulk. At r ≤ r0, the gravitons are thus confined to
the brane, and we have ordinary gravity. At r ≥ r0, the gravitons can escape into the bulk and the
force law is that for a five-dimensional spacetime, as shown in Figure 6.

7.1.3. Cosmological solution. The action can be varied to obtain the field equations. The
brane is then assumed to be filled with a homogeneous fluid of pressure p and energy density

416 Caldwell · Kamionkowski

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt

. S
ci

. 2
00

9.
59

:3
97

-4
29

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f 
G

ro
ni

ng
en

 o
n 

11
/1

2/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



ANRV391-NS59-18 ARI 16 September 2009 14:37

Gbrane

Gbulk
a b

Figure 6
An illustration of the Dvali–Gabadadze–Porrati (DGP) mechanism. (a) Added to our (3 + 1) − d spacetime
(the brane) is an additional spatial dimension (the bulk). The presence of stress-energy on the brane provides
an energy cost for the propagation of gravitons with wavelengths <r0 into the bulk, thus making the
gravitational force law ∝ r−2 at distances r < r0 on the brane but ∝ r−3 at distances r < r0. (b) Approximate
equipotential curves for the gravitational field. Reproduced from Reference 106 with permission.

ρ (104, 107). Assuming a flat universe for the sake of simplicity, the cosmological metric takes
the form ds 2 = N2(t, ξ )dt2 − A2(t, ξ )d 	x2 − B2(t, ξ )dξ 2, where ξ is the coordinate for the fifth
dimension. The (generalized) Einstein equations yield equations of motion for the metric variables
N(t, ξ ), A(t, ξ ), and B(t, ξ ). The usual scale factor for our universe is then a(t) = A(t, ξ = 0), and
it satisfies an equation of motion (the DGP Friedmann equation)

H2 ± H
r0

= 8πG
3

ρ. 28.

There are two solutions for the expansion [cf., the discussion of f (R) models, above]. If we take the
minus sign in Equation 28, then at early times, when H � r−1

0 , we recover the usual Friedmann
equation. But when H decreases, the new term kicks in, and H → r−1

0 at late times. In other words,
the universe asymptotes at late times to a de Sitter phase. (The plus sign in Equation 28 results in
an eternally decelerating universe.)

7.1.4. Solar System tests. Unlike quintessence models, which retain GR, DGP gravity is an
alternative gravity theory, and it makes predictions for modified gravitational physics, beyond a
modified expansion rate, and in particular for a modified spacetime in the Solar System. Superfi-
cially, at Solar System–distance scales DGP gravity resembles a theory with a gravitational scalar
degree of freedom. This can be seen from the tensor structure, Tμν − (1/3)ημνT α

α , that acts as the
source for the linearized gravitational field in Equation 27. This tensor structure resembles that in
an ω = 0 scalar-tensor theory and in massive gravity (the extra scalar being the longitudinal mode
of the graviton), but it differs from the structure Tμν − (1/2)ημνT α

α in GR. The extra scalar degree
of freedom in DGP gravity may be understood as a fluctuation in the brane surface. The differ-
ence means that a relativistic particle (e.g., a photon) is affected differently by the same source,
leading to a PPN parameter γ = 1/2, which again disagrees with measurements. This is a DGP
equivalent of the van Dam–Veltman–Zakharov discontinuity (108, 109) that appears in massive
gravity.

However, Equation 27 provides only the (3 + 1)−dimensional components of the field. The
approximations that lead to this linearized equation involve a highly nonlinear metric perturbation
in the bulk, even when the source is weak, thereby calling the derivation of Equation 27 into
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question. A proper treatment involves a perturbative expansion not only in hμν , but also in r/r∗,
where r∗ = (rgr2

0 )1/3 and where rg = 2GM/c 2 is the Schwarzchild radius (110). The field equations
for the spherically symmetric spacetime can then be solved perturbatively in three different distance
regimes, with the following results: (a) The spacetime resembles that in GR, with fractional
corrections O((r/r∗)3/2), at small distances, r 
 r∗; (b) it resembles that in an ω = 0 scalar-tensor
theory (i.e., the static potential is still ∝ r−1, but light deflection is described by γ = 1/2) at
distances r∗ 
 r 
 r0; and (c) it then falls off more steeply, as r−2, at distances r � r0.

For example, r∗ � 150 pc for the spacetime around the Sun. Thus, Solar System tests of gravity
occur deep within the GR-like regime, and DGP gravity is thus consistent with these tests. Still,
the spacetime is not precisely Schwarzchild; there are corrections O((r/r∗)3/2). These corrections
may be tested by future experiments (111), although the r−3/2 dependence of the correction means
that the theory cannot be parameterized with the usual PPN formalism.

Light-deflection experiments in the Solar System are unlikely to be constraining, as the frac-
tional correction to the general-relativistic value for the deflection angle will be ∼ (r/r∗)3/2 ∼
10−11, whereas the smallest value probed is ∼10−4. However, measurements of perihelion advances
may be more promising. DGP gravity leads to a correction, ∼5 μas per year, to the perihelion
advance of a planetary orbit (111). Unlike the general-relativistic perihelion-advance rate, which
decreases for larger-r orbits, the DGP correction is r independent and can thus be distinguished
from a general-relativistic correction (or from those that occur in the usual PPN expansion).
Moreover, Solar System tests at large distances may be equally effective (or more effective) at
testing DGP gravity as those at short distances. Thus, improved lunar laser ranging experiments
may be sensitive to DGP gravity (112), as might BepiColombo and MESSENGER—European
Space Agency and NASA satellites, respectively—to Mercury. However, probes of the outer Solar
System, like Cassini, could also probe DGP gravity.

7.1.5. Expansion history. By rearranging Equation 28, we can rewrite the expansion history
as H(z) = (H0/2)[1 − �m +

√
(1 − �m)2 + 4�m(1 + z)3]. At z � 1, this approaches the standard

form, H(z) � √
�m H0(1 + z)3/2, and wQ → −1 in the distant future, z → −1. The deceleration

parameter for this model is q0 = 3�m(1 + �m)−1 − 1, and thus there is a relation between q0 and
�m. A value �m = 0.274 implies q0 = −0.355, which is only marginally consistent with current
data. A better fit to observations can be obtained by adding a cosmological constant or curvature
(113) or in models based on other manifestations of braneworlds.

Figure 1 shows the expansion history, luminosity distance, and deceleration for the DGP
model. If the expansion history can be measured with sufficient precision to distinguish this
functional form from, e.g., a constant-wQ model, then this may provide an avenue toward testing
the model.

7.1.6. Growth of structure. The distance scales relevant for large-scale structure generally
occur at r ≥ r∗, where the behavior of DGP gravity differs from that of GR. The growth of
linear density perturbations can be described in DGP gravity in terms of an effective Newton’s
constant, Geff = G(1 + 3/β) (114), where β = 1 − 2r0 H

[
1 + Ḣ/(3H2)

]
. The effects of this

altered gravitational constant can be taken into account approximately by changing the last term
in Equation 4; the factor �mH 2 that appears there arises from the Friedmann equation �mH 2 =
8πGρ/3. The change in the linear theory growth factor D(z) can be appreciable in these models;
it is a ∼30% correction at z = 0. This contrasts dramatically with quintessence models, which
do not generally affect D(z) significantly.
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7.2. Related Ideas

There have been other attempts to modify gravity to account for cosmic acceleration that are
inspired by DGP gravity or the massive gravity theories it resembles.

7.2.1. Degravitation. The idea of degravitation (115, 116) is to replace Einstein’s equation,
Gμν = 8πGTμν , by [1 + F (L2�)]Gμν = 8πGTμν , where F(x) is a monotonically decreasing filter
function with the limits F(x) → 0 for x → ∞ and F (x) � 1 for x → 0. Here, L is a distance scale
(presumably ∼ H−1

0 ) at which the force of gravity weakens. Thus, Newton’s constant acts as a high-
pass filter; long-wavelength modes of the stress-energy tensor do not source the gravitational field.
An analogous modification of electrodynamics is precisely equivalent to electrodynamics with a
massive photon. Likewise, the structure of degravitation shares some similarities with massive
gravity, although the mapping is not precise.

7.2.2. The fat graviton. The idea here (117) is to postulate that virtual gravitons with invariant
masses at or above the millielectronvolt range simply do not propagate; the cosmological constant
due to zero-point fluctuations conveyed by gravity is then observed. Such models can be con-
strained by considering cosmological gravitational lensing systems (118), as the angular deflection
of photons in such systems implies momentum transfers (presumably carried by virtual gravitons)
larger than this energy scale.

7.2.3. Modified Friedmann equations. Braneworld scenarios that generalize the DGP theory
by allowing for a wider range of dynamics in the bulk can produce an effective expansion law
H2 ∝ ρn on the brane (119), and this has motivated phenomenological models of dark energy.
One such example is the “Cardassian” model, whereby H2 = (8πGρ/3)+Bρn (120); supernova and
CMB distances suggest n ≤ 0.4. An alternative parameterization of the effects of extra dimensions
proposes H2 + (1 − �M)H2

0 (H/H0)α = 8πGρ/3 (121). During the matter era, the equation-of-
state parameter of the inferred dark energy is weff = −1 + α/2 until z ∼ 1, and it asymptotes to
weff → −1 in the future. Rough arguments suggest that α ≤ 1 is necessary for consistency with
observations.

7.2.4. A phenomenological approach. The authors of References 122–124 posit the existence
of a new gravitational theory that changes the amount of spacetime curvature produced per unit
mass. The Friedmann equation is modified so that the matter-dominated expansion becomes
progressively more de Sitter–like, mimicking the evolution under dynamical dark energy with
equation-of-state parameter wQ � −1. Metric perturbations likewise respond differently to inho-
mogeneities in the matter and radiation, leading to a characteristic “gravitational slip” whereby
the potential ψ appearing in the geodesic equation, 	̈M = −	∇ψ , differs from the potential φ in
the Poisson equation, ∇2φ = 4πGδρ. Scalar-tensor and f (R) theories, braneworld scenarios, and
DGP gravity, as well as massive gravity, all predict φ �= ψ in the presence of nonrelativistic matter,
in contrast to GR. This suggests a parameterized post-Friedmann description of modified gravity,
whereby a new parameter, � ≡ ψ/φ − 1, characterizes the degree of departure from GR, in anal-
ogy to the post-Newtonian parameter γ . The imposed time and scale dependence of � , along
with two further assumptions—conservation of the radiation and matter stress-energy tensor and
the absence of new gravitational effects mimicking a “dark fluid” momentum flux or velocity
relative to the cosmic rest frame—are sufficient to complete the description of linearized metric
perturbations. A � �= 0 affects the rate of growth of perturbations, the integrated Sachs–Wolfe
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Landscape scenario:
idea that string theory
predicts a huge
number of false vacua
with different but
closely spaced
vacuum-energy
densities

effect, and the weak gravitational lensing deflection angle. Hence, observations of the CMB and
large-scale structure may be used to test for the consistency of GR on cosmological scales.

7.3. Comments

There are a number of theoretical questions that must be addressed if braneworld scenarios are to
explain cosmic acceleration. The simplest DGP model is only marginally consistent with the ob-
served cosmic acceleration; either some new exotic fluid or a more complicated implementation of
the braneworld must be introduced to improve the agreement with the data. Braneworld scenarios
introduce new small parameters, and they do not solve the coincidence problem. Moreover, we do
not know whether the local perturbative solutions for the spherically symmetric DGP spacetime
can be sewn together into a single global solution (125). There are also questions about the stability
of the self-accelerating phase to the growth of small-scale fluctuations (126, 127). Still, braneworld
scenarios and related ideas are worth further theoretical attention, as they connect cosmology to
novel ideas from string and supergravity theories and provide a range of phenomenological con-
sequences beyond the alteration of the expansion rate that they were introduced to explain.

8. THE LANDSCAPE SCENARIO

In this review, we have concentrated on theories of cosmic acceleration based on the introduction
of new fields or modifications of gravity, both intended as alternatives to the simple postulate of
a cosmological constant. But cosmic acceleration may simply be due to a cosmological constant.
If so, then the physics of cosmic acceleration is just the physics of the cosmological constant. We
have refrained from discussing theories of the cosmological constant (for reviews, see References
128 and 129), but we make an exception for the recently developed landscape scenario (130).

Like quintessence, the landscape scenario allows for a range of possible values for the vacuum
energy. Unlike quintessence, these possibilities are arranged in a so-called discretuum, rather than
a continuum, of values. The spacing between these values is comparable to the observed value
of the cosmological constant. To understand the idea, recall that the electromagnetic field Fμν

is a two-form field (an antisymmetric rank-two tensor) sourced by a charge e that follows some
worldline. In 1 + 1 dimensions (or equivalently, between two parallel plates), the electric field and
its energy density are constant. Quantization of the electron charge e implies that both the field
and energy density are quantized, the latter taking on values ρ ∝ n2e2, where n is an integer.

Similarly, a four-form field Fμνρσ in 3 + 1 spatial dimensions is sourced by coupling to an
electrically charged membrane (a 3-brane), and in string theory, there are also analogs of magnetic
charges (5-branes). Quantization conditions, analogous to the Dirac quantization condition in
electromagnetism, then require that the field and the associated energy density take on discrete
values: ρ = (1/2)n2q 2m4

Pl (130–132).
Suppose now that there is a “bare” cosmological constant λ = O(m2

Pl), which, for the sake
of argument, may be negative. Then the effective cosmological constant � can take on values
� = λ + 4πn2q 2m2

Pl. There is thus an infinite range of possible values of �. The requirement
that there be one that is �� 10−120 m2

Pl requires q � 10−120λ1/2m−1
Pl ; in other words, there is still a

fine-tuning problem. Put another way, if q ∼ 1, then the closest that n2q2 gets to −λ/m2
Pl is ∼1,

or in other words, the density of states is constant in n.
However, in string theory, there may be a large number j of four-form fields; for instance, a

typical value may be J � 100 − 500. If so, then the cosmological constant takes on values � =
λ+ 4π

∑
i n2

i q 2
i m2

Pl. Taking all qi = q, for the sake of argument, each combination {n1, n2, . . . , nJ}
describes a different vacuum with a contribution λn ≡ 4πq 2m2

Pl

∑
i n2

i to the vacuum-energy
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density. The number of states with n2 ≡ ∑
i n2

i in the range n2 → n2 + dn2 is (dN/dn2)dn2, where
(d N/dn2) = (2π )J/2nJ−2[2�(J/2)]−1, the density of states, is proportional to the area of a J-sphere
of radius n. The typical spacing between states is thus 4πq 2m2

Pl�(n2), where �(n2) = (d N/dn2)−1. If
we assume λn � m2

Pl, then n2 � (4πq 2)−1. Taking 4πq 2 � 0.01, we find �(n2) � 10−120 for J � 200.
Thus, the presence of many four-form fields allows for far more closely spaced levels in the cos-
mological constant discretuum and thus explains how a value 10−120 m2

Pl may arise in string theory.

9. THE OBSERVATIONAL WAY FORWARD

9.1. The Expansion History

The evidence for dark energy or modified gravity comes from measurements that probe the
expansion history of the universe, and extensions of these measurements provide perhaps the most
promising avenues for further empirical inquiry. Current data show that the cosmic expansion is
accelerating, and they constrain the dark energy density to within a few percent. If we assume that
the equation-of-state parameter wQ is constant, then it is constrained to be within 12% of −1 (at
a 95% confidence level) (19).

The question is whether cosmic acceleration is due solely to a cosmological constant, or whether
there is something more interesting going on. Thus, a number of avenues are being pursued to
measure wQ more precisely to determine whether it can be shown to be different from −1. These
probes have recently been reviewed thoroughly by the Dark Energy Task Force (DETF) (7) and
elsewhere (8, 9), so we simply summarize them here. In principle, the expansion history can
be determined with a variety of cosmological observations (e.g., quasar-lensing statistics, cluster
properties, the Lyman-alpha forest, the Alcock–Paczynski test, direct measurements of the age
of the universe, etc.). However, the DETF focused upon supernovae, galaxy-cluster abundances,
BAO, and weak gravitational lensing, reflecting a rough consensus in the community that these four
approaches currently provide the most promising avenues. We caution, however, that there may
still be room for new ideas. Either way, it is generally agreed that given systematic errors inherent in
any particular technique, several complementary methods will be required to provide cross-checks.

9.1.1. Supernovae. Supernovae have played a crucial role in establishing cosmic acceleration,
and they are likely to provide even more precise constraints on the expansion history in the future.
To date, the supernovae used in such studies are Type Ia, explosions powered by the thermonuclear
detonation of a white dwarf when its mass exceeds the Chandrasekhar limit. These explosions can
be distinguished from those produced by other mechanisms (e.g., Type II supernovae, powered by
iron-core collapse in supergiants) from the details of their spectra and light curves. The fact that
the star ignites very rapidly after exceeding the Chandrasekhar limit implies that Type Ia super-
novae should be good standard candles. Thus, their observed brightness provides the luminosity
distance dL(z). Measurements support this simple notion, and details of the spectra and light curves
can be used to correct for relatively small changes in the supernova luminosities.

Supernova searches will be particularly valuable if they can reach redshifts z ∼ 1, where the
effects of different wQ values become most dramatic (see Figure 1). Progress with supernovae will
require greater reduction in systematic errors, better theoretical understanding of supernovae and
evolution effects, and greater statistics. Both ground-based and space-based supernova searches
can be used to determine the expansion history. However, for redshifts z ∼ 1, the principal
optical supernova emission (as well as the characteristic silicon absorption feature) gets shifted
to the infrared, which is obscured by the atmosphere, and this provides (much of) the case for a
space-based observatory.
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9.1.2. Baryon acoustic oscillations. In recent years, BAO have become increasingly attractive
as a possibility for determining the expansion history. The acoustic oscillations seen in the CMB
power spectrum are due to oscillations in the photon-baryon fluid at the surface of last scatter.
The dark matter is decoupled and does not participate in these oscillations. However, because
baryons contribute a nonnegligible fraction of the nonrelativistic-matter density, oscillations in
the baryon-photon fluid imprint as small oscillations in the matter power spectrum at late times
(133, 134). These oscillations have now been detected in galaxy surveys (135). The physical
wave number at which these oscillations occur is well understood from linear perturbation
theory, and so they provide a standard ruler. Thus, BAO measure the angular diameter distance
dA(z) = (1 + z)−2dL(z). Measurement of clustering along the line of sight may also provide
information on the expansion history H(z). Issues with BAO include nonlinear evolution of the
acoustic peaks in the matter power spectrum and systematic and astrophysical effects (136) that
could mimic features in the power spectrum.

9.1.3. Cluster abundances. Galaxy clusters are the largest gravitationally bound objects in
the universe. The spatial density of clusters in the universe can be determined from models of
structure formation. The observed number of clusters depends on the spatial density as well as
on the volume per unit solid angle on the sky and per unit redshift interval (137). This volume
depends on the quantity [H(z)(1 + z)]−1, so clusters measure the expansion history H(z).

The theories predict the cluster abundance as a function of the cluster mass. The trick, then, is
to obtain the cluster mass from the cluster observables—namely, the luminosity and temperature
of the X-ray emission, the Sunyaev–Zeldovich effect (138), cluster dynamics, and/or the effects of
weak gravitational lensing by the cluster on background galaxies. There is now a large industry
that amalgamates theory, simulations, and multiwavelength cluster observations in an effort to
develop a reliable cluster-mass indicator.

9.1.4. Weak lensing. Weak gravitational lensing by large-scale density fluctuations along the
line of sight to distant galaxies can distort the images of those galaxies (139). Large-distance
correlations in the mass thereby induce long-distance correlations in the observed ellipticities of
the distant galaxies. Measurements of these ellipticity correlations can thus be used to determine
the power spectrum of the mass as a function of angular wave number. If the power spectrum is
already known (e.g., from the CMB) as a function of the physical wave number, then the observed
amplitude determines the physical wave number corresponding to an angular wave number. Thus,
weak lensing measures the angular diameter distance dA(z). Weak lensing probes the gravitational
potential and thus the total mass, unlike galaxy surveys, which use luminous galaxies to trace
the mass distribution. The challenge with weak lensing is to understand the subtle experimental
effects that might mimic weak lensing–induced ellipticity correlations. There may also be intrinsic
alignments of the galaxies (140) that could resemble a weak lensing signal.

9.1.5. Other probes of the expansion history. There may be other ways to measure the expan-
sion history. If the ages of stellar populations can be obtained from their spectra at a variety of
redshifts, then the expansion rate dz/dt may be obtained directly (141). There may be other lu-
minous standard candles; for example, the gravitational wave signal from supermassive black hole
binaries (142) may provide a new method to determine luminosity distance if a suitable measure
of redshift can be obtained from an optical counterpart. It has also recently been suggested that
by comparing the biases and redshift-space distortions for two different galaxy populations, con-
straints to D(z) and H(z) may be obtained (143) in a way that is limited ultimately by the number
of galaxies, rather than the number of Fourier modes in the density field.
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9.2. Growth of Structure

The growth rate of density inhomogeneities [i.e., the linear theory growth factor D(z)] depends
on the cosmic expansion rate. Moreover, different theories that predict the same background
cosmic evolution may lead to different rates of perturbation growth. For example, DGP theories
are expected to have a significant effect on D(z), and above we discussed a phenomenological
approach (parameterized post-Friedmann) to the growth of perturbations in alternative gravity
theories. Of the four avenues discussed above, clusters, BAO, and weak lensing may also provide
measurements of D(z) in addition to measurements of H(z).

9.3. Lorentz Violation and Other Tests

The new physics implied by cosmic acceleration, gravitational or otherwise, may have other ob-
servable/experimental consequences apart from its effect on cosmic expansion. For example, we
have discussed Solar System tests of alternative gravity theories for cosmic acceleration and the
differing effects of various models on the growth of large-scale structure.

Tests of Lorentz violation provide another avenue. The rest frame of the CMB provides us with
a preferred frame in the universe. Because a cosmological constant has the same density in every
inertial frame, it can manifest no effects of Lorentz violation. If, however, w �= −1, due to either
dark energy or modified gravity, and if that new physics is somehow coupled nongravitationally to
ordinary matter, then the preferred cosmological frame may show up in tests of Lorentz violation.
Typically, however, we expect these violations to be extremely small by laboratory standards. First
of all, dark energy fields must be exceedingly weakly coupled to Standard Model particles if they
are to remain dark. Moreover, the timescale for evolution of these fields is the Hubble time, far
longer than laboratory timescales.

Cosmological observations may allow for the experimental timescale to be comparable to the
Hubble time. For example, Carroll (23) pointed out that if quintessence couples to the pseudoscalar
of electromagnetism, there will be a uniform rotation of the linear polarization of photons prop-
agating over cosmological distances. This could be probed by looking for a mean misalignment
between the linear polarization of cosmological radio sources with the position angles of their im-
ages. It can also be tested by looking for the parity-violating polarization correlations it produces
in the CMB polarization (144).

In addition to these and laboratory tests of Lorentz violation, preferred-frame effects in gravita-
tional physics may also arise if the quintessence field couples in some nontrivial way (145). Eötvös-
like experiments may also be used to search for couplings of ordinary matter to the quintessence
field. If cosmic acceleration is due to a scalar-tensor theory, then the variable Newton’s constant
implied by the theory may suggest that other fundamental constants vary with time (146).

It is easy to speculate how various dark energy theories may give rise to Lorentz violation,
preferred-frame effects, or variation of fundamental constants. But in the absence of any clear
front-runner theories, it is much more difficult to say which, if any of these, will be more
constraining.

10. CONCLUSIONS

The nature of cosmic acceleration is an intriguing puzzle. Occam’s razor suggests that the phe-
nomenon may be explained simply by a cosmological constant. This may be an acceptable phe-
nomenological explanation, but it would be more satisfying to have a physical explanation for the
observed value of �. The unexpectedly small value inferred for � leads us to suspect that the ap-
parent cosmological constant may be the false-vacuum energy associated with the displacement of
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some field from its minimum and/or that there may be new gravitational physics beyond Einstein’s
GR. Plenty of interesting ideas for dark energy and alternative gravity have been conjectured, but
there is no clear front runner. The models are all awaiting new, corroborating, or contraindicating
evidence.

Some scientists have argued that no new physics is required, that nonlinear behavior in GR may
exhibit subtleties that allow for an accelerated expansion. For example, the authors of Reference
147 proposed that superhorizon perturbations may induce accelerated expansion in our observable
Hubble patch. This idea has been disproved (148–150), but it has not yet been disproved that
subhorizon nonlinearities may explain the observations. Alternatively, it has been suggested that
the luminosity-distance-redshift data can be explained if we reside at the center of a gigaparsec-
scale void in an otherwise Einstein–de Sitter universe. But such a radially inhomogeneous, anti-
Copernican scenario conflicts with other observations (151, 152). Any future proposals that attempt
to dispense with new physics must explain the vast catalog of phenomena already explained by the
standard cosmological model.

In principle, new theories of gravitation can work. However, it has proved to be more dif-
ficult than may have originally been anticipated to alter gravity to explain cosmic acceleration
without violating Solar System constraints. The scalar-tensor or f (R) theories that do succeed
seem contrived, and/or they manifest themselves in a way that is virtually indistinguishable from a
cosmological constant. Braneworld scenarios introduce the possibility of interesting gravitational
physics in the Solar System and in large-scale structure, but the simplest models must be orna-
mented with additional ingredients to work. Generally, alternative gravity theories that alter the
long-range 1/r2 force law may have profound implications for a variety of astrophysical systems,
few of which have been explored carefully.

The simplest paradigm, quintessence, does not suffer from instabilities, and it can be viewed as
an effective theory for more complicated models. Quintessence models do require small parameters
and/or finely tuned initial conditions, and they do not address the coincidence problem. Still, the
resemblance of some quintessence fields to both fundamental or composite scalars appearing
in existing models of physics beyond the Standard Model allow us to hope that new particle
discoveries, at the Large Hadron Collider or beyond, may provide the clues to connect this dark
energy field to the world of luminous matter.

The next step for cosmological studies should be to determine whether wQ departs significantly
from −1. If it does, then the step beyond that will be to measure its time evolution wa . The w0−wa

measurement may then tell us something qualitative about dark energy dynamics (e.g., thawing
or freezing potentials). If so, we can proceed from there.

SUMMARY POINTS

1. The cosmic expansion is observed to be accelerating.

2. The physical mechanism responsible for the cosmic acceleration is unknown. Interpreting
the observational and experimental evidence in the context of Einstein’s GR, the causative
agent appears to be an exotic fluid, referred to as dark energy, with negative pressure.

3. A cosmological constant is equivalent to such a fluid with a constant energy density.
However, the value of this energy density, in units where G = c = h̄ = 1 is 10−120, and
there is no good explanation for the smallness of this value.
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4. Quintessence postulates that the dark energy is associated with a scalar field that has
been displaced from the minimum of its potential. Such theories generally predict an
equation-of-state parameter for dark energy of wQ �= −1, as opposed to the cosmological
constant, which has wQ = −1.

5. Other explanations for cosmic acceleration propose that a new gravitational theory sup-
plants Einstein’s GR on cosmological scales. However, new theories are tightly con-
strained by precision tests of gravitation within the Solar System.

6. In the absence of a clear front-runner theory, most efforts are directed toward refining
measurements of the cosmic expansion history to determine more precisely the value
of wQ .

7. A combination of cosmological observations is expected to gain the most traction toward
an understanding of the physics of cosmic acceleration. The most attention has focused
on four techniques: supernovae, BAO, cluster abundances, and weak lensing.

FUTURE ISSUES

1. Will future results from the Large Hadron Collider have any impact on dark energy
theory? Could the discovery of supersymmetry, a nonstandard Higgs, or large extra
dimensions change the way we think about dark energy?

2. Will string theory make a robust prediction for the cosmological constant, or perhaps
otherwise explain the physics of cosmic acceleration?

3. Can an elegant and consistent modification to GR explain cosmic acceleration while still
satisfying Solar System constraints?

4. Will there be NASA and ESA satellite missions to study dark energy within 5–10 years?

5. How much will ground-based observations and experiments refine our knowledge of the
physics of cosmic acceleration?

6. Will new connections between other probes of new physics (e.g., dark matter searches,
gravitational waves, probes of gravity on submillimeter scales, Lorentz invariance viola-
tion) and dark energy be found?

7. Relevant future observations will include measurements of the cosmic expansion history
with greater accuracy and studies of the growth of large-scale structure. More work must
be done to determine the best avenue forward.
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Ralph Blumenhagen, Mirjam Cvetič, Shamit Kachru, and Timo Weigand � � � � � � � � � � � � � 269

Physics at the Cornell Electron Storage Ring
Karl Berkelman and Edward H. Thorndike � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 297

The Highest-Energy Cosmic Rays
James J. Beatty and Stefan Westerhoff � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 319

Muon Colliders and Neutrino Factories
Steve Geer � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 347

Radiative Corrections for the LHC and Linear Collider Era
Eric Laenen and Doreen Wackeroth � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 367

The Physics of Cosmic Acceleration
Robert R. Caldwell and Marc Kamionkowski � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 397

The Sudbury Neutrino Observatory
Nick Jelley, Arthur B. McDonald, and R.G. Hamish Robertson � � � � � � � � � � � � � � � � � � � � � � � � � 431

B Physics at the Tevatron
Christoph Paus and Dmitri Tsybychev � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 467

Unanswered Questions in the Electroweak Theory
Chris Quigg � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 505

Indexes

Cumulative Index of Contributing Authors, Volumes 50–59 � � � � � � � � � � � � � � � � � � � � � � � � � � � 557

Cumulative Index of Chapter Titles, Volumes 50–59 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 560

Errata

An online log of corrections to Annual Review of Nuclear and Particle Science articles may
be found at http://nucl.annualreviews.org/errata.shtml

viii Contents

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt

. S
ci

. 2
00

9.
59

:3
97

-4
29

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f 
G

ro
ni

ng
en

 o
n 

11
/1

2/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.


	Annual Reviews Online
	Search Annual Reviews
	Annual Review ofNuclear and Particle Science Online
	Most Downloaded Nuclear and Particle ScienceReviews
	Most Cited Nuclear and Particle Science Reviews
	Annual Review of Nuclear and Particle Science Errata
	View Current Editorial Committee

	All Articles in the Annual Review of Nuclear and Particle Science, Vol. 59  
	The Scientific Life of John Bahcall
	The Life of Raymond Davis, Jr. and the Beginning of Neutrino Astronomy
	Yoji Totsuka (1942–2008) and the Discovery of Neutrino Mass
	Searches for Fractionally Charged Particles
	Advances in Inflation in String Theory
	Statistical Methods for Cosmological Parameter Selectionand Estimation
	Chiral Dynamics in Photopion Physics: Theory, Experiment,and Future Studies at the HIγS Facility
	From Gauge-String Duality to Strong Interactions:A Pedestrian’s Guide
	Hadronic Atoms
	The Role of Sterile Neutrinos in Cosmology and Astrophysics
	Charmless Hadronic B Meson Decays
	Lorentz Violation: Motivation and New Constraints
	d-Brane Instantons in Type II Orientifolds
	Physics at the Cornell Electron Storage Ring
	The Highest-Energy Cosmic Rays
	Muon Colliders and Neutrino Factories
	Radiative Corrections for the LHC and Linear Collider Era
	The Physics of Cosmic Acceleration
	The Sudbury Neutrino Observatory
	B Physics at the Tevatron
	Unanswered Questions in the Electroweak Theory




