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a b s t r a c t

The accelerating expansion of the universe is themost surprising cosmological discovery in
manydecades, implying that the universe is dominated by some formof ‘‘dark energy’’ with
exotic physical properties, or that Einstein’s theory of gravity breaks down on cosmological
scales. The profound implications of cosmic acceleration have inspired ambitious efforts
to understand its origin, with experiments that aim to measure the history of expansion
and growth of structure with percent-level precision or higher. We review in detail the
four most well established methods for making such measurements: Type Ia supernovae,
baryon acoustic oscillations (BAO), weak gravitational lensing, and the abundance of galaxy
clusters. We pay particular attention to the systematic uncertainties in these techniques
and to strategies for controlling them at the level needed to exploit ‘‘Stage IV’’ dark energy
facilities such as BigBOSS, LSST, Euclid, and WFIRST. We briefly review a number of other
approaches including redshift-space distortions, the Alcock–Paczynski effect, and direct
measurements of the Hubble constant H0. We present extensive forecasts for constraints
on the dark energy equation of state and parameterized deviations fromGeneral Relativity,
achievable with Stage III and Stage IV experimental programs that incorporate supernovae,
BAO, weak lensing, and cosmic microwave background data. We also show the level
of precision required for clusters or other methods to provide constraints competitive
with those of these fiducial programs. We emphasize the value of a balanced program
that employs several of the most powerful methods in combination, both to cross-check
systematic uncertainties and to take advantage of complementary information. Surveys
to probe cosmic acceleration produce data sets that support a wide range of scientific
investigations, and they continue the longstanding astronomical tradition of mapping the
universe in ever greater detail over ever larger scales.
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1. Introduction

Gravity pulls. Newton’s Principia generalized this longstanding fact of human experience into a universal attractive
force, providing compelling explanations of an extraordinary range of terrestrial and celestial phenomena. Newtonian
attraction weakens with distance, but it never vanishes, and it never changes sign. Einstein’s theory of General Relativity
(GR) reproducesNewtonian gravity in the limit ofweak spacetime curvature and lowvelocities. For a homogeneous universe
filled with matter or radiation, GR predicts that the cosmic expansion will slow down over time, in accord with Newtonian
intuition. In the late 1990s, however, two independent studies of distant supernovae found that the expansion of the universe
has accelerated over the last five billion years (Riess et al., 1998; Perlmutter et al., 1999), a remarkable discovery that is now
buttressed by multiple lines of independent evidence. On the scale of the cosmos, gravity repels.

Cosmic acceleration is the most profound puzzle in contemporary physics. Even the least exotic explanations demand
the existence of a pervasive new component of the universe with unusual physical properties that lead to repulsive gravity.
Alternatively, acceleration could be a sign that GR itself breaks down on cosmological scales. Cosmic acceleration may be
the crucial empirical clue that leads to understanding the interaction between gravity and the quantum vacuum, or reveals
the existence of extra spatial dimensions, or sheds light on the nature of quantum gravity itself.
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Because of these profound implications, cosmic acceleration has inspired awide range of ambitious experimental efforts,
which aim tomeasure the expansion history and growth of structure in the cosmoswith percent-level precision or better. In
this article, we review the observationalmethods that underlie these efforts, with particular attention to techniques that are
likely to see major advances over the next decade. We will emphasize the value of a balanced program that pursues several
of these methods in combination, both to cross-check systematic uncertainties and to take advantage of complementary
information.

The remainder of this introduction briefly recaps the history of cosmic acceleration and current theories for its origin,
then sets this article in the context of future experimental efforts and other reviews of the field. Section 2 describes the
basic observables that can be used to probe cosmic acceleration, relates them to the underlying equations that govern the
expansion history and the growth of structure, and introduces some of the parameters commonly used to define ‘‘generic’’
cosmic acceleration models. It concludes with an overview of the leading methods for measuring these observables. In Sec-
tions 3–6 we go through the four most well developed methods in detail: Type Ia supernovae, baryon acoustic oscillations
(BAO), weak gravitational lensing, and clusters of galaxies. Section 7 summarizes several other potential probes, whose
prospects are currently more difficult to assess but in some cases appear quite promising. Informed by the discussions in
these sections, Section 8 presents our principal new results: forecasts of the constraints on cosmic acceleration models that
could be achieved by combining results from these methods, based on ambitious but feasible experiments like the ones
endorsed by the Astro2010 Decadal Survey report, NewWorlds, New Horizons in Astronomy and Astrophysics. We summarize
the implications of our analyses in Section 9.

1.1. History

Just two years after the completion of General Relativity, Einstein (1917) introduced the firstmodern cosmologicalmodel.
With little observational guidance, Einstein assumed (correctly) that the universe is homogeneous on large scales, and he
proposed a matter-filled space with finite, positively curved, 3-sphere geometry. He also assumed (incorrectly) that the
universe is static. Finding these two assumptions to be incompatible, Einstein modified the GR field equation to include
the infamous ‘‘cosmological term’’, now usually known as the ‘‘cosmological constant’’ and denotedΛ. In effect, he added a
new component whose repulsive gravity could balance the attractive gravity of the matter (though he did not describe his
modification in these terms). In the 1920s, Friedmann (1922, 1924) and Lemaître (1927) introduced GR-based cosmological
models with an expanding or contracting universe, some of them including a cosmological constant, others not. In 1929,
Hubble discovered direct evidence for the expansion of the universe (Hubble, 1929), thus removing the original motivation
for theΛ term.1 In 1965, the discovery and interpretation of the cosmic microwave background (CMB; Penzias andWilson,
1965; Dicke et al., 1965) provided the pivotal evidence for a hot big bang origin of the cosmos.

From the 1930s through the 1980s, a cosmological constant seemed unnecessary to explaining cosmological observa-
tions. The ‘‘cosmological constant problem’’ as it was defined in the 1980s was a theoretical one: why was the gravitational
impact of the quantum vacuum vanishingly small compared to the ‘‘naturally’’ expected value (see Section 1.2)? In the late
1980s and early 1990s, however, a variety of indirect evidence began to accumulate in favor of a cosmological constant.
Studies of large scale galaxy clustering, interpreted in the framework of cold dark matter (CDM) models with inflationary
initial conditions, implied a low matter density parameterΩm = ρm/ρcrit ≈ 0.15–0.4 (e.g., Maddox et al., 1990; Efstathiou
et al., 1990), in agreement with direct dynamical estimates that assumed galaxies to be fair tracers of the mass distribution.
Reconciling this result with the standard inflationary cosmology prediction of a spatially flat universe (Guth, 1981) required
a new energy component with density parameter 1 − Ωm. Open-universe inflation models were also considered, but ex-
plaining the observed homogeneity of the CMB (Smoot et al., 1992) in suchmodels required speculative appeals to quantum
gravity effects (e.g., Bucher et al., 1995) rather than the semi-classical explanation of traditional inflation.

By the mid-1990s, many cosmological simulation studies included both open-CDM models and Λ-CDM models, along
with Ωm = 1 models incorporating tilted inflationary spectra, non-standard radiation components, or massive neutrino
components (e.g., Ostriker and Cen, 1996; Cole et al., 1997; Gross et al., 1998; Jenkins et al., 1998). Once normalized to
the observed level of CMB anisotropies, the large-scale structure predictions of open and flat-Λ models differed at the
tens-of-percent level, with flat models generally yielding a more natural fit to the observations (e.g., Cole et al., 1997).
Conflict between high values of the Hubble constant and the ages of globular clusters also favored a cosmological constant
(e.g., Pierce et al., 1994; Freedman et al., 1994; Chaboyer et al., 1996), though the frequency of gravitational lenses pointed in
the opposite direction (Kochanek, 1996). Thus, the combination of CMB data, large-scale structure data, age of the universe,
and inflationary theory led many cosmologists to consider models with a cosmological constant, and some to declare it as
the preferred solution (e.g., Efstathiou et al., 1990; Krauss and Turner, 1995; Ostriker and Steinhardt, 1995).

Enter the supernovae. In the mid-1990s, two teams set out to measure the cosmic deceleration rate, and thereby deter-
mine the matter density parameterΩm, by discovering and monitoring high-redshift, Type Ia supernovae. The recognition
that the peak luminosity of supernovae was tightly correlated with the shape of the light curve (Phillips, 1993; Riess et al.,
1996) played a critical role in this strategy, reducing the intrinsic distance error per supernova to ∼10%. While the first

1 Several recent papers have addressed the contributions of Lemaître, Friedmann, and Slipher to this discovery; the story is interestingly tangled (see,
e.g., Block, 2011; van den Bergh, 2011; Livio, 2011; Belenkiy, 2012; Peacock, 2013).
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analysis of a small sample indicated deceleration (Perlmutter et al., 1997), by 1998 the two teams had converged on a re-
markable result: when compared to local Type Ia supernovae (Hamuy et al., 1996), the supernovae at z ≈ 0.5 were fainter
than expected in a matter-dominated universe withΩm ≈ 0.2 by about 0.2 mag, or 20% (Riess et al., 1998; Perlmutter et al.,
1999). Even an empty, freely expanding universe was inconsistent with the observations. Both teams interpreted their mea-
surements as evidence for an accelerating universe with a cosmological constant, consistent with a flat universe (Ωtot = 1)
havingΩΛ ≈ 0.7.

Why was the supernova evidence for cosmic acceleration accepted so quickly by the community at large? First, the
internal checks carried out by the two teams, and the agreement of their conclusions despite independent observations and
many differences ofmethodology, seemed to rule outmany forms of observational systematics, even relatively subtle effects
of photometric calibration or selection bias. Second, the ground had beenwell prepared by the CMB and large scale structure
data,which already provided substantial indirect evidence for a cosmological constant. This confluence of arguments favored
the cosmological interpretation of the results over astrophysical explanations such as evolution of the supernova population
or gray dust extinction that increased toward higher redshifts. Third, the supernova results were followed within a year
by the results of balloon-borne CMB experiments that mapped the first acoustic peak and measured its angular location,
providing strong evidence for spatial flatness (de Bernardis et al., 2000; Hanany et al., 2000; see Netterfield et al., 1997 for
earlier ground-based measurements hinting at the same result). On its own, the acoustic peak only implied Ωtot ≈ 1, not
a non-zero ΩΛ, but it dovetailed perfectly with the estimates of Ωm and ΩΛ from large scale structure and supernovae.
Furthermore, the acoustic peak measurement implied that the alternative to Λ was not an open universe but a strongly
decelerating, Ωm = 1 universe that disagreed with the supernova data by 0.5 magnitudes, a level much harder to explain
with observational or astrophysical effects. Finally, the combination of spatial flatness and improving measurements of the
Hubble constant (e.g., H0 = 71 ± 6 km s−1 Mpc−1; Mould et al., 2000) provided an entirely independent argument for
an energetically dominant accelerating component: a matter-dominated universe with Ωtot = 1 would have age t0 =

(2/3)H−1
0 ≈ 9.5 Gyr, too young to accommodate the 12–14 Gyr ages estimated for globular clusters (e.g., Chaboyer, 1998).

A decade later, theweb of observational evidence for cosmic acceleration is intricate and robust. Awide range of observa-
tions – including larger and better calibrated supernova samples over a broader redshift span, high-precision CMBdata down
to small angular scales, the baryon acoustic scale in galaxy clustering, weak lensingmeasurements of darkmatter clustering,
the abundance of massive clusters in X-ray and optical surveys, the level of structure in the Lyα forest, and precise mea-
surements of H0 – are all consistent with an inflationary cold dark matter model with a cosmological constant, commonly
abbreviated asΛCDM.2 Explaining all of these data simultaneously requires an accelerating universe. Completely eliminat-
ing any one class of constraints (e.g., supernovae, or CMB, or H0) would not change this conclusion, nor would doubling the
estimated systematic errors on all of them. The question is no longer whether the universe is accelerating, but why.

1.2. Theories of cosmic acceleration

A cosmological constant is the mathematically simplest solution to the cosmic acceleration puzzle. While Einstein in-
troduced his cosmological term as a modification to the curvature side of the field equation, it is now more common to
interpret Λ as a new energy component, constant in space and time. For an ideal fluid with energy density u and pressure
p, the effective gravitational source term in GR is (u + 3p)/c2, reducing to the usual mass density ρ = u/c2 if the fluid is
non-relativistic. For a componentwhose energy density remains constant as the universe expands, the first lawof thermody-
namics implies thatwhen a comoving volume element in the universe expands by a (physical) amount dV , the corresponding
change in energy is related to the pressure via −pdV = dU = udV . Thus, p = −u, making the gravitational source term
(u + 3p)/c2 = −2u/c2. A form of energy that is constant in space and time must have a repulsive gravitational effect.

According to quantum field theory, ‘‘empty’’ space is filled with a sea of virtual particles. It would be reasonable to
interpret the cosmological constant as the gravitational signature of this quantum vacuum energy, much as the Lamb shift
is a signature of its electromagnetic effects.3 The problem is one of magnitude. Since virtual particles of any allowable mass
can come into existence for short periods of time, the ‘‘natural’’ value for the quantum vacuum density is one Planck Mass
per cubic Planck Length. This density is about 120 orders of magnitude larger than the cosmological constant suggested by
observations: it would drive accelerated expansion with a timescale of tPlanck ≈ 10−43 s instead of tHubble ≈ 1018 s. Since
the only ‘‘natural’’ number close to 10−120 is zero, it was generally assumed (prior to 1990) that a correct calculation of the
quantumvacuumenergywould eventually show it to be zero, or at least suppressed by an extremely large exponential factor
(see review by Weinberg, 1989). But the discovery of cosmic acceleration raises the possibility that the quantum vacuum
really does act as a cosmological constant, and that its energy scale is 10−3 eV rather than 1028 eV for reasons that we do not
yet understand. To date, there are no compelling theoretical arguments that explain either why the fundamental quantum
vacuum energy might have this magnitude or why it might be zero.

2 Many of the relevant observational references will appear in subsequent sections on specific topics.
3 This interpretation of the cosmological constant in the context of quantum field theory, originally due toWolfgang Pauli, was revived in the late 1960s

by Zel’dovich (1968). For further discussion of the history see Peebles and Ratra (2003). For a detailed discussion in the context of contemporary particle
theory, see the review by Martin (2012).
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The other basic puzzle concerning a cosmological constant is: Why now? The ratio of a constant vacuum energy density
to the matter density scales as a3(t), so it has changed by a factor of ∼1027 since big bang nucleosynthesis and by a factor
∼1042 since the electroweak symmetry breaking epoch, which seems (based on our current understanding of physics) like
the last opportunity for a major rebalancing of matter and energy components. It therefore seems remarkably coincidental
for the vacuum energy density and the matter energy density to have the same order of magnitude today. In the late 1970s,
Robert Dicke used a similar line of reasoning to argue for a spatially flat universe (see Dicke and Peebles, 1979), an argument
that provided much of the initial motivation for inflationary theory (Guth, 1981). However, while the universe appears to
be impressively close to spatial flatness, the existence of two energy components with different a(t) scalings means that
Dicke’s ‘‘coincidence problem’’ is still with us.

One possible solution to the coincidence problem is anthropic: if the vacuum energy assumes widely different values in
different regions of the universe, then conscious observers will find themselves in regions of the universewhere the vacuum
energy is low enough to allow structure formation (Efstathiou, 1995; Martel et al., 1998). This type of explanation finds a
natural home in ‘‘multiverse’’ models of eternal inflation, where different histories of spontaneous symmetry breaking lead
to different values of physical constants in each non-inflating ‘‘bubble’’ (Linde, 1987), and it has gained new prominence
in the context of string theory, which predicts a ‘‘landscape’’ of vacua arising from different compactifications of spatial
dimensions (Susskind, 2003). One can attempt to derive an expectation value of the observed cosmological constant from
such arguments (e.g., Martel et al., 1998), but the results are sensitive to the choice of parameters that are allowed to vary
(Tegmark and Rees, 1998) and to the choice of measure on parameter space, so it is hard to take such ‘‘predictions’’ beyond a
qualitative level. A variant on these ideas is that the effective value (and perhaps even the sign) of the cosmological constant
varies in time, and that structure will form and observers arise during periods when its magnitude is anomalously low
compared to its natural (presumably Planck-level) energy scale (Brandenberger, 2002; Griest, 2002).

A straightforward alternative to a cosmological constant is a fieldwith negative pressure (and thus repulsive gravitational
effect) whose energy density changes with time (Ratra and Peebles, 1988; Frieman et al., 1995; Ferreira and Joyce, 1997). In
particular, a canonical scalar field φ with potential V (φ) has energy density and pressure

uφ =
1
2

1
h̄c3

φ̇2
+ V (φ),

pφ =
1
2

1
h̄c3

φ̇2
− V (φ), (1)

so if the kinetic term is subdominant, then pφ ≈ −uφ . A slowly rolling scalar field of this sort is analogous to the inflaton
field hypothesized to drive inflation, but at an energy scale many, many orders of magnitude lower. In general, a scalar field
has an equation-of-state parameter

w ≡
p
u

(2)

that is greater than −1 and varies in time, while a true cosmological constant hasw = −1 at all times. Some forms of V (φ)
allow attractor or ‘‘tracker’’ solutions in which the late-time evolution of φ is insensitive to the initial conditions (Ratra and
Peebles, 1988; Steinhardt et al., 1999), and a subset of these allow uφ to track the matter energy density at early times,
ameliorating the coincidence problem (Skordis and Albrecht, 2002). Some choices give a nearly constantw that is different
from−1, while others havew ≈ −1 as an asymptotic state at either early or late times, referred to respectively as ‘‘thawing’’
or ‘‘freezing’’ solutions (Caldwell and Linder, 2005).

Scalar field models in which the energy density is dominated by V (φ) are popularly known as ‘‘quintessence’’ (Zlatev
et al., 1999). A number of variations have been proposed in which the energy density of the field is dominated by kinetic,
spin, or oscillatory degrees of freedom (e.g., Armendariz-Picon et al., 2001; Boyle et al., 2002). Other models introduce non-
canonical kinetic terms or couple the field to dark matter. Models differ in the evolution of uφ(a) and w(a), and some have
other distinctive features such as large scale energy density fluctuations that can affect CMB anisotropies. Of course, none of
thesemodels addresses the original ‘‘cosmological constant problem’’ of why the true vacuum energy is unobservably small.

The alternative to introducing a new energy component is to modify General Relativity itself on cosmological scales, for
example by replacing the Ricci scalar R in the gravitational actionwith some higher order function f (R) (e.g., Capozziello and
Fang, 2002; Carroll et al., 2004), or by allowing gravity to ‘‘leak’’ into an extra dimension in a way that reduces its attractive
effect at large scales (Dvali et al., 2000). GR modifications can alter the relation between the expansion history and the
growth of matter clustering, and, as discussed in subsequent sections, searching for mismatches between observational
probes of expansion and observational probes of structure growth is one generic approach to seeking signatures of modified
gravity. To be consistentwith tight constraints from solar system tests, modifications of gravitymust generally be ‘‘shielded’’
on small scales, by mechanisms such as the ‘‘chameleon’’ effect, the ‘‘symmetron’’ mechanism, or ‘‘Vainshtein screening’’
(see the review by Jain and Khoury, 2010). These mechanisms can have the effect of introducing intermediate scale forces.
GR modifications can also alter the relation between non-relativistic matter clustering and gravitational lensing, which in
standard GR is controlled by two different potentials that are equal to each other for fluids without anisotropic stress.

The distinction between a new energy component and a modification of gravity may be ambiguous. The most obvious
ambiguous case is the cosmological constant itself, which can be placed on either the ‘‘curvature’’ side or the ‘‘stress–energy’’
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side of the Einstein field equation. More generally, many theories with f (R) modifications of the gravitational action can
be written in a mathematically equivalent form of GR plus a scalar field with specified properties (Chiba, 2003; Kunz
and Sapone, 2007). Relative to expectations for a cosmological constant or a simple scalar field model, models in which
dark matter decays into dark energy can produce a mismatch between the histories of expansion and structure growth
while maintaining GR (e.g., Jain and Zhang, 2008; Wei and Zhang, 2008). Thus, even perfect measurements of all relevant
observables may not uniquely locate the explanation of cosmic acceleration in the gravitational or stress–energy sector.

There is aminority opinion (see Buchert, 2011 for a recent review article) that the phenomena interpreted as evidence for
dark energy could instead arise from the backreaction of small scale inhomogeneities on the large scale cosmic expansion.
This line of argument contends that the expansion rate of a universe with small scale inhomogeneity can differ significantly
from that of a homogeneous universe with the same average density. In our view, the papers on this theme present an
incorrect interpretation of correct underlying equations, and we do not see these ‘‘inhomogeneous averaging’’ effects as
a viable alternative to dark energy. Baumann et al. (2012) present a detailed counter-argument, treating inhomogeneous
matter as a fluid with an effective viscosity and pressure and demonstrating that the backreaction on the evolution of
background expansion and large scale perturbations is extremely small. (See Green andWald (2011) for an alternative form
of this counter-argument and Peebles (2010) for a less formal but still persuasive version.) In a somewhat related vein, the
suggestion that acceleration could arise from superhorizon fluctuations generated by inflation (Barausse et al., 2005; Kolb
et al., 2005) is ruled out by a complete perturbation analysis (Hirata and Seljak, 2005).

While the term ‘‘dark energy’’ seems to presuppose a stress–energy explanation, in practice it has become a generic term
for referring to the cosmic acceleration phenomenon. In particular, the phrase ‘‘dark energy experiments’’ has come tomean
observational studies aimed at measuring acceleration and uncovering its cause, regardless of whether that cause is a new
energy field or amodification of gravity. Wewill generally adopt this common usage of ‘‘dark energy’’ in this review, though
where the distinction matters we will try to use ‘‘cosmic acceleration’’ as our generic term. It is important to keep in mind
that we presently have strong observational evidence for accelerated cosmic expansion but no compelling evidence that the
cause of this acceleration is really a new energy component.

The magnitude and coincidence problems are challenges for any explanation of cosmic acceleration, whether a
cosmological constant, a scalar field, or a modification of GR. The coincidence problem seems like an important clue for
identifying a correct solution, and somemodels at least reduce its severity by coupling thematter and dark energy densities
in someway.Multiversemodelswith anthropic selection arguably offer a solution to the coincidence problem, because if the
probability distribution of vacuumenergy densities rises swiftly toward high values, then structuremay generically format a
timewhen thematter and vacuum energy density values are similar, in that small subset of universes where structure forms
at all. But sometimes a coincidence is just a coincidence. Essentially all current theories of cosmic acceleration have one or
more adjustable parameterswhose value is tuned to give the observed level of acceleration, and none of them yield this level
as a ‘‘natural’’ expectation unless they have built it in ahead of time. These theories are designed to explain acceleration itself
rather than emerging from independent theoretical considerations or experimental constraints. Conversely, a theory that
provided a compelling account of the observedmagnitude of acceleration – like GR’s successful explanation of the precession
of Mercury – would quickly jump to the top of the list of cosmic acceleration models.

1.3. Looking forward

The deepmystery and fundamental implications of cosmic acceleration have inspired numerous ambitious observational
efforts tomeasure its history and, it is hoped, reveal its origin. The report of the Dark Energy Task Force (DETF; Albrecht et al.,
2006) played a critical role in systematizing the field, by categorizing experimental approaches and providing a quantitative
framework to compare their capabilities. The DETF categorized then-ongoing experiments as ‘‘Stage II’’ (following the ‘‘Stage
I’’ discovery experiments) and the next generation as ‘‘Stage III’’. It looked forward to a generation ofmore capable (andmore
expensive) ‘‘Stage IV’’ efforts that might begin observations around the second half of the coming decade. The DETF focused
on the same four methods that will be the primary focus of this review: Type Ia supernovae, baryon acoustic oscillations
(BAO), weak gravitational lensing, and clusters of galaxies.

Six years on, the main ‘‘Stage II’’ experiments have completed their observations though not necessarily their final
analyses. Prominent examples include the supernova andweak lensing programs of the CFHT Legacy Survey (CFHTLS; Conley
et al., 2011; Semboloni et al., 2006a; Heymans et al., 2012b), the ESSENCE supernova survey (Wood-Vasey et al., 2007),
BAO measurements from the Sloan Digital Sky Survey (SDSS; Eisenstein et al., 2005; Percival et al., 2010; Padmanabhan
et al., 2012), and the SDSS-II supernova survey (Frieman et al., 2008). These have been complemented by extensive multi-
wavelength studies of local and high-redshift supernovae such as the Carnegie Supernova Project (Hamuy et al., 2006;
Freedman et al., 2009), by systematic searches for z > 1 supernovae with Hubble Space Telescope (Riess et al., 2007; Suzuki
et al., 2012), by dark energy constraints from the evolution of X-ray or optically selected clusters (Henry et al., 2009; Mantz
et al., 2010; Vikhlinin et al., 2009; Rozo et al., 2010), by improved measurements of the Hubble constant (Riess et al., 2009,
2011; Freedman et al., 2012), and by CMB data from the WMAP satellite (Bennett et al., 2003; Larson et al., 2011) and from
ground-based experiments that probe smaller angular scales.4 Most data remain consistent with a spatially flat universe

4 We follow the convention in the astronomical literature of italicizing the names and acronyms of space missions but not of ground-based facilities. For
reference, note that the many acronyms that appear in the article are all defined in Appendix, the glossary of acronyms and facilities.
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and a cosmological constant withΩΛ = 1 −Ωm ≈ 0.75, with an uncertainty in the equation-of-state parameter w that is
roughly ±0.1 at the 1–2σ level. Substantial further improvement will in many cases require reduction in systematic errors
as well as increased statistical power from larger data sets.

The clearest examples of ‘‘Stage III’’ experiments, now in the late construction or early operations phase, are the Dark
Energy Survey (DES), Pan-STARRS,5 the Baryon Oscillation Spectroscopic Survey (BOSS) of SDSS-III, and the Hobby–Eberly
Telescope Dark Energy Experiment (HETDEX).6 All four projects are being carried out by international, multi-institutional
collaborations. Pan-STARRS and DES will both carry out large area, multi-band imaging surveys that go a factor of ten or
more deeper (in flux) than the SDSS imaging survey (Abazajian et al., 2009), using, respectively, a 1.4-Gigapixel camera on the
1.8-m PS1 telescope onHaleakala in Hawaii and a 0.5-Gigapixel camera on the 4-mBlanco telescope on Cerro Tololo in Chile.
These imaging surveys will be used to measure structure growth via weak lensing, to identify galaxy clusters and calibrate
their masses via weak lensing, and to measure BAO in galaxy angular clustering using photometric redshifts. Each project
also plans to carry out monitoring surveys over smaller areas to discover and measure thousands of Type Ia supernovae.
Fully exploiting BAO requires spectroscopic redshifts, and BOSS will carry out a nearly cosmic-variance limited survey (over
104 deg2) out to z ≈ 0.7 using a 1000-fiber spectrograph to measure redshifts of 1.5 million luminous galaxies, and a
pioneering quasar survey that will measure BAO at z ≈ 2.5 by using the Lyα forest along 150,000 quasar sightlines to trace
the underlying matter distribution. HETDEX plans a BAO survey of 106 Lyα-emitting galaxies at z ≈ 3.

There are many other ambitious observational efforts that do not fit so neatly into the definition of a ‘‘Stage III dark en-
ergy experiment’’ but will nonetheless play an important role in ‘‘Stage III’’ constraints. A predecessor to BOSS, the WiggleZ
project on the Anglo-Australian 3.9-m telescope, recently completed a spectroscopic survey of 240,000 emission line galax-
ies out to z = 1.0 (Blake et al., 2011a). The Hyper Suprime-Cam (HSC) facility on the Subaru telescope will have wide-area
imaging capabilities comparable to DES and Pan-STARRS, and it is likely to devote substantial fractions of its time to weak
lensing surveys. Other examples include intensive spectroscopic and photometric monitoring of supernova samples aimed
at calibration and understanding of systematics, newHST searches for z > 1 supernovae, further improvements inH0 deter-
mination, deeper X-ray andweak lensing studies of samples of tens or hundreds of galaxy clusters, and new cluster searches
via the Sunyaev–Zel’dovich (1970) effect using the South Pole Telescope (SPT), the Atacama Cosmology Telescope (ACT), or
the Planck satellite. In addition, Stage III analyses will draw on primary CMB constraints from Planck.

The Astro2010 report identifies cosmic acceleration as one of themost pressing questions in contemporary astrophysics,
and its highest priority recommendations for new ground-based and space-based facilities both have cosmic acceleration as
a primary science theme.7 On the ground, the Large Synoptic Survey Telescope (LSST), a wide-field 8.4-m optical telescope
equipped with a 3.2-Gigapixel camera, would enable deep weak lensing and optical cluster surveys over much of the sky,
synoptic surveys that would detect and measure tens of thousands of supernovae, and photometric-redshift BAO surveys
extending to z ≈ 3.5. BigBOSS, highlighted as an initiative that could be supported by the proposed ‘‘mid-scale innovation
program’’, would use a highlymultiplexed fiber spectrograph on theNOAO4-m telescopes to carry out spectroscopic surveys
of∼107 galaxies to z ≈ 1.6 and Lyα forest BAOmeasurements at z > 2.2. Another potential ground-basedmethod for large
volume BAO surveys is radio ‘‘intensitymapping’’, which seeks to trace the large scale distribution of neutral hydrogenwith-
out resolving the scale of individual galaxies. In the longer run, the Square Kilometer Array (SKA) could enable a BAO survey
of∼109 HI-selected galaxies andweak lensingmeasurements of∼1010 star-forming galaxies using radio continuum shapes.

Space observations offer two critical advantages for cosmic acceleration studies: stable high resolution imaging over
large areas, and vastly higher sensitivity at near-IR wavelengths. (For cluster studies, space observations are also the only
route to X-ray measurements.) These advantages inspired the Supernova Acceleration Probe (SNAP), initially designed with
a concentration on supernova measurements at 0.1 < z < 1.7, and later expanded to include a wide area weak lensing
survey as amajor component. Following theNational Research Council’s Quarks to Cosmos report (Committee on the Physics
of the Universe, 2003), NASA and the U.S. Department of Energy embarked on plans for a Joint Dark Energy Mission (JDEM),
which has considered a variety of mission architectures for space-based supernova, weak lensing, and BAO surveys. The
Astro2010 report endorsed as its highest priority space mission a Wide Field Infrared Survey Telescope (WFIRST ), which
would carry out imaging and dispersive prism spectroscopy in the near-IR to support all of these methods, and, in addition,
a planetary microlensing program, a Galactic plane survey, and a guest observer program. The recently completed report
of the WFIRST Science Definition Team (Green et al., 2012) presents detailed designs and operational concepts, with a
primary design reference mission that includes three years of dark energy programs (out of a five year mission) on an
unobstructed 1.3-meter telescopewith a 0.375 deg2 near-IR focal plane (150million 0.18′′ pixels). The recent transfer of two
2.4-meter diameter telescopes from the U.S. National Reconnaissance Office (NRO) to NASA opens the door for a potential

5 Pan-STARRS, the Panoramic Survey Telescope and Rapid Response System, is the acronym of the facility rather than the project, but cosmological
surveys are among its major goals. Pan-STARRS eventually hopes to use four coordinated telescopes, but the surveys currently underway (and now nearing
completion) use the first of these telescopes, referred to as PS1.
6 As we enter the forest of acronyms, please note the glossary in the Appendix.
7 We will use the term ‘‘Astro2010 report’’ to refer collectively to New Worlds, New Horizons and to the panel reports that supported it. In particular,

detailed discussion of these science themes and related facilities can be found in the individual reports of the Cosmology and Fundamental Physics (CFP)
Science Frontiers Panel and the Electromagnetic Observations from Space (EOS), Optical and Infrared Astronomy from the Ground (OIR), and Radio,
Millimeter, and Sub-Millimeter Astronomy from the Ground (RMS) Program Prioritization Panels. Information on all of these reports can be found at
http://sites.nationalacademies.org/bpa/BPA_049810.

http://sites.nationalacademies.org/bpa/BPA_049810
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implementation ofWFIRST on a larger platform; this possibility is now a subject of active, detailed study (see Dressler et al.,
2012 for an initial assessment). WFIRST faces significant funding hurdles, despite its top billing in Astro2010, but a launch
in the early 2020s still appears likely. On the European side, ESA recently selected the Euclid8 satellite as a medium-class
mission for its Cosmic Vision 2015–2025 program,with launch planned for 2020. Euclid plans to carry out optical and near-IR
imaging and near-IR slitless spectroscopy over roughly 14,000 deg2, for weak lensing and BAOmeasurements. In its current
design (Laureijs et al., 2011), Euclid utilizes a 1.2-meter telescope, a 0.56 deg2 optical focal plane (604 million 0.10′′ pixels),
and a near-IR focal plane with similar area but larger pixels (67 million 0.30′′ pixels). Well ahead of either Euclid orWFIRST,
the European X-ray telescope eROSITA (on the Russian Spectrum Roentgen Gamma satellite) is expected to produce an all-
sky catalog of ∼ 105 X-ray selected clusters, with X-ray temperature measurements and resolved profiles for the brighter
clusters (Merloni et al., 2012).9

The completion of the Astro2010 Decadal Survey and the Euclid selection by ESA make this an opportune time to review
the techniques and prospects for probing cosmic acceleration with ambitious observational programs. Our goal is, in some
sense, an update of the DETF report (Albrecht et al., 2006), incorporating the many developments in the field over the last
few years and (the difference between a report and a review) emphasizing explanation rather than recommendation. We
aim to complement other reviews of the field that differ in focus or in level of detail. To mention just a selection of these,
we note that Frieman et al. (2008) and Blanchard (2010) provide excellent overviews of the field, covering theory, current
observations, and future experiments, while Astier and Pain (2012) cover the observational approaches concisely; Peebles
and Ratra (2003) and Copeland et al. (2006) are especially good on history of the subject and on theoretical aspects of scalar
fieldmodels; Jain andKhoury (2010) review the observational and (especially) theoretical aspects ofmodified gravitymodels
in much greater depth than we cover here; Carroll (2003) and Linder (2003b, 2007) provide accessible and informative
introductions at the less forbidding length of conference proceedings; Linder (2010) provides a review aimed at a general
scientific audience; and the conference proceedings by Peebles (2010) nicely situates the cosmic acceleration problem in the
broader context of contemporary cosmology. The distinctive features of the present review are our in-depth discussion of
individual observational methods and our new quantitative forecasts for how combinations of these methods can constrain
parameters of cosmic acceleration theories.

To the extent that we have a consistent underlying theme, it is the importance of pursuing a balanced observational
program. We do not believe that all methods or all implementations of methods are equal; some approaches have evident
systematic limitations that will prevent them reaching the sub-percent accuracy level that is needed to make major con-
tributions to the field over the next decade, while others would require prohibitively expensive investments to achieve the
needed statistical precision. However, for a given level of community investment, we think there is more to be gained by
doing a good job on the three or fourmost promisingmethods than by doing a perfect job on one at the expense of the others.
A balanced approach offers crucial cross-checks against systematic errors, takes advantage of complementary information
contained in different observables or complementary strengths in different redshift ranges, and holds the best chance of
uncovering ‘‘surprises’’ that do not fit into the conventional categories of theoretical models. This philosophy will emerge
most clearly in Section 8, where we present our quantitative forecasts. For understandable reasons, most articles and pro-
posals (including somewe havewritten ourselves) start from current knowledge and show the impact of adding a particular
new experiment.Wewill instead start from a ‘‘fiducial program’’ that assumes ambitious but achievable advances in several
different methods at once, then consider the impact of strengthening, weakening, or omitting its individual elements.

We expect that different readers will want to approach this lengthy article in different ways. For a reader who is new
to the field and wants to learn it well, it makes sense to start at the beginning and read to the end. A reader interested in
a specific method can skim Section 2 to get a sense of our notation, then jump to the section that describes that method
(Type Ia supernovae in Section 3, BAO in Section 4, weak lensing in Section 5, and clusters in Section 6). We think that these
sections will provide useful insights even to experts in the field. Section 7 provides a brief overview of emerging methods
that could play an important role in future studies. Readers interested mainly in the ways that different methods contribute
to constraints on cosmic acceleration models and the quantitative forecasts for Stage III and Stage IV programs can jump
directly to Section 8. Finally, Section 9 provides a summary of our findings and their implications for experimental programs,
and some readers may choose to start from the end (we recommend including Sections 8.6 and 8.7 as well as Section 9),
then work backwards to the supporting details.

2. Observables, parameterizations, and methods

The two top-level questions about cosmic acceleration are:

1. Does acceleration arise from a breakdown of GR on cosmological scales or from a new energy component that exerts
repulsive gravity within GR?

2. If acceleration is caused by a new energy component, is its energy density constant in space and time?

8 Not an acronym.
9 More detailed description of Euclid andWFIRST can be found in Section 5.9, and of eROSITA in Section 6.5.
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As already discussed in Section 1.2, the distinction between ‘‘modified gravity’’ and ‘‘new energy component’’ solutionsmay
not be unambiguous. However, the cosmological constant hypothesis makes specific, testable predictions, and the combina-
tion of GRwith relatively simple scalar fieldmodels predicts testable consistency relations between expansion and structure
growth.

The answer to these questions, or a major step toward an answer, could come from a surprising direction: a theoret-
ical breakthrough, a revealing discovery in accelerator experiments, a time-variation of a fundamental ‘‘constant’’, or an
experimental failure of GR on terrestrial or solar system scales (see Section 7.7 for brief discussion). However, ‘‘wait for a
breakthrough’’ is an unsatisfying recipe for scientific progress, and there is one clear path forward: measure the history of
expansion and the growth of structure with increasing precision over an increasing range of redshift and lengthscale.

2.1. Basic equations

In GR, the expansion of a homogeneous and isotropic universe is governed by the Friedmann equation, which can be
written in the form

H2(z)
H2

0
= Ωm(1 + z)3 +Ωr(1 + z)4 +Ωk(1 + z)2 +Ωφ

uφ(z)
uφ(z = 0)

, (3)

where (1+ z) ≡ a−1 is the cosmological redshift and a(t) is the expansion factor relating physical separations to comoving
separations. The Hubble parameter is H(z) ≡ ȧ/a, and Ωm, Ωr , and Ωφ are the present day energy densities of matter,
radiation, and a generic form of dark energy φ.10 These are expressed as ratios to the critical energy density required for flat
space geometry

Ωx =
ux

ρcritc2
, ρcrit =

3H2
0

8πG
. (4)

At higher redshifts,

Ωm(z) ≡
ρm(z)
ρcrit(z)

= Ωm(1 + z)3
H2

0

H2(z)
, (5)

where the second equality follows from the scaling ρm(z) = ρm,0 × (1 + z)3 and from the definition of ρcrit(z). In the
formulation (3), the impact of curvature on expansion is expressed like that of a ‘‘dynamical’’ component with scaled energy
density

Ωk ≡ 1 −Ωm −Ωr −Ωφ, (6)

withΩk = 0 for a spatially flat universe. In a standard cold darkmatter scenario, thematter density is the sumof the densities
of CDM, baryons, and non-relativistic neutrinos,Ωm = Ωc +Ωb +Ων . In detail, one must beware that the neutrino energy
density does not scale as (1 + z)3 at higher redshifts, when they are mildly relativistic, and that the clustering of neutrinos
on small scales is suppressed by their residual thermal velocities.

There are some routes to direct measurement of H(z), most notably via BAO (see Section 4). For the most part, however,
observations constrain H(z) indirectly by measuring the distance–redshift relation or the history of structure growth.

Hogg (1999) provides a compact and pedagogical summary of cosmological distance measures. The comoving line-of-
sight distance to an object at redshift z is

DC (z) =
c
H0

 z

0
dz ′

H0

H(z ′)
. (7)

Defining a dimensional (length−2) curvature parameter

K = −Ωk(c/H0)
−2 (8)

allows us towrite the comoving angular diameter distance,11 relating an object’s comoving size l to its angular size θ = l/DA,
as

DA(z) = K−1/2 sin

K 1/2DC


, (9)

10 We will refer to values of these parameters at z ≠ 0 asΩm(z),Ωφ(z), etc. For other quantities (e.g., H0), we use subscripts 0 to denote values at z = 0.
When we assume a cosmological constant, we will replaceΩφ byΩΛ .
11 Note that Hogg (1999) refers to this quantity as the comoving transverse distance and uses DA to denote the quantity relating physical size to angular
size.



D.H. Weinberg et al. / Physics Reports 530 (2013) 87–255 97

which applies for either sign ofΩk.12 Noting that observations imply |Ωk| ≪ 1, we can Taylor expand Eq. (9) to write

DA(z) ≈ DC


1 +

1
6
Ωk


DC

c/H0

2

, (10)

which also yields the correct result DA = DC forΩk = 0. Note that positive space curvature (Ωtot > 1, K > 0) corresponds
to negativeΩk, hence a smaller DA and larger angular size than in a flat universe. If uφ(z) > uφ,0 then the Hubble parameter
at z > 0 is higher compared to a cosmological constant model with the same matter density and curvature (Eq. (3)), and
distances to redshifts z > 0 are lower (Eq. (9)).

The luminosity distance relating an object’s bolometric flux fbol to its bolometric luminosity Lbol is

DL =

Lbol/4π fbol = DA × (1 + z). (11)

The relation between luminosity and angular diameter distance is independent of cosmology, so the two measures contain
the same information about H(z) and Ωk. For this reason, we will sometimes use D(z) to stand in generically for either of
these transverse distance measures. Some methods (e.g., counts of galaxy clusters) effectively probe the comoving volume
element that relates solid angle and redshift intervals to comoving volume VC . We will denote this quantity

dVC (z) ≡ cH−1(z)D2
A(z)dΩ dz. (12)

On large scales, the gravitational evolution of fluctuations in pressureless darkmatter follows linear perturbation theory,
according to which

δ(x, t) ≡
ρm(x, t)− ρ̄m(t)

ρ̄m(t)
= δ(x, ti)×

G(t)
G(ti)

, (13)

where ti is an arbitrarily chosen initial time, the linear growth function G(t) obeys the differential equation

G̈GR + 2H(z)ĠGR −
3
2
ΩmH2

0 (1 + z)3GGR = 0, (14)

and the GR subscript denotes the fact that this equation applies in standard GR.13 The solution to this equation can only be
written in integral form for specific forms of H(z), and thus for specific dark energy models specifying uφ(z). However, to a
very good approximation the logarithmic growth rate of linear perturbations in GR is

fGR(z) ≡
d lnGGR

d ln a
≈ [Ωm(z)]γ , (15)

where γ ≈ 0.55–0.6 depends only weakly on cosmological parameters (Peebles, 1980; Lightman and Schechter, 1990).
Integrating this equation yields

GGR(z)
GGR(z = 0)

≈ exp

−

 z

0

dz ′

1 + z ′
[Ωm(z ′)]γ


, (16)

whereΩm(z) is given by Eq. (5). Linder (2005) shows that Eq. (16) is accurate to better than 0.5% for a wide variety of dark
energy models if one adopts

γ = 0.55 + 0.05[1 + w(z = 1)] (17)

(see also Wang and Steinhardt, 1998; Weinberg, 2005; Amendola et al., 2005). While the full solution of Eq. (14) should be
used for high accuracy calculations, Eq. (16) is useful for intuition and for approximate calculations. Note in particular that
if uφ(z) > uφ,0 then, relative to a cosmological constant model, Ωm(z) ∝ H−2(z) is lower (Eq. (5)), so GGR(z)/GGR(z = 0)
is higher — i.e., there has been less growth of structure between redshift z and the present day because matter has been a
smaller fraction of the total density over that time. It is often useful to refer the growth factor not to its z = 0 value but
to the value at some high redshift when, in typical models, dark energy is dynamically negligible and Ωm(z) ≈ 1. We will
frequently use z = 9 as a reference epoch, in which case Eq. (16) becomes

GGR(z)
GGR(z = 9)

≈ exp
 9

z

dz ′

1 + z ′
[Ωm(z ′)]γ


. (18)

In the limitΩm(z) → 1, GGR(z) ∝ (1 + z)−1, i.e., the amplitude of linear fluctuations is proportional to a(t).

12 Recall that sin(ix) = i sinh(x).
13 This equation applies on scales much smaller than the horizon. On scales close to the horizon one must pay careful attention to gauge definitions. Yoo
(2009) and Yoo et al. (2009) provide a unified and comprehensive discussion of the multiple GR effects that influence observable large scale structure on
scales approaching the horizon.



98 D.H. Weinberg et al. / Physics Reports 530 (2013) 87–255

2.2. Model parameterizations

The properties of dark energy influence the observables – H(z), D(z), and G(z) – through the history of uφ(z)/uφ,0 in
the Friedmann equation (3). This history is usually framed in terms of the value and evolution of the equation-of-state
parameter w(z) = pφ(z)/uφ(z). Provided that the field φ is not transferring energy directly to or from other components
(e.g., by decaying into dark matter), applying the first law of thermodynamics dU = −p dV to a comoving volume implies

d(uφa3) = −pφd(a3) (19)

H⇒ a3duφ + 3uφa2da = −3w(z)uφa2da (20)

H⇒ d ln uφ = −3[1 + w(z)]d ln a = 3[1 + w(z)]d ln(1 + z), (21)

where the last equality uses the definition a = (1 + z)−1. Integrating both sides implies

uφ(z)
uφ(z = 0)

= exp

3
 z

0
[1 + w(z ′)]

dz ′

1 + z ′


. (22)

For a constantw independent of z we find

uφ(z)
uφ(z = 0)

= (1 + z)3(1+w), (23)

which yields the familiar results u ∝ (1 + z)3 for pressureless matter and u ∝ (1 + z)4 for radiation (w = +
1
3 ), and which

shows once again that a cosmological constant uφ(z) = constant corresponds tow = −1.
The first obviousway to parameterizew(z) iswith a Taylor expansionw(z) = w0+w

′z+· · ·, but this expansion becomes
ill-behaved at high z. A more useful two-parameter model (Chevallier and Polarski, 2001; Linder, 2003a) is

w(a) = w0 + wa(1 − a), (24)

in which the value of w evolves linearly with scale factor from w0 + wa at small a (high z) to w0 at z = 0. Observations
usually provide the best constraint on w at some intermediate redshift, not at z = 0, so statistical errors on w0 and wa are
highly correlated. This problem can be circumvented by recasting Eq. (24) into the equivalent form

w(a) = wp + wa(ap − a) (25)

and choosing the ‘‘pivot’’ expansion factor ap so that the observational errors on wp and wa are uncorrelated (or at least
weakly so). The value of the pivot redshift depends on what data sets are being considered, but in practice it is usually close
to zp ≡ a−1

p −1 ≈ 0.4–0.5 (see Table 8). The best-fitwp is, approximately, the parameter of the constant-wmodel thatwould
best reproduce the data. A cosmological constant would be statistically ruled out either ifwp were inconsistent with −1 or
if wa were inconsistent with zero. In practice, error bars on wa are generally much larger than error bars on wp, by a factor
of 5–10. More generally, it is much more difficult to detect time dependence ofw than to showw ≠ −1, typically requiring
sub-percent measurements of observables even if w changes by order unity in an interval ∆z < 1 at low redshift (Kujat
et al., 2002). The DETF proposed a figure of merit (FoM) for dark energy programs based on the expected error ellipse in the
w0–wa plane (similar to the approach described by Huterer and Turner (2001)). We will frequently refer to this DETF figure
of merit, adopting the definition

FoM =

σ(wp)σ (wa)

−1
, (26)

and we will refer to dark energy models defined by Eqs. (24) or (25) as ‘‘w0–wa models’’.
An alternative parameterization approach is to approximatew(z) as a stepwise-constant function defined by its values in

a number of discrete bins, perhaps with priors or constraints on the allowed values (e.g., −1 ≤ w(z) ≤ 1). For a given set of
observations, this function can then be decomposed into orthogonal principal components (PCs), with the first PC being the
one that is best constrained by the data, the second PC the next best constrained, and so forth (Huterer and Starkman, 2003).
Variants of this approach have beenwidely adopted in recent investigations (e.g., Albrecht and Bernstein, 2007; Sarkar et al.,
2008b; Mortonson et al., 2009b), including the report of the JDEM Figure-of-Merit Science Working Group (Albrecht et al.,
2009). The PCA approach has the advantage of allowing quite general w(z) histories to be represented, though in practice
only a few PCs can be constrained well; Linder and Huterer (2005) and de Putter and Linder (2008) have argued that the
w0–wa parameterization has equal power for practical purposes. We will use both characterizations for our forecasts in
Section 8. For scalar field models, one can attempt to reconstruct the potential V (φ) instead of w(z) (Starobinsky, 1998;
Huterer and Turner, 1999; Nakamura and Chiba, 1999), an approach that we discuss briefly at the end of Section 8.3.4.
Gott and Slepian (2011) emphasize that slowly rolling scalar field models generically predict 1 + w ≈ (1 + w0)H2

0/H
2(z)

for |1 + w| ≪ 1, making the space of w(z) models, to leading order, one-dimensional, rather than the two-dimensional
parameterization ofw0–wa. As a complement to parameterized models, one can attempt to construct non-parametric ‘‘null
tests’’ for a cosmological constant or scalar field models (Sahni et al., 2008).
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If w ≠ −1, then the dark energy density should display spatial inhomogeneities, but for simple scalar field models
these inhomogeneities are strongly suppressed on scales below the horizon. More complicated models that have a sound
speed (c2s = δp/δρ) much smaller than c allow fluctuations to grow on sub-horizon scales (e.g., Hu, 1998; Erickson et al.,
2002; Weller and Lewis, 2003; DeDeo et al., 2003; Bean and Doré, 2004). de Putter et al. (2010) provide a clear discussion of
the background physics and observable consequences of dark energy inhomogeneities. In general these inhomogeneities
are very difficult to detect, because their growth is significant only when w is far from −1 and cs ≪ c , and because
the fluctuations in dark energy density are much smaller than those in dark matter. We will mostly ignore dark energy
inhomogeneities in this article, though we return to the subject briefly in Section 7.8.

Our equations so far have assumed that GR is correct. The alternative to dark energy is tomodifyGR in away that produces
accelerated expansion. One of the best-studied examples is DGP gravity (Dvali et al., 2000), which posits a five-dimensional
gravitational field equation that leads to a Friedmann equation

H2(z) =
8πG
3
ρ(z)±

cH
rc

(27)

for a spatially flat, homogeneous universe confined to a (3 + 1)-dimensional brane. Above the ‘‘crossover scale’’ rc , which
relates the five-dimensional and four-dimensional gravitational constants, the gravitational force law scales as r−3 instead of
the usual r−2. Choosing the positive sign for the second term in Eq. (27) and setting rc ∼ c/H0 leads to an initially decelerating
universe that transitions to accelerating, and ultimately exponential, expansion. Other modifications to the gravitational
action that replace the curvature scalar R by some function f (R)will modify the Friedmann equation in different ways, some
of which can produce late-time acceleration (e.g., Capozziello and Fang, 2002; Carroll et al., 2004). Alternatively, one can
simply postulate a modified Friedmann equation without specifying a complete gravitational theory, e.g., by replacing ρ on
the right hand side of H2

∝ ρ with a parameterized function H2
∝ g(ρ) (Freese and Lewis, 2002; Freese, 2005). Of course,

there is no guarantee that such a function can in fact be derived from a self-consistent gravitational theory.
Using Eqs. (3) and (22), one can express a modified Friedmann equation in terms of an effective time-dependent dark

energy equation of state. In this review, we will use w(z) to parameterize the expansion histories of both dark energy and
modified gravity theories. Given w(z), H(z) and D(z) generally follow from the same set of equations for both types of
theories, so observations that only probe the geometry of the universe are incapable of distinguishing between the two
possible explanations of cosmic acceleration. In addition to changing the Friedmann equation, however, a modified gravity
model may alter the Eq. (14) that relates the growth of structure to the expansion history H(z). Therefore, one general
approach to testing modified gravity explanations is to search for inconsistency between observables that probe H(z) or
D(z) and observables that also probe the growth function G(z). Some methods effectively measure G(z)/G(z = 0), others
measure G(z) relative to an amplitude anchored in the CMB, and others measure the logarithmic growth index γ of Eq. (15).
For ‘‘generic’’ parameters that describe departures fromGR-predicted growth, wewill use a parameter G9 that characterizes
an overallmultiplicative offset of the growth factor and aparameter∆γ that characterizes a change in the fluctuation growth
rate. We define these parameters in Section 2.4 below, following our review of CMB anisotropy and large scale structure.
These parameters serve as useful diagnostics for deviations from GR, but they do not provide a complete description of the
effects of modified gravity theories. In particular, it is also possible (see Section 7.7) that modified gravity will cause G(z) to
be scale-dependent, or that it will alter the relation between gravitational lensing and non-relativistic mass tracers, or that
it will reveal its presence through a high-precision test on solar system or terrestrial scales.

The above considerations lead to the following general strategy for probing the physics of cosmic acceleration: use
observations to constrain the functions H(z), D(z), and G(z), and use these constraints in turn to constrain the history of
w(z) for dark energy models and to test for inconsistencies that could point to a modified gravity explanation. For pure
H(z) and D(z) measurements, the ‘‘nuisance parameters’’ in such a strategy are the values of Ωm and Ωk, in addition to
parameters related directly to the observational method itself (e.g., the absolute luminosity of supernovae). Assuming a
standard radiation content, the value of Ωφ = 1 − Ωm − Ωr − Ωk is fixed once Ωm and Ωk are known. The effects of Ωm
and Ωk are separable both from their different redshift dependence in the Friedmann equation (3) and from the influence
ofΩk on transverse distances (Eq. (9)) via space curvature.

2.3. CMB anisotropies and large scale structure

CMB anisotropies have little direct constraining power on dark energy, but they play a critical role in cosmic acceleration
studies because they often provide the strongest constraints on nuisance parameters such asΩm,Ωk, and the high-redshift
normalization ofmatter fluctuations. In particular, the amplitudes of the acoustic peaks in the CMB angular power spectrum
depend sensitively (and differently) on the matter and baryon densities, and the locations of the peaks depend sensitively
on spatial curvature. Using CMB constraints necessarily brings in additional nuisance parameters such as the spectral index
ns and curvature dns/d ln k of the scalar fluctuation spectrum, the amplitude and slope of the tensor (gravitational wave)
fluctuation spectrum, the post-recombination electron-scattering optical depth τ , and the Hubble constant

h ≡ H0/(100 km s−1 Mpc−1). (28)

However, some of these parameters are themselves relevant to cosmic acceleration studies, and current CMBmeasurements
yield tight constraints even after marginalizing over many parameters (e.g., Komatsu et al., 2011). The strength of these
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constraints depends significantly on the adopted parameter space— for example, current CMB data provide tight constraints
on h if one assumes a flat universe with a cosmological constant, but these constraints are much weaker ifΩk andw are free
parameters.

CMB data are usually incorporated into dark energy constraints, or forecasts, by adding priors on parameters that are
then marginalized over in the analysis. We will adopt this strategy in Section 8, using the level of precision forecast for the
Planck satellite. However, it is worth noting some rules of thumb. For practical purposes, Planck data will give near-perfect
determinations ofΩmh2 andΩbh2 from the heights of the acoustic peaks, where the h2 dependence arises because it is the
physical density that affects the acoustic features, not the density relative to the critical density. ‘‘Near-perfect’’ means that
marginalizing over the expected uncertainties in Ωmh2 and Ωbh2 adds little to the error bars on dark energy parameters
even from ambitious ‘‘Stage IV’’ experiments, relative to assuming that they are known perfectly.14 Planck data will also
give near-perfect determinations of the sound horizon at recombination rs(z∗), which determines the physical scale of the
acoustic peaks in the CMB and the scale of BAO in large scale structure (see Section 4.1). Since the angular scale of the
acoustic peaks is precisely measured, Planck data should also yield a near-perfect determination of the angular diameter
distance to the redshift of recombination, D∗ ≡ DA(z∗), where z∗ ≈ 1091. Finally, the amplitude of CMB anisotropies gives
a near-perfect determination (after marginalizing over the optical depth τ , which is constrained by polarization data) of the
amplitude ofmatter fluctuations at z∗, and thus throughout the era inwhich dark energy (or deviation fromGR) is negligible.
As emphasized by Hu (2005; an excellent source for more detailed discussion of CMB anisotropies in the context of dark
energy constraints), these determinations all depend on the assumptions of a standard thermal and recombination history,
but the CMB data themselves allow tests of these assumptions at the required level of accuracy. CMB data also allow tests
of cosmic acceleration models via the integrated Sachs–Wolfe (ISW) effect, which we discuss briefly in Section 7.8.

If primordial matter fluctuations are Gaussian, as predicted by simple inflation models and supported by most
observational investigations to date, then their statistical properties are fully specified by the power spectrum P(k) or its
Fourier transform, the two-point correlation function ξ(r). Defining the Fourier transform of the density contrast15

δ̃(k) =


d3re−ik·rδ(r), δ(r) = (2π)−3


d3keik·rδ̃(k), (29)

the power spectrum is defined by

⟨δ̃(k)δ̃(k′)⟩ = (2π)3P(k)δ3D(k − k′), (30)

where δ3D is a 3-d Dirac-delta function and isotropy guarantees that P(k) is a function of k = |k| alone. The power spectrum
has units of volume, and it is often more intuitive to discuss the dimensionless quantity

∆2(k) ≡ (2π)−3
× 4πk3P(k) =

dσ 2

d ln k
, (31)

which is the contribution to the variance σ 2
≡ ⟨δ2⟩ of the density contrast per logarithmic interval of k. The variance of the

density field smoothed with a windowWR(r) of scale R is

σ 2(R) =


∞

0

dk
k
∆2(k)W 2

R (k), (32)

where the Fourier transform of a top-hat window,WR(r) = (4πR3/3)−1Θ(1 − r/R), is

WR(k) =
3

k3R3
[sin(kR)− kR cos(kR)] , (33)

and the Fourier transform of a Gaussian window,WR(r) = (2π)−3/2R−3e−r2/2R2 , isWR(k) = e−k2R2/2. (34)

The correlation function is

ξ(r) ≡ ⟨δ(x)δ(x + r)⟩ =


∞

0

dk
k
∆2(k)

sin(kr)
kr

. (35)

In linear perturbation theory, the power spectrum amplitude is proportional to G2(z), and we will take Plin(k) to refer to
the z = 0 normalization when the redshift is not otherwise specified:

Plin(k, z) =
G2(z)

G2(z = 0)
Plin(k). (36)

14 However, the effects of Planck-level CMB uncertainties are not completely negligible. For the fiducial Stage IV program discussed in Section 8, fixing
Ωmh2 andΩbh2 instead of marginalizing increases the DETF FoM from 664 to 876.
15 A variety of Fourier conventions float around the cosmology literature. Herewe adopt the same Fourier conventions and definitions as Dodelson (2003).
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We discuss the normalization of G(z) and Plin(k)more precisely in Section 2.4 below. The evolution of P(k) remains close to
linear theory for scales k ≪ knl, where knl

0

dk
k
∆2(k) = 1. (37)

For realistic power spectra, non-linear evolution on small scales does not feed back to alter the linear evolution on large scales
(Peebles, 1980; Shandarin and Melott, 1990; Little et al., 1991). However, the shape of the power spectrum does change on
scales approaching knl, in ways that can be calculated using N-body simulations (Heitmann et al., 2010) or several variants
of cosmological perturbation theory (Carlson et al., 2009 and references therein). Non-linear evolution is a significant effect
for weak lensing predictions and for the evolution of BAO, as we discuss in the corresponding sections below.

While there are many ways of characterizing the matter distribution in the non-linear regime, the two measures that
matter the most for our purposes are the mass function and clustering bias of dark matter halos. There are several different
algorithms for identifying halos in N-body simulations, all of them designed to pick out collapsed, gravitationally bound
dark matter structures in approximate virial equilibrium. It is convenient to express the halo mass function in the form

dn
d lnM

= f (σ )ρ̄m

d ln σdM

 , (38)

where σ 2 is the variance of the linear density field smoothed with a top-hat filter of mass scale M =
4
3πR

3ρ̄m (Eqs. (32)
and (33)). To a first approximation, the function f (σ ) is universal, and the effects of power spectrum shape, redshift (and
thus power spectrum amplitude), and background cosmological model (e.g., Ωm and ΩΛ) enter only through determining
|d ln σ/dM| and ρ̄m. The state-of-the-art numerical investigation is that of Tinker et al. (2008), who fit a large number of
N-body simulation results with the functional form

f (σ ) = A
σ

b

−a
+ 1


e−c/σ 2

, (39)

finding best-fit values A = 0.186, a = 1.47, b = 2.57, c = 1.19 for z = 0 halos, defined to be spherical regions centered
on density peaks enclosing a mean interior overdensity of 200 times the cosmic mean density ρ̄m. (Different halo mass
definitions lead to different coefficients.) A similar functional form was justified on analytic grounds by Sheth and Tormen
(1999), following a chain of argument that ultimately traces back to Press and Schechter (1974) and Bond et al. (1991).
Discussions of the halo population frequently refer to the characteristic mass scaleM∗, defined by

σ(M∗) = δc = 1.686, (40)

which sets the location of the exponential cutoff in the Press–Schechter mass function. Here δc is the linear theory
overdensity at which a spherically symmetric perturbation would collapse.16

In detail, Tinker et al. (2008) find that f (σ ) depends on redshift at the 10%–20% level, probably because of the dependence
of halomass profiles onΩm(z). At overdensities of∼200, the baryon fraction in group and clustermass halos (M > 1013M⊙)
is expected to be close to the cosmic mean ratio Ωb/Ωm, but gas pressure, dissipation, and feedback from star formation
and AGN can alter this fraction and change baryon density profiles relative to dark matter profiles. We discuss these issues
further in Section 6.

Massive halos are more strongly clustered than the underlying matter distribution because they form near high peaks of
the initial density field, which arise more frequently in regions where the background density is high (Kaiser, 1984; Bardeen
et al., 1986). On large scales, the correlation function of halos of mass M is a scale-independent multiple of the matter
correlation function ξhh(r) = b2h(M)ξmm(r). The halo-mass cross-correlation in this regime is ξhm(r) = bh(M)ξmm(r), and
similar scalings (b2h and bh) hold for the halo power spectrum and halo-mass cross spectrum at low k. Analytic arguments
suggest a bias factor (Cole and Kaiser, 1989; Mo and White, 1996)

bh(M) = 1 +
[δc/σ(M)]2 − 1

δc
. (41)

There have been numerous refinements to this formula based on analytic models and numerical calibrations. The state-of-
the-art numerical study is that of Tinker et al. (2010).

Galaxies reside in dark matter halos, and they, too, are biased tracers of the underlying matter distribution. Here one
must allow for the fact that different kinds of galaxies reside in different mass halos and that massive halos host multiple
galaxies. More massive or more luminous galaxies are more strongly clustered because they reside in more massive halos
that have higher bh(M). At low redshift, the large scale bias factor is bg ≤ 1 for galaxies below the characteristic cutoff L∗

16 See Gunn and Gott (1972), but note that their argument must be corrected to growing mode initial conditions, as is done in standard textbook
treatments. The value δc = 1.686 is derived forΩm = 1, but the cosmology dependence is weak.
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of the Schechter (1976) luminosity function, but it rises sharply at higher luminosities (Norberg et al., 2001; Zehavi et al.,
2005, 2011).

For a galaxy sample defined by a threshold Lmin in optical or near-IR luminosity (or stellar mass), theoretical models and
empirical studies (too numerous to list comprehensively, but our summary here is especially influenced by Kravtsov et al.,
2004; Conroy et al., 2006; Zehavi et al., 2011) suggest the following approximatemodel. Theminimum host halo mass is the
one for which the comoving space density n(Mmin) of halos aboveMmin matches the space density n(Lmin) of galaxies above
the luminosity threshold. Each halo aboveMmin hosts one central galaxy, and in addition each such halo hosts ameannumber
of satellite galaxies ⟨Nsat⟩ = (M − Mmin)/15Mmin, with the actual number of satellites drawn from a Poisson distribution
with this mean.17 The large scale galaxy bias factor bg is the average bias factor bh(M) of halos aboveMmin, with the average
weighted by the product of the halo space density and the average number of galaxies per halo. In addition to increasing bg
by giving more weight to high mass halos, satellite galaxies contribute to clustering on small scales, where pairs or groups
of galaxies reside in a single halo (Seljak, 2000; Scoccimarro et al., 2001; Berlind and Weinberg, 2002). In detail, at high
luminosities one must allow for scatter between galaxy luminosity and halo mass, which reduces the bias below that of the
sharp thresholdmodel described above. Furthermore, selecting galaxies by color or spectral type alters the relative fractions
of central and satellite galaxies; redder, more passive galaxies are more strongly clustered because a larger fraction of them
are satellites, and the reverse holds for bluer galaxies with active star formation. Thus each class of galaxies has its own
halo occupation distribution (HOD), which describes the probability P(N|M) of finding N galaxies in a halo of mass M and
specifies any relative bias of galaxies and dark matter within halos.

On large scales, where b2g∆
2
lin(k, z) ≪ 1, the galaxy power spectrum should have the same shape as the linear matter

power spectrum, Pgg(k, z) = b2gPlin(k, z). However, scale-dependence of bias at the 10%–20% level can persist to quite low k,
especially for luminous, highly biased galaxy populations, and the effective ‘‘shot noise’’ contribution to Pgg(k) candiffer from
the naive 1/n̄g term expected for Poisson statistics (Yoo et al., 2009). Combinations of CMB power spectrummeasurements
with galaxy power spectrummeasurements can yield tighter cosmological parameter constraints than either one in isolation
(e.g., Cole et al., 2005; Reid et al., 2010). In particular, this combination provides greater leverage on the Hubble constant h,
since CMB-constrainedmodels predict galaxy clustering inMpcwhile galaxy redshift surveysmeasure distances in h−1 Mpc
(or, equivalently, in km s−1).

Another complicating factor in galaxy clustering measurements is redshift-space distortion (Kaiser, 1987; see Hamilton,
1998 for a comprehensive review), which arises because galaxy redshifts measure a combination of distance and peculiar
velocity rather than true distance. On small scales, velocity dispersions in collapsed objects stretch structures along the line
of sight. On large scales, coherent inflow to overdense regions compresses them in the line-of-sight direction, and coherent
outflow from underdense regions stretches them along the line of sight. In linear perturbation theory, the divergence of the
peculiar velocity field is related to the density contrast field by

∇⃗ · v(x, z) = −(1 + z)−1H(z)
d lnG
d ln a

δ(x, z) ≈ −(1 + z)−1H(z)[Ωm(z)]γ δ(x, z), (42)

with γ defined by Eq. (15). The galaxy redshift-space power spectrum in linear theory is anisotropic, depending on the angle
θ between the wavevector k and the observer’s line of sight as

Pg(k, µ) = b2g(1 + βµ2)2P(k) =

bg + µ2f (z)

2
P(k), (43)

where P(k) is the real-space matter power spectrum, µ ≡ cos θ , and f (z) ≈ [Ωm(z)]γ is the logarithmic growth rate
(Eq. (15)). The strength of the anisotropy depends on the ratio β ≡ f (z)/bg ; because linear bias amplifies galaxy clustering
isotropically, more strongly biased galaxies exhibit weaker redshift-space distortion. A variety of non-linear effects, most
notably the small scale dispersion and its correlation with large scale density, mean that Eq. (43) is rarely an adequate ap-
proximation in practice, even on quite large scales (Cole et al., 1994; Scoccimarro, 2004). In the galaxy correlation function,
one can remove the effects of redshift-space distortion straightforwardly by projection, counting galaxy pairs as a function of
projected separation rather than 3-d redshift-space separation. For the power spectrum, one can correct for redshift-space
distortion, but the analysis ismoremodel-dependent (see, e.g., Tegmark et al., 2004). However, redshift-space distortion can
be an asset as well as a nuisance, since it provides a route tomeasuring d lnG/d ln a. Wewill discuss this idea at some length
in Section 7.2, as it is emerging as a powerful route to measuring the expansion history and testing GR growth predictions.

2.4. Parameter dependences and CMB constraints

Fig. 1 illustrates the four statistics discussed above: the CMB temperature angular power spectrum, the matter variance
∆2

lin(k) computed from the linear theory power spectrum at z = 0, the z = 0 halo mass function computed from Eqs. (38)
and (39), and the halo bias factor computed fromEq. (6) of Tinker et al. (2010) for overdensity 200 halos (relative to themean
matter density). Curves in the main panels show a fiducial model with the likelihood-weighted mean parameters for the

17 Tomake themodelmore accurate, one should adjustMmin iteratively so that the total space density of galaxies, central+satellite, matches the observed
n(Lmin), but this is usually a modest correction because the typical fraction of galaxies that are satellites is 5%–20%.
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Fig. 1. CMB angular power spectrum (upper left), variance of matter fluctuations (upper right), halo mass function (lower left), and halo bias factor (lower
right). Solid curves in the main panels show predictions of the fiducial ΛCDM panel listed in Table 1. Curves in the lower panels show the fractional
changes in these statistics induced by changing 1 + w to ±0.1 or Ωk to ±0.01 (see legend). For each parameter change, we keep Ωmh2 , Ωbh2 , and D∗

fixed by adjustingΩm ,Ωb , and h (see Table 1). These compensating changes keep deviations in the CMB spectrumminimal, much smaller than the cosmic
variance errors indicated by the shaded region.

seven-yearWMAP CMBmeasurements (hereafterWMAP7; Larson et al., 2011) assuming a flat universe with a cosmological
constant: Ωc = 0.222, Ωb = 0.045, ΩΛ = 0.733, h = 0.71, ns = 0.963, τ = 0.088, and primordial power spectrum
amplitude As(k = 0.002 Mpc−1) = 2.43× 10−9. (These parameters also assume no tensor fluctuations and dns/d ln k = 0.)
The CMBpower spectrum shows the familiar pattern of acoustic peaks, with the angular scale of the first peak corresponding
approximately to the sound horizon at recombination divided by the angular diameter distance to the last scattering surface.
The matter variance ∆2

lin(k) shows a slow change of slope starting at k ≈ 0.02hMpc−1, corresponding to the horizon scale
at matter–radiation equality, and low amplitude wiggles at smaller scales produced by BAO. The halo mass function has an
approximate power-law form at lowmasses changing slowly to an exponential cutoff forM ≫ M∗

= 3× 1012h−1 M⊙. The
bh(M) relation is roughly flat forM . 5M∗ before rising steeply at higher masses. The h-dependences used for k, dn/d lnM ,
and M reflect the dependences that typically arise when distances are estimated from redshifts and thus scale as h−1.

In the lower panels, we show the fractional change in these statistics that arises when changing 1 + w from 0 to ±0.1
and when changing Ωk from 0 to ±0.01. With any parameter variation, there is the crucial question of what one holds
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Table 1
Fiducial model and simple variants.

w Ωk Ωc Ωb Ωφ h σ8

−1.0 0.00 0.222 0.045 0.733 0.710 0.806
−0.9 0.00 0.246 0.050 0.704 0.675 0.774
−1.1 0.00 0.201 0.041 0.758 0.746 0.837
−1.0 0.01 0.186 0.038 0.766 0.776 0.809
−1.0 −0.01 0.256 0.052 0.702 0.661 0.802

All models have ns = 0.963, τ = 0.088, As(k = 0.002Mpc−1) =

2.43 × 10−9 . In addition, all models have the same values Ωmh2 ,
Ωbh2 , and distance to the last scattering surface D∗ , so they
produce nearly indistinguishable CMB power spectra.

fixed. For this figure, we have held fixed the parameter combinations that have the strongest impact on the CMB power
spectrum:Ωmh2 andΩbh2, which determine the heights of the acoustic peaks and the physical scale of the sound horizon,
and D∗ = DA(z∗), whichmaps the physical scale of the peaks into the angular scale. We satisfy these constraints by allowing
h and Ωm to vary, maintaining Ωk = 0 for the w-variations and w = −1 for the Ωk-variations, with ns, As, and τ fixed to
the fiducial model values. The parameter values for these variant models appear in Table 1.

From the CMB panel, we can see that the changes in the angular power spectrum induced by these parameter variations
are small compared to the cosmic variance error at every l, since we have fixed the parameter combinations that mostly
determine the CMB spectrum.18 The changes are coherent, of course, but even considering model fits to the entire CMB
spectrum the w changes would be undetectable at the level of errors forecast for Planck, while the Ωk = ±0.01 models
would be distinguishable from the fiducial model at about 1.5σ . The impact of these parameter changes must instead be
sought in other statistics at much lower redshifts. Changes to the matter variance are ∼5% at small scales, growing to ∼20%
at large scales, with oscillations that reflect the shift in the BAO scale. Fractional changes to the halo space density at fixed
mass can be much larger, especially at high masses where the halo mass function is steep. We caution, however, that the
fractional change in mass at fixed abundance is significantly smaller, a point that we emphasize in Section 6. The impact of
a change inw reverses sign atM ≈ 6× 1014h−1 M⊙ ≈ 200M∗, where the mass function begins to drop sharply. Changes in
bias factor at fixed mass are ∼5% at high masses and smaller at low masses.

Fig. 2 shows the redshift evolution and parameter sensitivity of the Hubble parameter (Eq. (3)) and the comoving angular
diameter distance (Eq. (9)), for the same fiducial model and parameter variations used in Fig. 1. The upper panels show H(z)
and DA(z) in absolute units, while the lower panels plot them in h−1 Gpc units. BAO studies measure in absolute units, but
supernova studies effectively measure hDA(z) because they are calibrated in the local Hubble flow. Equivalently, supernova
distances are determined in h−1 Mpc rather than Mpc.19 Weak lensing predictions depend on distance ratios rather than
absolute distances, so in practice they also constrain hDA(z) rather than absolute DA(z).

In absolute units, model predictions diverge most strongly at z = 0, and the impact of Ωk = ±0.01 is larger than
the impact of 1 + w = ±0.1. The impact of the w change on H(z) reverses sign at z ≈ 0.6, a consequence of our CMB
normalization. Changing w to −0.9 would on its own reduce the distance to z∗, and H0 must therefore be lowered to keep
D∗ fixed. However, withΩmh2 fixed, lower H0 implies a higherΩm, which raises the ratio H(z)/H0, and at high redshift this
effect wins out over the lowerH0. At z > 2,DA(z) remains sensitive toΩk but is insensitive tow, while the sensitivity ofH(z)
tow is roughly flat for 1 < z < 3. In h−1 Mpc units, models converge at z = 0 by definition, and the impact of 1+w = ±0.1
is generally larger than the impact ofΩk = ±0.01. The sensitivity of hDA(z) to parameter changes increases monotonically
with increasing redshift, growing rapidly until z = 0.5 and flattening beyond z = 1.

For structure growth, the issues of normalization are more subtle. The normalization of the matter power spectrum is
known better from CMB anisotropy at z∗ than it is from local measurements at z = 0, and this will be still more true in the
Planck era. It therefore makes sense to anchor the normalization in the CMB, even though the value at z = 0 then depends
on cosmological parameters. Fig. 3 (left panel) plots (1+ z)GGR(z), where GGR(z) obeys Eq. (14) and is normalized to unity at
z = 9. Inmostmodels, dark energy is dynamically negligible at z > 9, making the growth from the CMB era up to that epoch
independent of dark energy. In anΩm = 1 universe, GGR(z) ∝ (1 + z)−1, so the plotted ratio falls below unity whenΩm(z)
starts to fall below one. ForΩk = 0.01,Ωm(z) is below that in our fiducial model (see Eqs. (3) and (5)) both because of the
Ωk term in the Friedmann equation and because we lower Ωm(z = 0) from 0.27 to 0.22 to keep D∗ fixed, thus depressing
GGR(z) increasingly toward lower z. For w = −0.9, however, the depression of Ωm(z)/Ωm(z = 0) from the Friedmann
equation is countered by the higher value of Ωm(z = 0) = 0.30 adopted to fix D∗, so the depression of GGR(z) is smaller,
and it actually recovers toward the fiducial value as z approaches zero. The effects on the growth rate f (z) (right panel)
are similar but stronger, with our adopted parameter changes producing larger deviations from the fiducial model and the
influence ofw actually reversing sign at z < 0.5.

18 The CMB cosmic variance error is∆ ln CTT
l = [(2l + 1)/2]−1/2 , determined simply by the number of modes on the sky at each angular scale l.

19 To be more precise, studies of supernovae at redshifts z1 and z2 yield the distance ratio D(z2)/D(z1). When the z1 population is local, in the sense that
inferred distances have negligible cosmology dependence except for the H−1

0 scaling, then one gets the distance D(z2) in h−1 Mpc.
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Fig. 2. Evolution of the Hubble parameter (left) and the comoving angular diameter distance (right) for the fiducial ΛCDM model and for the variant
models shown in Fig. 1. Upper panels are in absolute units, relevant for BAO, while lower panels show distances in h−1 Gpc, relevant for supernovae or
weak lensing.

In practice, observations do not probe the growth factor itself but the amplitude of matter clustering, and in this case
wemust also account for the changing relation between the CMB power spectrum and the matter clustering normalization.
The left panel of Fig. 4 plots σ8(z)× (1 + z), where σ8(z) is the rms linear theory density contrast in a sphere of comoving
radius 8h−1 Mpc (Eqs. (32) and (33)). The right panel instead plots σ11,abs(z) × (1 + z), where σ11,abs refers to a sphere
of radius 11 Mpc (equivalent to σ8 for h = 0.727). At high redshift these curves go flat as Ωm(z) approaches one and the
growth rate approaches GGR(z) ∝ (1 + z)−1. In the CMB-matched models considered here, the impact of w orΩk changes
is complex, since changing these parameters alters the best-fit values of Ωm and h as well as changing the growth factor
directly through Eq. (16). The values of σ8(z) change by 4%–5% at all z for 1+w = ±0.1, but these changes mostly track the
changes in h. In absolute units, the changes to σ11,abs(z) are . 1%, tracking (by definition) the changes in GGR(z) shown in
Fig. 3. ForΩk = ±0.01, σ8(z) changes by 4%–5% at high z but converges nearly to the fiducial value at z = 0, while σ11,abs(z)
shows only 1% differences at high z but diverges at low z.

All of these models have the WMAP7 (Larson et al., 2011) normalization of the power spectrum of inflationary fluctua-
tions, As = 2.43×10−9 at comoving scale k = 0.002Mpc−1 at z = z∗ = 1091. The primary uncertainty in this normalization
is the degeneracy with the electron optical depth τ , since late-time scattering suppresses the amplitude of the primary CMB
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Fig. 3. Evolution of the linear growth factor G(z) and growth rate f (z) for the models shown in Fig. 2, assuming GR. The scaling in the left panel removes
the (1 + z) evolution that would arise in anΩm = 1 universe and normalizes GGR(z) to one at z = 9.

Fig. 4. Evolution of the matter fluctuation amplitude for the models shown in Fig. 3, characterized by the rms linear fluctuation in comoving spheres of
radius 8h−1 Mpc (left) or 11 Mpc (right). All models are normalized to the WMAP7 CMB fluctuation amplitude.

anisotropies by a factor e−τ on the scales that determine the normalization. TheWMAP7 constraints are τ = 0.088± 0.015
(1σ ), so the associated uncertainty in thematter fluctuation amplitude is 1.5%. (Recall that the power spectrum amplitude is
∝ σ 2

8 , so its fractional error is a factor of two larger.) For Planck, Holder et al. (2003) estimate uncertainty στ = 0.01 allowing
for complex reionization history, and we use this value in our own forecasts. While there have been some changes in the
situation since then (the polarized foregrounds at large scales are worse than anticipated, and τ is lower than the central
value from the first-year WMAP results), this expectation seems broadly consistent with more recent studies (e.g., Morton-
son and Hu, 2008; Colombo and Pierpaoli, 2009).20 This will likely be the limiting factor for comparison of high-redshift
(CMB) measurements with low-redshift (e.g., WL) measurements of the growth of structure (as opposed to measurements
of evolution within the observed low-z range), unless other probes of reionization such as 21 cm provide constraints on the
reionization history (see Section 5.9 for further discussion).

Following Albrecht et al. (2009), we parameterize departures from the GR growth rate by a change ∆γ of the growth
index (Eq. (15)) and by an overall amplitude shift G9 that is the ratio of the matter fluctuation amplitude at z = 9 to the

20 For example, Colombo and Pierpaoli (2009) find στ ∼ 0.006, albeit under somewhat optimistic assumptions regarding foregrounds and sky cuts.
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value that would be predicted by GR given the same cosmological parameters andw(z) history.21 Some caution is required
in defining∆γ , since Eqs. (15)–(17) are not exact, and their inaccuracies should not be defined as failures of GR! For precise
calculations, therefore, we adopt the Albrecht et al. (2009) expressions for growth factor evolution:

f (z) = fGR(z) (1 +∆γ lnΩm(z)) (44)

G(z) = G9 × GGR(z)× exp

∆γ

 9

z

dz ′

1 + z ′
fGR(z ′) lnΩm(z ′)


, (45)

where GGR(z) and fGR(z) follow the (exact) solution to Eq. (14).
For practical purposes, one can use our definition of growth parameters to calculate the normalized linear theory matter

power spectrum at redshift z, given an assumed set of cosmological parameter values and a w(z) history, as follows. First,
use CAMB (Lewis et al., 2000) or some similar program to compute the normalized linear matter power spectrum at z = 9.
Then multiply the power spectrum by G2(z)/G2

GR(z = 9), with G(z) given by Eq. (45) and GGR(z)/GGR(z = 9) given by the
exact solution to Eq. (14), or by the approximate integral solution (18), computing H(z) and Ωm(z) from Eqs. (3) and (5)
given the cosmological parameters andw(z). For reference, we note that CAMB normalization withWMAP7 data yields, for
a flatΛCDMmodel,

σ11,abs(z = 9)× (1 + 9) = 1.134


As

2.43 × 10−9

1/2
e2(ns−1)


Ωbh2

0.023

−0.34 
Ωmh2

0.13

0.57

, (46)

σ8(z = 9) = σ11,abs(z = 9)× 0.9859


h
0.71

0.67+(ns−1)/2

, (47)

where the primordial amplitude As is defined at comoving wavenumber k = 0.002 Mpc−1. This formula, similar to that
in Hu (2004), is found by varying the parameters in CAMB calculations around the WMAP7 mean values one at a time to
evaluate logarithmic derivatives; spot checks indicate that it is accurate to 0.2% over the 2σ range of theWMAP7 errors, and
for the range ofw andΩk variations in Table 1. For models other than flatΛCDM, one can use this formula to get σ8(z = 9)
in GR, assuming that the effect of dark energy at z > 9 is negligible, then multiply by G(z)/GGR(z = 9) to get σ8(z).

For an analytic power spectrum, one can use the approximate formula in Eq. (25) of Eisenstein and Hu (1999), which
includes suppression of small scale power by baryonic effects but does not incorporate BAO. This paper defines the power
spectrum normalization in terms of a parameter δH , related to our growth factor and normalization As by

δH =
2
5
A1/2
s


G(z = 0)
Ωm


H0

knorm

(ns−1)/2

. (48)

Using the appropriate values for our fiducial WMAP7 flatΛCDM model [G(z = 0) = 0.76,Ωm = 0.267, As = 2.43 × 10−9

at knorm = 0.002 Mpc−1, h = 0.71, ns = 0.963] with this definition of δH , the Eisenstein and Hu (1999) formula agrees
with the result from CAMB to 2% or better except at the BAO scales, where deviations are up to 10%. One can also use this
normalization for the more complex (but still analytic) formulas of Eisenstein and Hu (1998), which do include BAO. We
caution that other papers and books (e.g., Dodelson, 2003) have different definitions of δH .

There are, of course, degeneracies between the modified gravity parameters G9 and∆γ and thew(z) history, since both
affect structure growth. However, if w(z) is pinned down well by D(z) and H(z) measurements, then measurements of
matter clustering can be used to constrain G9 and∆γ . The clustering amplitude at a single redshift yields a degenerate com-
bination of these two parameters, but measurements at multiple redshifts or direct measurements of the growth rate via
redshift-space distortions can separate them in principle. Of course, there is no guarantee that a modified gravity prediction
can be adequately described by G9 and a constant ∆γ , and one might more generally consider (in Eq. (45)), for example,
a functional history γ (z) analogous to w(z), or a direct multiplicative change to the growth rate d lnG/d ln a rather than a
change of the growth index γ . However, any constraints inconsistent with G9 = 1, ∆γ = 0 after marginalizing over w(z)
and cosmological parameterswould be suggestive evidence for a breakdownofGR. Even if themeasurements themselves are
convincing, onemust be cautious in the interpretation, since apparent discrepancies could arise fromw(z) histories outside
the families considered in marginalization or from other violations of the underlying assumptions. To give two examples,
‘‘early dark energy’’ that is dynamically significant at high redshift could cause an apparent G9 < 1, and decay of darkmatter
into dark energy could cause an apparent∆γ < 0 because the value ofΩm(z)/Ωm(z = 0)would be higher than in the stan-
dard picture. In Section 7.7 we discuss other potential signatures of modified gravity, such as scale-dependent growth, dis-
crepancy betweenmasses inferred from lensing and fromnon-relativistic tracers, and different accelerations in low and high
density environments, and we mention other parameterizations that have been used to describe modified gravity models.

While they are not a substitute for full calculations, we find the use of CMB-normalized models like those in this sec-
tion to be a valuable source of intuition for understanding the impact of distance or structure growth measurements in a
(realistic) situation where CMB anisotropies impose tight parameter constraints. To make construction of such model sets

21 Albrecht et al. (2009) denote this quantity G0 instead of G9 , but we have reserved subscript-0 to refer to z = 0 quantities.
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easy, we note that for small changes |1 + w| . 0.1 and |Ωk| . 0.01, the changes to h required to keep D∗ fixed are well
approximated by

∆ ln h ≈ −0.5(1 + w)+ 8Ωk + 0.9|Ωk|. (49)

The changes to Ωm and Ωb are then trivially found by fixing Ωmh2 and Ωbh2 to their fiducial model values, and the dark
energy density follows fromΩφ = 1 − Ωm − Ωk − Ωr . The value of σ11,abs(z = 9) is unchanged becauseΩmh2 andΩbh2

are fixed, while the value of σ8(z = 9) follows from Eq. (46) with the revised Hubble parameter. To compute power spec-
trum normalizations at other redshifts one uses Eq. (18) with the newΩm(z) implied by Eqs. (3) and (5). The changes to the
normalization at z = 0 are approximately

∆ ln σ8(z = 0) ≈ −0.4(1 + w)+ 0.4Ωk − 0.06|Ωk|. (50)

The coefficients in Eqs. (49) and (50) are chosen to reproduce the values in Table 1; at smaller |1 + w| or |Ωk| the best
coefficients might be slightly different, but the changes themselves would be smaller.

2.5. Overview of methods

We conclude our ‘‘background’’ material with a short overview of the methods we will describe in detail over the next
four sections.

Observations show that Type Ia supernovae have a peak luminosity that is tightly correlated with the shape of their light
curves— supernovae that rise and fallmore slowly have higher peak luminosity. The intrinsic dispersion around this relation
is only about 0.12 mag, allowing each well observed supernova to provide an estimated distance with a 1σ uncertainty of
about 6%. Surveys that detect tens or hundreds of Type Ia supernovae and measure their light curves and redshifts can
therefore measure the distance–redshift relation D(z) with high precision. Because the supernova luminosity is calibrated
mainly by local observations of systems whose distances are inferred from their redshifts, supernova surveys effectively
measure D(z) in units of h−1 Mpc, not in absolute units independent of H0.

Baryon acoustic oscillations provide an entirely independent way of measuring cosmic distance. Sound waves propa-
gating before recombination imprint a characteristic scale on matter clustering, which appears as a local enhancement in
the correlation function at r ≈ 150 Mpc. Imaging surveys can detect this feature in the angular clustering of galaxies in
bins of photometric redshift, yielding the angular diameter distance D(zphot). A spectroscopic survey over the same volume
resolves the BAO feature in the line-of-sight direction and thereby yields a more precise DA(z)measurement. Furthermore,
measuring the BAO scale in velocity separation allows a direct determination of H(z). Other tracers of the matter distribu-
tion can also be used to measure BAO. Because the BAO scale is known in absolute units (based on straightforward physical
calculation and parameter values well measured from the CMB), the BAO method measures D(z) in absolute units – Mpc
not h−1 Mpc – so BAO and supernova measurements to the same redshift carry different information.

The shapes of distant galaxies are distorted by the weak gravitational lensing from matter fluctuations along the line of
sight. The typical distortion is only ∼0.5%, much smaller than the ∼30% dispersion of intrinsic galaxy ellipticities, but by
measuring the correlation of ellipticities as a function of angular separation, averaged over many galaxy pairs, one can infer
the power spectrum of thematter fluctuations producing the lensing. Alternatively, one canmeasure the average elongation
of background, lensed galaxies as a function of projected separation from foreground lensing galaxies to infer the galaxy-
mass correlation function of the foreground sample, which can be combined with measurements of galaxy clustering to
infer the matter clustering. By measuring the projected matter power spectrum for background galaxy samples at different
z, weak lensing can constrain the growth function G(z). However, the strength of lensing also depends on distances to the
sources and lenses, so in practice the weak lensing method constrains combinations of G(z) and D(z).

Clusters of galaxies trace the high end of the halo mass function, typically M ≥ 1014M⊙. Observationally, one measures
the number of clusters as a function of a mass proxy, which directly constrains dn/(d lnM dVc), where dn/d lnM is the halo
mass function (Eq. (38)) and dVc is the comoving volume element at the redshift of interest (Eq. (12)). The mass function at
highM is sensitive to the amplitude ofmatter fluctuations, and therefore to G(z), though this information ismixedwith that
in the cosmology dependence of the volume element dVc ∝ D2

AH
−1. Clusters can be identified in optical/near-IR surveys that

find peaks in the galaxy distribution and measure their richness, in wide-area X-ray surveys that find extended sources and
measure their X-ray luminosity and temperature, or in Sunyaev–Zel’dovich (SZ) surveys that find localized CMB decrements
and measure their depth. The critical step in any cluster cosmology investigation is calibrating the relation between halo
mass and the survey’s cluster observable – richness, luminosity, temperature, SZ decrement – so that the mass function
can be inferred from (or constrained by) the distribution of observables. We will argue in Section 6 that the most reliable
route to such calibration is via weak lensing, making wide-area optical or near-IR imaging a necessary component of any
high-precision cosmic acceleration studies with clusters.

Several of the ‘‘alternative’’ methods described in Section 7 may ultimately play an important role in pinning down the
origin of cosmic acceleration, even given the high precision expected from Stage IV supernova, BAO, weak lensing, and
cluster surveys. In some cases, such as redshift-space distortions, these alternatives are automatically enabled by the same
surveys conducted for BAO or weak lensing. In other cases, such as direct measurement of H0, the required observational
programs are different in character.
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3. Type Ia supernovae

3.1. General principles

Supernovae (which we will often abbreviate to SN or SNe) are the most straightforward tool for studying cosmic
acceleration, and they are the tool that directly discovered acceleration in the first place (Riess et al., 1998; Perlmutter et al.,
1999; both using local calibration samples from the Calàn/Tololo survey, Hamuy et al., 1996). Type Ia supernovae, defined
observationally by the absence of hydrogen and presence of SiII in their early-time spectra (Filippenko, 1997), are thought
to arise from thermonuclear explosions of white dwarfs, though the evolutionary sequence or sequences that lead to these
explosions remains poorly understood. The two broad classes of progenitormodels are ‘‘single degenerate’’, inwhich awhite
dwarf accreting from a binary companion is pushed over the Chandrasekhar mass limit, and ‘‘double degenerate’’, in which
gravitational radiation causes an orbiting pair of white dwarfs to merge and exceed the Chandrasekhar mass. The observed
supernova population could have contributions from both channels (see Livio, 1999 for a review of Type Ia SNmechanisms).

To a rough approximation, Type Ia SNe are standard candles, with rms dispersion of approximately 0.4 magnitudes in
V-band at peak luminosity (Hamuy et al., 1996; Riess et al., 1996). This 0.4-mag scatter can be sharply reduced using an em-
pirical correlation between peak luminosity and light curve shape (LCS) — supernovaewith higher peak luminosities decline
more slowly after the peak. This correlation,whichwewill refer to generically as the luminosity–LCS relation,was first quan-
tified by Phillips (1993) based on a handful of objects including the archetypes of low and high luminosity Ia supernovae,
SN 1991bg and SN 1991T, respectively. Also important to the refinement of distance determinations was the development
of corrections for the correlation between SN color and extinction (Riess et al., 1996; Tripp, 1998; Phillips et al., 1999) and
K -corrections for redshifting effects (Kim et al., 1996; Nugent et al., 2002). These were all quickly incorporated into anal-
ysis methods such as the Multicolor Light Curve Shape (MLCS; Riess et al., 1996) technique used by the High-z Supernova
Search (Schmidt et al., 1998) and the stretch-factor formalism used by the Supernova Cosmology Project (Perlmutter et al.,
1997).

With these corrections, the dispersion inwell measured optical band peakmagnitudes is only∼0.12magnitudes (Hicken
et al., 2009b; Folatelli et al., 2010), allowing each well measured supernova to provide a luminosity-distance estimate with
∼6% uncertainty. The diversity of SN Ia light curves is not fully understood, and peculiar SNe Ia appear to produce ∼5%
non-Gaussian tails in the SN Ia distribution (Li et al., 2011). For the bulk of the population, the prevailing picture is that the
progenitor explosions produce varying amounts of Ni56, whose radioactivity powers the optical luminosity, and that the
correlation of peak luminosity with light curve shape arises from radiative transfer effects (Hoeflich et al., 1996; Kasen and
Woosley, 2007). Recent studies suggest that SN Ia are truly standard candles in the near-IR, with peak luminosities at rest-
frameH-band (1.6µm) that have only∼0.1 magnitude rms dispersion independent of light curve shape, and with little sen-
sitivity to uncertain reddening laws (Mandel et al., 2009, 2011; Barone-Nugent et al., 2012). This small dispersion in near-IR
peak luminosities relative to optical is consistentwith theoretical expectations from radiative transfermodels (Kasen, 2006).

To measure cosmic expansion with Type Ia SNe, one compares the corrected peak apparent magnitudes of distant
supernovae to those of local calibrators at 0.03 < z < 0.1, a ‘‘sweet spot’’ in which distances inferred from redshifts
are insensitive to peculiar velocities and to the assumed densities of dark matter and dark energy. Since the distances to the
local calibrators are usually determined from Hubble expansion, this method gives the luminosity distance DL in units of
h−1 Mpc. More generally, the SN method yields relative distances in different redshift bins, even if one of those bins is not
strictly local. The DL(z) relation is sensitive to dark energy through Eqs. (7) and (3), and to space curvature through Eqs. (10)
and (11). A measurement of N supernovae in a redshift bin with rms observational errors σobs in peak magnitudes yields an
estimate of DL(z)with fractional statistical error

σlnD =


σ 2
int + σ 2

obs

1/2
2 × 1.086 ×

√
N
 , (51)

where σint is the rms intrinsic scatter, the factor 1.086 converts from magnitudes to natural logarithms, and the factor of
two converts from flux uncertainty to distance uncertainty. As discussed in Section 3.4 below, there are many possible
sources of systematic uncertainty, including flux calibration, corrections for dust extinction, and possible redshift evolution
of the supernova population. Of these, dust extinction looks like it may ultimately be the most difficult to control at the
sub-percent level, since even a 0.01-mag E(B − V ) color excess corresponds to a 3% suppression of V -band flux. This
consideration provides strongmotivation for focusing Stage IV supernova surveys on rest-frame near-IR photometry, where
dust extinction is a factor of 3 to 8 times smaller compared to the optical and where the small scatter in peak luminosities
may help minimize any evolutionary effects.

3.2. The current state of play

Building on the initial discovery of cosmic acceleration, supernova surveys have been a major area of activity in
observational cosmology over the last decade. The largest high-redshift (z ≈ 0.4–1.0) data sets are those from the ESSENCE
survey (Wood-Vasey et al., 2007; Narayan et al., in prep.; ∼200 spectroscopically confirmed Type Ia SNe) and the CFHT
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Fig. 5. Luminosity distance vs. redshift for our fiducial cosmological model (solid curves), superposed on supernova measurements from the Union2
compilation (Amanullah et al., 2010). The lower panel shows residuals from the fiducial model prediction for the SN data, with open circles marking
medians of the data in∆z = 0.2 bins and broken curves showing the CMB-normalized variant models described in Table 1. Note that these distances are
in h−1 Gpc units.

Supernova Legacy Survey (SNLS; Astier et al., 2006; Conley et al., 2011; Sullivan et al., 2011; ∼500 spectroscopically
confirmed Type Ia SNe in the three-year data set SNLS3). At very high redshifts, HST surveys (Riess et al., 2004, 2007; Suzuki
et al., 2012) have yielded ∼25 Type Ia SNe at z > 1.0, which confirm the expectation that the universe was decelerating
at high redshift and limit possible systematic effects from evolution of the supernova population or intergalactic dust
extinction. At intermediate redshifts (0.1 < z < 0.4), the SDSS-II supernova survey (Frieman et al., 2008; Sako et al.,
2008) has discovered andmonitored 500 spectroscopically confirmed Type Ia SNe; only the first-year data set (103 SNe) has
so far been subjected to a full cosmological analysis (Kessler et al., 2009), but Campbell et al. (2013) present cosmological
results from a sample of 752 photometrically classified SDSS-II SNe with spectroscopic host galaxy redshifts, and a joint
analysis of the SNLS and SDSS-II samples is in process (J. Frieman, private communication). Finally, the last five years have
also seen major efforts to expand the sample of local calibrators and improve their measurements, including rest-frame IR
and rest-frame UV photometry (Wood-Vasey et al., 2008; Stritzinger et al., 2011; Contreras et al., 2010; Hicken et al., 2009a).

The greatest cosmological utility from SNe Ia generally comes from the joint use of numerous samples that span a
wide range in redshift. To limit systematic errors introduced by combining disparate SN surveys, it is often valuable to
recompile a sample from these surveys as homogeneously as possible. This involves applying consistent criteria for inclusion
in the sample, light curve fitting with a single algorithm, propagation of errors via covariance matrices, consistent use of
K -corrections, and so forth. While any such ‘‘survey of surveys’’ is not unique and may not be optimal for a specific
application, these compilations are popular because of their ease of use. Recent examples include the ‘‘Gold’’ sample (Riess
et al., 2004, 2007), the ‘‘Union’’ and ‘‘Union2’’ samples (Kowalski et al., 2008; Amanullah et al., 2010), the ‘‘Constitution’’
sample (Hicken et al., 2009a), and the compilation of local, SDSS-II, SNLS3, and HST supernovae analyzed by Conley et al.
(2011).

Fig. 5 plots luminosity distance measurements from the Union2 compilation over the model predictions shown
previously in Fig. 2 (multiplied by 1 + z to convert comoving angular diameter distance to luminosity distance). The data
are in good agreement with the fiducial cosmological model, and the parameter changes in the bottom panel (Ωk = ±0.01,
1+w = ±0.1) are at the border of detectability. (Recall that other parameters are adjusted to reproduce the CMB anisotropy
of the fiducial model; see Table 1.)

Fig. 6 illustrates model constraints from the Union2 supernova data and WMAP7 CMB data, which we have computed
using CosmoMC (Lewis and Bridle, 2002). We use the Union2 covariance matrix that includes correlated systematic error
contributions. Panel (a) shows the (Ωm,ΩΛ) plane assuming w = −1. CMB and SN constraints are highly complementary
in this plane because the former are most sensitive to the total energy density (Ωm + ΩΛ) and the latter to the difference
between the densities of ‘‘attractive’’ matter and ‘‘repulsive’’ dark energy. Together the two data sets yield tight constraints
in this space,Ωm = 0.282±0.037,ΩΛ = 0.723±0.030, consistent with a flat universe. Panel (b) shows the (Ωm, w) plane,
wherewe now assume spatial flatness and a constant value ofw. Here again the SN and CMB data are highly complementary,
yielding a tight combined constraintΩm = 0.270 ± 0.023,w = −1.007 ± 0.081, consistent with a cosmological constant.
Panel (c) shows the (w0.5, wa) plane, where we have adopted the 2-parameter dark energy model of Eq. (24); w0.5 is
the value of w at z = 0.5, which is much better determined than the value of w0 and only weakly correlated with wa.
Here we have assumed spatial flatness and marginalized over uncertainty in Ωm. CMB and SN data provide only weak
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Fig. 6. Constraints fromWMAP7 CMB data, Union2 SN data, and the combination of the two, in (a) the (Ωm,ΩΛ) plane assumingw = −1, (b) the (Ωm, w)

plane assumingΩk = 0, and (c) the (w0.5, wa) plane assumingΩk = 0, where w0.5 is the value of w at z = 0.5. Contours show 68% confidence intervals.
In contrast to panels (a) and (b), the combined contour in (c) is tighter than one would guess from the overlap of the individual contours because the
combined data set breaks degeneracies among other parameters that are marginalized over when inferringw0.5 andwa .

constraints individually in this model space, but the combination still provides a good constraint on w0.5, with the error
on w0.5 = −1.008 ± 0.132 only degraded by ∼50% compared to panel (b). Constraints on wa, on the other hand, are very
weak. The w and w0.5 constraints in panels (b) and (c) would degrade substantially if we allowed non-zero Ωk; with this
level of flexibility, one must bring in additional data to get useful constraints. However, an H0 or BAO constraint at the level
of current measurements is sufficient to remove most of the sensitivity toΩk (Mortonson et al., 2010).

Plots and constraints similar to Figs. 5 and 6 appear in many of the papers cited above. The most up-to-date analysis is
that of Conley et al. (2011), who findw = −0.91+0.16

−0.20(stat)
+0.07
−0.14(sys) for SNe alone, assuming a flat universewith constantw

andmarginalizing overΩm. Combining this measurement with other data sets, Sullivan et al. (2011) findw = −1.016+0.077
−0.079

in combinationwith 7-yearWMAP CMB constraints (similar to the value and error bar quoted above), andw = −1.061+0.069
−0.068

after adding BAO and H0 measurements.
There are several indications that current SN cosmology studies are limited by systematic uncertainties associated with

the linked issues of dust extinction, SN colors, and photometric calibration. In any cosmological analysis, one uses the color
of a supernova relative to a template expectation (derived from a training set) to infer, and correct for, a correlation between
color and apparentmagnitude arising from dust and/or intrinsic color variations. In the analysis ofWood-Vasey et al. (2007),
different priors about host galaxy extinction change the inferred value ofw by amounts comparable to the statistical error.
When the ratio of extinction to reddening is treated as a free parameter in the cosmological fits, the derived values are
typically quite far from those measured for Galactic interstellar dust, e.g., RV ≡ AV/E(B − V ) = 1.5 − 2.5 (Hicken et al.,
2009b; Kessler et al., 2009; Sullivan et al., 2011) instead of the mean RV = 3.1 found in the diffuse interstellar medium of
the Milky Way (Cardelli et al., 1989). This difference could be a reflection of different kinds of dust along the line of sight
to the supernova (e.g., circumstellar dust), but it could also arise from intrinsic color differences among SNe Ia with similar
light curve shapes, which would reduce the inferred RV if they are assumed to arise from reddening. Supporting the latter
idea, the distribution of SN colors shows little dependence on host galaxy properties (Kessler et al., 2009; Sullivan et al.,
2010), while such dependence might be expected if the color distribution is strongly affected by dust. Chotard et al. (2011),
using spectroscopic indicators of luminosity in nearby SNe, infer an extinction lawwith RV = 2.8± 0.3, consistent with the
Galactic value.

One of the main surprises in the first-year analysis of the SDSS-II Supernova Survey (Kessler et al., 2009) was the
realization that the two main algorithms developed by other groups for global fitting of SN light curves and cosmological
parameters – MLCS2k2 (Jha et al., 2007) and SALT2 (Guy et al., 2007) – initially gave statistically inconsistent cosmological
results (w = −0.76 ± 0.07 vs. w = −0.96 ± 0.06, quoting only the statistical errors) when applied to the same data sets,
a discrepancy that persisted even if the SDSS-II data themselves were omitted from the fits. Kessler et al. (2009) traced this
discrepancy to two factors, one related to calibration data and the other to the treatment of SN colors. For the calibration
data, ultraviolet flux measurements in the local sample from the U-band appear inconsistent with those from the g-band at
only moderate redshift and suggest a problemwith the (observed frame) U-band calibration.22 This problem translates into
a difference between fitters because one is trained with U-band data and the other is not. A more subtle difference arises
from the determination of the correction to SN brightness from colormeasurements, specificallywhether the correlation can
be assumed to be independent of redshift and survey and whether changes in color are due solely to extinction. While these
systematic uncertainties will certainly be reduced by largermulti-wavelength data sets and improved analysismethods, the
experience from these recent studies argues strongly for using rest-frame IR photometry in precision cosmological studies
to circumvent uncertainties related to extinction.

22 Conley et al. (2011) provide further evidence for an error in the local U-band calibration, and they omit these data from their cosmological analysis.
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Fig. 7. Peak apparent magnitude of a typical Type Ia supernova as a function of redshift in observed-frame I-band (solid) or J-band (dotted), from Table
7 of Tonry et al. (2003). The z > 1.1 portion of the I-band curve and z < 0.4 portion of the J-band curve rely on extrapolation of the template systems’
spectral energy distributions beyond the observed range. Magnitudes are on the Vega system.

3.3. Observational considerations

There are several steps to a supernova cosmology campaign: discovery, monitoring, spectroscopic confirmation, and
calibration against low redshift samples. In large area surveys, discovery andmonitoring are usually done together, through
repeated imaging of a large field of view inmultiple bands. A variety of image-differencing techniques can be used to identify
SNe (distinguished from other variable objects by their light curves) and measure their magnitudes vs. time. As a rule of
thumb, a minimum rest-frame cadence of one observation per ∼5 days23 is needed to get adequate measurements of light
curve shapes and normalizations, such that statistical errors are dominated by the intrinsic dispersion of SN luminosities
and not by observational errors. The required cadence may be somewhat lower in the rest-frame IR, where the dependence
on light curve shape is weaker, but onemust still have enough data points to determine peak luminosity accurately. At least
two bands are needed to measure SN colors and thereby infer dust extinction, though more are better, and multiple colors
may prove critical to distinguishing different forms of extinction (interstellar, circumstellar, and intergalactic) from each
other and from intrinsic color differences.

Fig. 7, based on Table 7 of Tonry et al. (2003), plots the peak apparentmagnitude of a typical Type Ia supernova vs. redshift
in observed frame I and J band. As a rough rule of thumb, a surveywith periodic and uniform exposures targeting supernovae
at a given redshift should measure to a signal-to-noise ratio of ∼15 at peak, so that it still usefully measures the SN before
or after peak when it is 1.5 magnitudes fainter. This depth ensures that incompleteness for supernovae below the median
luminosity does not bias the results and that photometric errors do not dominate over intrinsic scatter in cosmological
analysis. Ground-based surveys designed to observe SNe Ia to z < 0.8 will typically find ∼10 SNe Ia per square degree per
month.

After discovering SNe, one must determine their type and redshift. The most reliable approach is to obtain their spectra
to cross-correlate their spectral features with known templates. Spectral resolution R ∼ 250 and S/N ∼ 5 per resolution
element are adequate for these purposes, but even at this level spectroscopic follow-up is typically the most resource
intensive step of a supernova campaign. For the same telescope aperture, an epoch of spectroscopy requires an order
of magnitude more time than an epoch of photometry, and one generally loses the parallelism afforded by photometric
monitoring with a large camera (which has several SNe per field of view at a given time). Spectroscopic follow-up of the
SNLS3 sample, for example, used more than 1600 h of 8–10 m telescope time (M. Sullivan, private communication).

In principle, photometric redshifts can be used in place of spectroscopic redshifts, and if they are accurate to a fractional
distance error∆D/D < 10% they lead to onlymoderate degradation in statistical accuracy. However, given the degeneracies
among redshift, SN color, and dust extinction, and the increased ambition of SN surveys to control systematics, we are
skeptical that cosmological SN surveys can achieve the desired accuracy using only broad-band photometricmonitoring and
spectroscopic follow-up of a small fraction of the sample. An intermediate approach thatmayworkwould be tomeasure the
cross-correlation of a supernova SEDwith the SN Ia spectral features using custom-designed optical filters that are matched
to SN spectroscopic features at different redshifts (Scolnic et al., 2009). It also may be possible to make use of subsamples
of SNe found in passive (non-star-forming) galaxies, which should host only Type Ia SNe and which allow more accurate
photometric redshifts from host galaxies. For type identification, one can also check for a second peak in the rest frame
infrared light curve, a morphological feature that is unique to SNe Ia.

23 Observed-frame time intervals are larger by 1 + z.
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Another intermediate approach is to obtain eventual spectroscopic observations of all host galaxies in the cosmological
analysis sample but not attempt real-time spectroscopy of all candidate Type Ia supernovae. This scheme still yields precise
redshifts, and it provides host galaxy data that can be used tomeasure and remove correlations between supernova and host
galaxy properties (see Section 3.4). While it still requires one faint-object spectrum per supernova, the scheduling demands
are much more flexible. One can also apply data quality and other selection cuts before the spectroscopic observations to
reduce the total number of spectra required, though one must be careful not to let biases creep in at this stage. With good
photometric monitoring and with subsequent spectroscopic redshifts of apparent hosts, Kessler et al. (2010) find that they
can identify Type Ia SNe with 70% to 90% confidence from the LCS and color alone, and Bernstein et al. (2012) forecast Type
Ia purity as high as 98% for DES-like photometric observations. A moderate amount of real-time supernova spectroscopy
may then suffice to assess efficiency and biases. The recent SDSS-II analysis by Campbell et al. (2013) puts this approach into
practice, illustrating its promise and its challenges.

Given the photometric and spectroscopic measurements for a selected set of supernovae, one must fit the data set
to infer cosmological parameters. Many of the algorithms in current use are descendants of the Multicolor Light Curve
Shape (MLCS; Riess et al., 1996) or Spectral Adaptive Light Curve Template (SALT; Guy et al., 2005) methods. In current
implementations, MLCS fitters are ‘‘trained’’ on local supernovae to determine the relationships between multi-band
light curve shapes and peak absolute magnitudes, and these relationships are applied to distant supernovae to measure
DL(z). SALT-style fitters (which include the SiFTO (Conley et al., 2008) algorithm applied to SNLS3) instead apply a global,
simultaneous fit of parameters describing cosmology and the relationship between supernova light curves and absolute
magnitude. Of greater practical import, however, is the different treatment of supernova colors in the two methods. MLCS
fitters attribute color differences at fixed peak luminosity to dust reddening, and they adopt an explicit prior for the
distribution of reddening values. SALT fitters allow scatter in intrinsic colors at fixed peak luminosity and do not attempt
to separate intrinsic variations from dust reddening. In reality, there certainly are intrinsic color variations at some level,
but there is also useful information in the fact that dust reddening exists and has specific properties, in particular that
it cannot be negative. An optimal approach should therefore allow for both effects. Bayesian fitting methods (e.g., Mandel
et al., 2009, 2011;March et al., 2011) can in principle incorporate awide variety of parameterized relationships with explicit
priors, including dependences on redshift or host galaxy parameters, which are then marginalized over in cosmological fits.
At the level of precision of current SN samples, the differences in fitting methods do matter (e.g., Kessler et al., 2009), so
this remains an area of active research. Fortunately, the growing samples of well observed local and distant SNe provide
increasingly powerful data to guide this development.

The detailed spectra of SNe could potentially improve their luminosity and/or color calibration relative to photometric
light curves alone. For example Foley et al. (2011) find a correlation between intrinsic color and the ejecta velocity inferred
from the line width (see also Blondin et al., 2012; Foley, 2012). However, Silverman et al. (2012), considering a variety of
spectral indicators, find only marginal evidence for a diagnostic that improves Hubble residuals, and Walker et al. (2011)
find similarly ambiguous results. Given the substantial observing time required to measure good spectroscopic diagnostics
for high redshift SNe, modest reductions in scatter are unlikely to win over simply observing more supernovae. However,
spectral diagnostics merit continued investigation to see whether matching spectral properties between high and low
redshift SNe can reduce susceptibility to evolutionary systematics.

3.4. Systematic uncertainties and strategies for amelioration

The largest current supernova surveys have ∼500 Type Ia supernovae. Future surveys hope to discover and monitor
thousands of supernovae, sufficient to yield statistical errors of 0.01 mag or smaller in narrow redshift bins with ∆z ∼

0.1–0.2. Realizing the statistical power of such surveys will require eliminating or limiting several distinct sources of
systematic error. These include flux calibration errors across a wide range of flux and redshift, the systematics associated
with SN colors and dust extinction, the possible evolution of the supernova population with redshift, and gravitational
lensing. We discuss each of these issues in turn.24

The leverage of SN studies comes from comparing SNe over a wide span of redshift and thus an enormous range of
flux; for example, the typical peak I-band magnitude at z = 0.8 is 23 mag while the median peak B-band magnitude
of the local calibrator sample used in many analyses is 17 mag, implying a ratio of 250 in flux. Maintaining sub-percent
accuracy in relative flux calibration over such a rangewould be challenging under any circumstances, and for SN surveys it is
complicated by the fact that (a) local and distant SNe are usually observed with different telescopes equipped with different
filters, (b) a given observed-frame filter intercepts a different portion of the SN rest-frame spectral energy distribution (SED)
at each redshift, and (c) supernova SEDs are very different from those of the standard stars used for flux calibration in
most of astronomy. Conley et al. (2011) identify calibration as the dominant systematic in SNLS3, the only systematic in
their analysis that makes a major contribution to their total error budget. Flux calibration uncertainties can be reduced by
carefully designing photometric SN surveyswith specialized hardware (e.g., tunable lasers, NIST photodiodes and calibration
sources; Stubbs and Tonry, 2006) tomeasure the system throughput in situ andby choosing filter systems that provide a good

24 For detailed discussions of systematics in the context of specific contemporary data sets, see, e.g., Wood-Vasey et al. (2007); Kessler et al. (2010)
and Conley et al. (2011).
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match in rest-frame SED sampling between low- andhigh-redshift samples. TheACCESS rocket program should improve flux
calibrationwith sub-orbital flights that compare NIST photodiodes to calibration stars (Kaiser et al., 2010). ‘‘Self-calibration’’
that marginalizes over flux-calibration uncertainty can further reduce this systematic error (Kim and Miquel, 2006), but at
the price of increasing statistical error.

As already noted in Section 3.2, uncertainties in dust extinction, linked to uncertainties in intrinsic SN colors and in
photometric calibration, are already important systematics in SN studies of cosmic acceleration. These uncertainties can
likely be reduced with detailed, well calibrated, multi-wavelength observations of large numbers of low redshift SNe, which
can characterize the separate dependence of SN colors on luminosity, light curve shape, and time since explosion, and
provide constraints on dust extinction laws that are isolated fromcosmological inferences. The final analyses of data from the
SDSS-II supernova survey (Frieman et al., 2008) and the low-redshift portion of the Carnegie Supernova Project (Hamuy et al.,
2006) should allow advances on this front. Analysis techniques that eliminate themost highly reddened SNe can also reduce
extinction systematics if they can be applied in a way that does not introduce selection biases; as an extreme example, one
can employ only SNe in early-type galactic hosts, which have low amounts of interstellar dust. Perhaps the most important
strategy for reducing extinction systematics is to work as far as possible to red/near-IR rest-frame wavelengths, where
extinction is low compared to blue/visual wavelengths.Most ground-based SN cosmology studies to datework at rest-frame
B (0.4–0.5µm) or V (0.5–0.6µm)wavelengths, which transform to observed-frame I-band (0.7–0.9µm) at z ≈ 0.5–0.8. The
high-redshift portion of the Carnegie Supernova Project (Freedman et al., 2009) produced a SNHubble diagram to z ≈ 0.7 in
rest-frame I-band, where systematic errors due to uncertainty in the reddening laws are roughly half that at V -band. Mandel
et al. (2009) find that the intrinsic dispersion of peak luminosities is only ∼0.11 mag at rest-frame H-band (1.5–1.7 µm),
where systematics due to extinction are only ∼1/6 that at V -band. However, obtaining rest-frame near-IR photometry for
high-redshift supernovae requires space observations due to the high backgrounds seen from the ground (Section 3.5).

Locally observed SNe span a wide range in the age, metallicity, and current star formation rate (SFR) of their host stellar
populations. This breadth of host conditions provides a laboratory for the investigation of the evolution of SNe Ia as distance
indicators. Recently such an effect was found and calibrated in the form of a modest, 0.03 mag dex−1 relationship between
host galaxy stellar mass (a likely tracer of metallicity) and calibrated SN Ia magnitude (Kelly et al., 2010; Lampeitl et al.,
2010; Sullivan et al., 2010; see Hicken et al. (2009b) for an analysis with host morphology and Hayden et al. (2013) for
an analysis that incorporates star formation rate in an attempt to isolate metallicity). At the level of precision enabled by
current surveys, it is necessary to correct for this effect (Conley et al., 2011), but the uncertainty in the correction is not a
limiting systematic.

Constraining evolutionary effects to a tenth of σint (∼0.01 mag) or better is a challenge. For example, if there are two
populations of Type Ia progenitors (e.g., single and double degenerates) that have slightly shifted luminosity–LCS relations,
then evolution in the population ratio could produce evolution in the mean relation at a fraction of σint (see, e.g., Sarkar
et al., 2008). A strategy for limiting evolution systematics is to break the SN sample into subsets defined by spectral features,
light curve shapes, or host properties and check for consistency of cosmological results, since evolution is unlikely to affect
all populations in the same way. A complementary path (Riess and Livio, 2006) is to observe supernovae at z > 2, where
predicted fluxes relative to low-redshift samples are generally insensitive to dark energy parameters; discrepancies would
be an indication of evolutionary effects or of unconventional dark energymodels that could be tested by other probes. Finally,
we note that any evolutionary correctionsmay beweaker in the near-IR, both because of the narrower range of luminosities
and because of the weaker sensitivity to metal lines (which may itself contribute to the narrower luminosity range) and
reddening laws.

Gravitational lensing by intervening large scale structure introduces scatter in observed SN fluxes, at a level of ∼0.05
magnitudes for sources at z = 1 (e.g., Frieman, 1996; Wang, 1999). Flux conservation guarantees that the mean flux of the
SN population does not change. However, some care is required to ensure that selection effects or weighting schemes do
not bias results at the 0.01-mag level, especially as the magnification distribution is highly non-Gaussian (see, e.g., Sarkar
et al., 2008a). Since lensing effects are small and calculable, they are unlikely to become a limiting systematic even for the
most ambitious future surveys. Analyses that average fluxes of SNe in redshift bins or model the full flux distribution can
minimize lensing systematics and may reduce some other systematic effects as well (Wang, 2000; Amendola et al., 2010;
Wang et al., 2012).

If rest-frame near-IR photometry can be obtained for large supernova samples, we anticipate that flux calibration
uncertainties will ultimately set the floor on systematics. A detailed recent investigation of theHST WFC3–IR system implies
a limiting calibration uncertainty of ∼0.02 mag (Riess, 2012). A future mission designed with IR supernova photometry as
a key goal could presumably do better, so 0.005–0.02 mag seems a plausible bracket for calibration-limited systematics.

3.5. Space vs. ground

Space observations offer several key advantages for precision supernova cosmology, a point emphasized early on by the
SNAP (SuperNova Acceleration Probe) collaboration (e.g., Aldering et al., 2002). The first is the sharp and stable point-spread
function (PSF) achievable from space,which greatly increases sensitivity to faint, variable point sources and the precision and
accuracy of point-source photometry, especially in the presence of a host galaxy background. Adaptive optics can produce a
sharp PSF from the ground, but it is not likely to deliver photometry with 1% precision and an image stable enough to allow
host subtraction at random positions on the sky away from bright guide stars. The second advantage is the greater accuracy
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and precision of flux calibration achievable from space, with no time-variable atmospheric conditions and (for a well chosen
orbit) minimal variations in the telescope environment. The third is the vastly lower sky background in the near-IR. Typical
sky backgrounds for ground-based observations are 16, 14, and 13 mag arcsec−2 at J , H , and K (Vega), while in space they
are 6 to 8 mags fainter, limited by the zodiacal light.

It is the last of these advantages that we regard as critical—no improvements in ground-based technology or observing
strategywill ever remove the IR sky background.Wehave already emphasized the key role of rest-framenear-IR photometry
in reducing systematics associated with dust extinction, and possibly with evolution. Obtaining rest-frame J-band (1.2 µm)
photometry of SNe at z = 0.8 requires imaging at λ = 2 µm. A 1.3-m space telescope – the (unobstructed) aperture
proposed for WFIRST – can make a S/N=15 measurement at the peak magnitude of a median z = 0.8 supernova at this
wavelength in about 20 min. A ground-based 4-m telescope with 0.8’’ seeing and a typical IR sky background would require
multiple nights, and even then the accuracy of photometry would be compromised by variable sky background.

A space-based near-IR telescope also offers the option of discovering andmonitoring SNe at substantially higher redshifts,
while working at shorter rest-frame wavelengths. However, for the reasons discussed quantitatively in Section 4 and
Section 8, we think that the most important role for a mission likeWFIRST in SN studies is to provide the highest achievable
accuracy and precision at z ≤ 0.8, as part of a combined dark energy program that also includes ambitious BAO and weak
lensing surveys. At low redshifts, SNe can achieve a measurement precision unmatched by other methods, but at higher
redshifts they cannot match the dark energy sensitivity of large BAO surveys unless they can push statistical and systematic
errors well below 0.01 mag (see Table 6 in Section 8.2). The value of a high-z SN program depends critically on whether the
systematics at high-z are uncorrelated with those at low-z, in which case the distant SNe provide new information even
after the low-z program has saturated its systematics limit, or whether the limiting systematics are correlated across the
full redshift range. We discuss this point more quantitatively in Section 8.3.1 below. For a given observing allocation, the
maximally efficient use of WFIRST SN time may be in a combined ground-space program, with ground-based photometry
(in rest-frame optical) providing high-cadence light-curve sampling and color measurements and lower cadence space
observations providing the critical, well calibrated, dust-insensitive photometry used for the SN distance determinations.

3.6. Prospects

The next year or two should see the publication of final results from the SDSS-II supernova survey, the five-year SNLS
sample, and ESSENCE. The measurements from these large surveys should substantially reduce the statistical errors in the
SN Hubble diagram. Perhaps more importantly, they should yield significant reductions of systematic errors because of
their high sampling cadence, wide wavelength range, and greater attention to photometric calibration. Large campaigns to
discover and monitor local supernovae (e.g., PTF, LOSS, CSP, SN Factory) should also yield better understanding of potential
systematics, as well as better local calibration. A new HST survey by the Higher-z Team using WFC3 will find more high
redshift (z > 1.5) SNe, which provide additional leverage on the Hubble diagram and constraints on evolution.

The largest new projects on the near horizon are the SN surveys of PS1 (now underway) and DES (beginning observations
in late 2012). Bernstein et al. (2012) discuss the DES strategy in some detail and forecast discovery of up to 4000 Type Ia
SNe out to redshift z = 1.2. For spectroscopic follow-up, DES aims to observe ∼10%–20% of their high-z supernovae but
obtain nearly complete spectroscopic host galaxy redshifts for their cosmological sample. A similarly detailed description of
the PS1 strategy is not yet available, but in principle PS1 should also be able to discover thousands of Type Ia SNe. In purely
statistical terms, a sample of 2000 SNe out to z = 0.8 can achieve errors of 0.007 mag in redshift bins of∆z = 0.2, so both
PS1 and DES will almost certainly be limited by systematic rather than statistical errors.

Looking further ahead, LSST is expected to yield samples of tens or even hundreds of thousands of SNe (LSST Science
Collaboration, 2009). These photometric samples will certainly swamp spectroscopic follow-up capabilities, and the LSST
surveys will again be systematics limited, though the enormous sample size (allowing cross-checks and focus on the most
favorable subsamples) and the high-cadence monitoring with high photometric precision across the optical spectrum
should reduce systematics below those of PS1 and DES. Finally, if WFIRST is completed and launched as per the Astro2010
recommendations, the access to the rest-frame near-IR should yield an unmatchable advantage for SN cosmology and the
best achievable results in SN dark energy studies.

4. Baryon acoustic oscillations

4.1. General principles

The baryon acoustic oscillationmethod relies on the imprint left by soundwaves in the early universe to provide a feature
of known size in the late-time clustering of matter and galaxies. By measuring this acoustic scale at a variety of redshifts,
one can infer DA(z) and H(z). The acoustic length scale can be computed as the comoving distance that the sound waves
could travel from the Big Bang until recombination at z = z∗ (see descriptions by Hu and Sugiyama, 1996; Eisenstein and
Hu, 1998). This is a simple integral

rs =

 t∗

0

cs(t)
a(t)

dt =


∞

z∗

cs(z)
H(z)

dz. (52)



116 D.H. Weinberg et al. / Physics Reports 530 (2013) 87–255

The behavior of H(z) at z > z∗ depends on the ratio of the matter density to radiation density; in simple cosmologies, the
radiation sector (photons and neutrinos) is fixed and the ratio is proportional to Ωmh2. The sound speed depends on the
ratio of radiation pressure to the energy density of the baryon–photon fluid, determined by the baryon-to-photon ratio,
which is proportional toΩbh2. Both the matter-to-radiation ratio and the baryon-to-photon ratio are well measured by the
relative heights of the acoustic peaks in the CMB anisotropy power spectrum. Analyses of WMAP data in the usual ΛCDM
cosmological models gives a 1.1% inference of the acoustic scale rs (Jarosik et al., 2011); Planck is expected to shrink this
error bar to 0.25%. Note that the acoustic scale is determined in absolute units, Mpc not h−1 Mpc.

The acoustic scale is large, about 150Mpc comoving, because primordial soundwaves travel at relativistic speed, maxing
out at c/

√
3 at early timeswhen the baryon density is negligible compared to radiation density. The large size of the acoustic

scale protects this clustering feature from non-linear structure formation in the low-redshift universe. As discussed below,
both cosmological perturbation theory and numerical simulations argue that the scale of the acoustic feature is stable to
better than 1% accuracy, making it an excellent standard ruler. The BAO method measures the cosmic distance scale using
this ruler. Separations along the line of sight correspond to differences in redshift that depend on the Hubble parameter
H(z)rs. Separations transverse to the line of sight correspond to differences in angle that depend on the angular diameter
distance DA(z)/rs.

The challenge of the BAO method is primarily statistical: because this is a weak signal at a large scale, one needs to map
enormous volumes of the universe to detect the BAO and obtain a precise distance measurement. Galaxy redshift surveys
allow us to make these large three-dimensional maps of the universe, although we will discuss other methods as well.

At low redshift (z . 0.5), the BAO method strongly complements SN measurements because BAO provides an absolute
distance scale and a strong connection to the CMBacoustic peaks from z = 1000,while SN allowmore precisemeasurements
of relative distances and thus offer a more fine-grained view of the distance–redshift relation. At higher redshift (z & 0.5),
the large cosmic volume and the direct access toH(z)make the BAOmethod an exceptionally powerful probe of dark energy
and cosmic geometry.

4.2. The current state of play

The acoustic oscillation phenomenon was identified as a potential effect in the CMB sky in the late 1960s. This was soon
extended to the late-timematter power spectrumby (Sakharov, 1966; Peebles and Yu, 1970; Sunyaev and Zel’dovich, 1970);
of course, theywere considering pure baryon cosmologies, where the effect is very strong. The introduction of adiabatic cold
dark matter in the mid-1980’s made the predicted late-time acoustic peak very weak (particularly in theΩm = 1 scenario),
and the acoustic oscillations were primarily studied in the CMB context (Bond and Efstathiou, 1984, 1987; Jungman et al.,
1996; Hu and Sugiyama, 1996; Hu and White, 1996; Hu et al., 1997). A resurgence of interest in the dynamics of the early
universe post-COBE led to the identification of the acoustic scale as a standard ruler, first in the CMB and then in the matter
power spectrum (Kamionkowski et al., 1994; Jungman et al., 1996;Hu and Sugiyama, 1996; Eisenstein andHu, 1998;Meiksin
et al., 1999). Fisher matrix forecasts for the combination of CMB and large-scale structure identified the acoustic oscillations
as a critical feature in breaking the distance scale degeneracy between Ωm and H0 in CMB model fits (Tegmark, 1997;
Goldberg and Strauss, 1998; Efstathiou and Bond, 1999; Eisenstein et al., 1998). In particular, the SDSS Luminous Red Galaxy
(LRG) sample (Eisenstein et al., 2001)25 was proposed to maximize leverage on the large-scale power spectrum, with BAO
as one application.

After the discovery of cosmic acceleration with Type Ia SNe, the focus on the distance scale as a function of redshift
became intense. In 2003, several papers appeared discussing the acoustic scale as a standard ruler for the measurement of
dark energy in higher redshift galaxy surveys (Eisenstein, 2002; Blake and Glazebrook, 2003; Hu and Haiman, 2003; Linder,
2003; Seo and Eisenstein, 2003). Compelling detections in 2005 intensified these plans (Cole et al., 2005; Eisenstein et al.,
2005), with several observational surveys proposed and numerous theoretical investigations. The rapid development of the
theory led to the DETF featuring BAO as one of the four leading methods for the study of dark energy (Albrecht et al., 2006).

Early results from the 2dF Galaxy Redshift Survey (2dFGRS) (Percival et al., 2001; Efstathiou et al., 2002; Percival et al.,
2002) and the Abell/ACO cluster sample (Miller et al., 1999) gave hints of the acoustic feature in the power spectrum.
However, the first convincing detections of BAO came in 2005 from the SDSS Data Release 3 (DR3) and final 2dFGRS
samples (Eisenstein et al., 2005; Cole et al., 2005). Eisenstein et al. (2005) measured the large-scale correlation function of
SDSS LRGs in the redshift range 0.16 < z < 0.47 over 3816 square degrees, finding the acoustic peakwith 3.4 σ significance.
As they only measured the monopole of the correlation function, Eisenstein et al. (2005) quoted the distance measurement
as a blend of the line-of-sight and transverse distance scale

DV (z) = [DA(z)]2/3


cz
H(z)

1/3
. (53)

Comparing the size of the acoustic scale in SDSS to that in the CMB sky from WMAP, they inferred the value of DV (0.35)
divided by the distance to z = 1089 with a 1σ uncertainty of 3.7%. (Recall that we use DA to denote the comoving angular

25 Alex Szalay and Jim Annis deserve particular credit for leading this development in the early years.
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Fig. 8. (Left) The current BAO distance–redshift relation. Individualmeasurements are of the quantityDV (z)/rs . We havemultiplied by the rs of the fiducial
ΛCDMmodel to yield a distance; the sound horizon is predicted to 1.1% fromWMAP7. In increasing redshift, data points are from the 6dFGS (Beutler et al.,
2011), SDSS-II (Padmanabhan et al., 2012; Xu et al., 2012), BOSS (Anderson et al., 2012), and WiggleZ (Blake et al., 2011d). The WiggleZ paper also quotes
correlated results frommultiple redshift bins, but we have chosen to plot only a single combined data point for each survey so that themeasurement errors
are uncorrelated. As described in the text, for a fixed choice of w(z) and Ωk , CMB data allows a prediction for DV (z)/rs . The flat ΛCDM prediction from
the best-fit WMAP7 model is the black line, and the gray region shows the 1σ WMAP7 range. This is not a fit to the data, but rather the vanilla ΛCDM
prediction from the CMB data. (Right) The same plot after dividing by the ΛCDM prediction from WMAP7. We have added an open point that shows the
measurement from Percival et al. (2010) using a combination of SDSS-II DR7 LRG and Main sample galaxies and 2dFGRS galaxies; the Padmanabhan et al.
(2012) measurement from the DR7 LRG data alone has a smaller error bar because of the increased precision afforded by reconstruction. Also shown are
the four alternative models from Table 1; here we have suppressed the 1σ range that would surround each line owing to uncertainties in the matter and
baryon density. Also shown is the directH0 value fromRiess et al. (2011); herewe have assumed perfect knowledge of the sound horizon, which suppresses
a 1.1% uncertainty term between this value and the BAO points. These figures are adapted from the corresponding figures in Anderson et al. (2012). We
have omitted the very recent BAO detections from the BOSS Lyα forest at z ≈ 2.3 (Busca et al., 2012; Slosar et al., 2013), which are also consistent with
ΛCDM predictions.

diameter distance.) Cole et al. (2005) measured the power spectrum of 2dFGRS galaxies in the redshift range 0 < z < 0.3
over 1,800 square degrees. The cosmological fitting analysis detected a baryon fraction ofΩb/Ωm = 0.185±0.046, the non-
zero result indicating a detection of the BAO. The distance precision of the result was quoted as a 4.1% measurement of H0.

Since these first detections, the clustering of successively larger SDSS spectroscopic samples has been analyzed by several
groups using different methods. Tegmark et al. (2006) analyzed the DR4 LRG and main galaxy samples with a quadratic
estimator for the power spectrum and redshift-space distortion. Hütsi (2006) analyzed themonopole of the power spectrum
of the LRGdata setwith the Feldmanet al. (1994) (FKP)method. Percival et al. (2007) applied the FKPmethod to the combined
DR5 LRG and main galaxy samples, along with the 2dFGRS sample, to measure the acoustic scale at two different redshifts
(z = 0.20 and 0.35). Percival et al. (2010) extended this analysis to the final SDSS-II sample (DR7), obtaining an aggregate
distance precision of 2.7% to z = 0.275. Kazin et al. (2010b) analyzed the DR7 LRG sample with the correlation function
(as did Martínez et al., 2009), achieving consistent results. A recent reanalysis of the DR7 sample by Padmanabhan et al.
(2012) and Xu et al. (2012) improved the distance precision to 1.9% by applying the reconstruction technique described in
Section 4.3.3 below.

New BAO detections have recently been made in three other samples. Beutler et al. (2011) report a 2.4σ detection from
the 6-degree Field Galaxy Survey (6dFGS), which covered 17,000 deg2 of sky, obtaining a 4.5% distance measurement to
z = 0.1. Stepping beyond z = 0.5, the WiggleZ survey (Blake et al., 2011b,d) has used the AAOmega instrument at the
Anglo-Australian Telescope to target emission-line galaxies at 0.4 < z < 1.0. The analysis of the final data set of∼800 deg2
yields BAO detections in three overlapping redshift slices centered on z = 0.44, 0.60, and 0.73, with an aggregate precision
of 3.8%. Anderson et al. (2012) report the first BAO measurements from the SDSS-III BOSS survey (discussed further below),
obtaining a 1.7% distance precision to a sample with effective redshift z = 0.57.

Combining SDSS-II, WiggleZ, and 6dFGS, Blake et al. (2011d) achieve a 5σ detection of the acoustic peak; Anderson et al.
(2012) combine the reconstructed SDSS-II measurement and BOSS measurement to get a 6.7σ detection. Both studies find
good agreement between the BAO and SN distance–redshift relations. These BAO measurements are displayed in Fig. 8,
which shows DV as a function of redshift. We can compare this DV (z) to the relation predicted by WMAP7 under particular
assumptions about dark energy and spatial curvature. A given value of Ωmh2 and Ωbh2 yields a sound horizon rs. For any
fixed choice ofΩk andw(z), the angular acoustic scale in the CMB then breaks theΩm–H0 degeneracy, which then specifies
DV (z). The left panel shows theWMAP7 prediction for flatΛCDM, with the gray bandmarginalizing over 1σ errors inΩmh2

andΩbh2, while the right panel divides by this prediction. The BAO measurements are all in good agreement with the +1σ
edge of the WMAP7 band; in other words, they are consistent with WMAP7 andΛCDM but favor a value ofΩmh2

≈ 0.139
vs. 0.134. Intriguingly, the BAO data pull in the opposite direction from the H0 = 73.8 ± 2.4 km s−1 Mpc−1 measurement
of Riess et al. (2011). The discrepancy is only marginally significant at present – less than 2σ assuming ΛCDM – but it
illustrates how BAO and direct H0 measurements can combine to reveal additional physics beyond that inΛCDM.
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Fig. 9. Constraints from combinations of current BAO data (the four points in the left hand panel of Fig. 8), WMAP7 CMB data, and Union2 SN data in (a)
the (Ωm,ΩΛ) plane assuming w = −1, (b) the (Ωm, w) plane assumingΩk = 0, and (c) the (w0.5, wa) plane assumingΩk = 0, where w0.5 is the value
of w at z = 0.5. Contours show 68% confidence intervals. We omit the CMB+BAO+SN combination from panel (a) because it is nearly identical to the
CMB+BAO combination.

Curves in the right panel show how the comparison to the data would vary with non-zero spatial curvature orw ≠ −1,
using theCMB-normalizedmodels introduced in Section 2.4. One can see that small changes, particularly in spatial curvature,
make detectable differences in the prediction, so that comparison of the data to the prediction allows one to measurew(z)
andΩk. Comparing variations in spatial curvature to variations of constantw, one can see that variations in spatial curvature
produce large offsets but relatively small slopes. SN determinations of relative distances can only measure slopes on this
graph,whereas absolute distancemeasurements such as BAO canmeasure the offset. This illustrateswhy, in fits to thew–Ωk
model, the CMB+SN combination tends tomeasurew better while the CMB+BAO combination tends tomeasureΩk better.

Combining theWiggleZ, SDSS+2dFGRS (Percival et al., 2010), and 6dFGS BAOmeasurementswithWMAP7 and theUnion-
2 SN compilation, Blake et al. (2011d) inferΩm = 0.289±0.015,H0 = 68.7±1.9 km s−1 Mpc−1,ΩK = −0.004±0.006, and
w = −1.03±0.08 (wherew is assumed to be constantwith redshift). Anderson et al. (2012) obtain similar constraintswhen
substituting the BOSS and reconstructed SDSS-II BAO measurements and the SNLS3 SN compilation:Ωm = 0.276 ± 0.013,
H0 = 69.6 ± 1.7 km s−1 Mpc−1, ΩK = −0.008 ± 0.005, and w = −1.09 ± 0.08. One can think of these inferences
approximately as CMB acoustic peak heights measuring Ωmh2, the BAO standard ruler then splitting Ωm and H0, the CMB
angular acoustic scale measuringΩK , and the SNemeasuringw. Fig. 9 displays our own constraints derived from these data
with CosmoMC (Lewis and Bridle, 2002), with the same parameter space used for the SN and CMB constraints in Fig. 6.While
Fig. 6 includes contours for SN alone, it makes little sense to consider BAO constraints independent of CMB data because
the latter are needed to calibrate the BAO ruler. We therefore show contours for CMB, CMB+BAO, and CMB+BAO+SN.
Consistent with our earlier discussion, CMB+BAO provides much tighter constraints onΩk andΩm in the w = −1 model
than CMB+SN (compare the left panels of Figs. 6 and 9), but CMB+SN provides better constraints onw (middle panels). For
a w0–wa model with Ωk = 0 (right panel), the three data sets together yield a good measurement of w(z = 0.5) but still
only loose constraints onwa.

Indications of the acoustic feature have also been found in a sample of higher redshift LRG with photometric redshifts
from the SDSS (Padmanabhan et al., 2007; Blake et al., 2007; Crocce et al., 2011; Sawangwit et al., 2011). These analyses
produced a 6.5% measurement of the angular diameter distance to z = 0.5. An analysis of the maxBCG cluster catalog
by Hütsi (2010) also yields a 2–2.5 σ detection.

Other analyses have focused on the anisotropic BAO signal, with the intent of separating DA(z) and H(z). Okumura et al.
(2008) performed a correlation function analysis of the LRG sample from SDSS DR3, achieving aweak indication of the radial
BAO. Gaztañaga et al. (2009) analyzed the correlations of the SDSS LRG sample, considering only pairs very close to the line
of sight. They claimed a detection of the BAO, therebymeasuring H(z); however, the proposed acoustic peak is much higher
amplitude than the predicted one, and Kazin et al. (2010a) argue that it is likely to be noise (see Cabré and Gaztañaga,
2011 for a response to this criticism). Chuang andWang (2012) analyzed the full SDSS DR7 LRG sample with an anisotropic
correlation function, finding separate constraints on DA and H at z = 0.35.

The next generation of the SDSS large-scale structure survey is BOSS, the BaryonOscillation Spectroscopic Survey of SDSS-
III. BOSS is observing 1.5 million luminous galaxies (mostly LRGs) out to z = 0.7 over 10,000 square degrees (Eisenstein
et al., 2011; Dawson et al., 2013), with a selection that triples the number density of LRGs at z < 0.4 relative to SDSS-
II and extends to a new redshift range with a dense sample at 0.5 < z < 0.7. The increased sampling should facilitate
accurate density-field reconstruction (Section 4.3.3) to boost the BAO performance. BOSS is also surveying the 2 < z < 3
universe using a grid of quasar sightlines to provide a 3-dimensional view of the Lyα forest, with the goal of detecting BAO
in the large-scale clustering of neutral hydrogen at z ∼ 2.5. This method was proposed byWhite (2003) and Mcdonald and
Eisenstein (2007). The clustering of Lyα forest flux along single lines of sight is well established as a probe of large-scale
structure (see Section 7.6 for a discussion of the underlying theory), and by using cross-correlations amongmultiple lines of
sight one can probe 3-dimensional structure. Observationally this method is attractive because quasars are very luminous



D.H. Weinberg et al. / Physics Reports 530 (2013) 87–255 119

and because each quasar provides ∼50 measurements of the large-scale density field along its line of sight. Since the BAO
peak has an intrinsic rms width of ∼8h−1 Mpc, one need only survey the Lyα forest at modest resolution (a few hundred) to
retain full BAO information. Furthermore, one does not need high signal-to-noise ratio spectra, as one gets little gain from
photon errors smaller than the intrinsic variation in the small-scale forest. BOSS aims to measure 160,000 spectra of z > 2
quasars over 10,000 deg2. Using the first third of this data set, Busca et al. (2012) and Slosar et al. (2013) report the first BAO
detections in the Lyα forest, and the first detections at any z > 1, with precision (2%–3% on an isotropic dilation factor) that
is roughly in line with theoretical expectations.

In summary, the BAO feature has been found in eight different samples – 2dFGRS, SDSS LRG, SDSSMain, 6dFGS, WiggleZ,
SDSS photometric, BOSS galaxies, and the BOSS Lyα forest – with analyses from several independent research teams and
with a variety of methods. The best precision is now slightly below 2%, with excellent agreement with theΛCDMmodel.

4.3. Theory of BAO

While the theory of supernova explosions is complicated, the use of Type Ia SNe as distance indicators rests on empirically
determined correlations that are largely independent of that theory. With BAO, on the other hand, we are using a standard
ruler whose length, imprint on the clustering of observable tracers, and even very existence are derived from theory. We
therefore review both the long-established linear theory of BAO and more recent work on non-linear evolution and galaxy
bias, and we discuss the implications of this work for analysis of BAO data sets.

4.3.1. Linear theory
Prior to redshifts around 1000, the universe is hot and dense enough that the primordial gas is ionized. The free electrons

in this plasma provide enough cross-section to the cosmic microwave background photons via Thomson scattering to
produce a mean free time well less than the Hubble time. The result is a close coupling between the electrons, nuclei
(baryons), and photons for sufficiently long wavelength perturbations in the early universe. The radiation pressure of
the photons is large compared to the gravitational forces in the perturbations, with the result that perturbations in the
baryon–photon fluid oscillate as sound waves (Peebles and Yu, 1970; Sunyaev and Zel’dovich, 1970). Diffusion of photons
relative to baryons damps these oscillations on comoving scales smaller than ∼8h−1 Mpc, the phenomenon known as Silk
damping (Silk, 1968).

After recombination, the mean free time of the photons in the neutral cosmic gas is long compared to the Hubble time.
The photons decouple from the perturbations in the baryons and soon become smoothly distributed. The perturbations in
the baryons are now subject to gravitational instability, just like the dark matter perturbations.

As with normal sound waves, one can usefully view the BAO phenomenon from different linear basis sets. We first
consider the response to a density perturbation at a particular initial location, as illustrated in Fig. 10; see Eisenstein
et al. (2007b) and Eisenstein and Bennett (2008) for further description of this view. Primordial perturbations of the
adiabatic form predicted by standard inflation models consist of equal fractional density contrasts in all species. The dark
matter perturbation grows in place, slowly at first in the radiation dominated epoch, then faster as the universe becomes
matter dominated. The baryon–photon perturbation, on the other hand, travels away from its origin as a sound wave. At
recombination, the baryon part of the wave is left in a spherical shell centered on the original perturbation. Both the dark
matter at the center and the baryons on the shell seed gravitational instability, which grows to form the halos in which
galaxies form.We therefore expect the distribution of separations of pairs of galaxies (i.e., the two-point correlation function
generated by such perturbations) to show a small enhancement at the radius of the shell, with galaxy concentrations in the
central dark matter clumps and in the shells induced by the baryons.

One can equallywell view the BAO effect as a standingwave in Fourier space; see Hu and Sugiyama (1996) and Eisenstein
andHu (1998) for this explanation. In Fourier space, the single acoustic scale gives rise to a harmonic sequence of oscillations
in the power spectrum. This is easy to understand physically. The power spectrum encodes the response of the universe to
a plane wave perturbation. Each crest in the initial wave produces a planar sound wave that travels a distance equal to the
acoustic scale. If the wave deposits the baryon perturbation on another crest of the dark matter perturbation, then one gets
constructive interference; if the sound wave ends in a dark matter trough, one gets destructive interference. The result is a
harmonic relation between the wavelength of the perturbation and the acoustic scale.

Mathematically, this correspondence can be seen by considering that the correlation function and power spectrum are
Fourier transform pairs. The Fourier transform of a delta function is a sinusoid, and the smearing of a delta function simply
provides a damping envelope to that sinusoid. In the case of the BAO, this smearing is largely due to Silk damping in the
early universe and to non-linear structure formation at late times. Both cause the higher harmonics in the power spectrum
to be reduced in amplitude or washed out.

While it is secondary to our pedagogical thread,we endwith some additional discussion of Fig. 10 and the evolution of the
initial point-like density perturbation. First, because the perturbation is in the growing mode, only the density perturbation
is localized. The velocity perturbation away from the initial density perturbation has zero divergence but is non-zero; hence
it scales as r−2 at large radius. As the baryon–photon and neutrino pulses expand, the gravity interior to the shell is weaker
than it would have been. This causes the velocity perturbation interior to grow less quickly, creating a non-zero divergence
away from the origin, which is why the CDM perturbation grows at non-zero radius. The size of this effect depends on
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Fig. 10. The generation of the acoustic peak illustrated via the linear-theory response to an initially point-like overdensity at the origin; this figure is
reproduced from Eisenstein et al. (2007b). Each panel shows the radial perturbed mass profile in each of the four species: dark matter (black), baryons
(blue), photons (red), and neutrinos (green). The redshift and time after the Big Bang are given in each panel. All perturbations are fractional for that
species. We have multiplied the radial density profile of the perturbation by the square of the radius in order to yield the mass profile. In detail, we begin
with a compact but smooth profile at the origin, which is why the mass profiles go to zero there. As we are using linear theory, the normalization of the
amplitude of the perturbation (and thus the absolute scale of the y-axis) is arbitrary. (a) Near the initial time, the photons and baryons are tightly coupled
in a spherical traveling wave. (b) The outward-going wave of baryons and relativistic species increases the perturbation of the cold dark matter, similar to
raising a wake. (c) At recombination, the photons decouple from the baryons. (d) With recombination complete, the CDM perturbation is near the origin,
while the baryonic perturbation is in a shell of 150 Mpc. (e) With pressure forces now small, baryons and dark matter are attracted to these overdensities
by gravitational instability. (f) Becausemost of the growth is drawn from the homogeneous bulk, the baryon fraction converges toward the cosmic mean at
late times. Galaxy formation is favored near the origin and at a radius of 150Mpc. These figures were made by suitable transforms of the transfer functions
created by CMBfast (Seljak and Zaldarriaga, 1996; Zaldarriaga and Seljak, 2000).

the radiation to matter density; this transformation of the CDM perturbation is the famous k−2 tail of the CDM transfer
function (Peebles, 1982). The non-zero velocity perturbation is also the reason why the neutrino perturbation does not
remain as a sharp peak. Finally, we note that this description of the behavior is the Green’s function of the system. CMB
Boltzmann codes typically compute the evolution of individual Fourier standing waves; these are simply combined here to
generate the response to a point perturbation rather than a single standing wave.

4.3.2. Non-linear evolution and galaxy clustering bias
The clustering of matter and galaxies undergoes substantial changes at low redshift beyond the growth described by

linear perturbation theory. Small-scale structure grows non-linearly, peculiar velocities behave differently from their linear
prediction, and galaxies trace the dark matter in a complicated manner. We should worry that these effects might modify
the location of the BAO feature relative to the prediction of linear theory, thus distorting our standard ruler (Meiksin et al.,
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Fig. 11. The effects of non-linear clustering on the BAO. (Left) Redshift-spacematter correlation function at four different redshifts from the simulations of
Seo and Eisenstein (2005). (Right) Real-spacematter power spectra at four different redshifts from the simulations of Seo et al. (2008), divided by a smooth
power spectrum so as to reveal the acoustic oscillations. The input linear theory is shown by the dashed line. The effects of non-linear structure formation
broaden the acoustic peak in the correlation function. In the power spectrum, this corresponds to a damping of the higher harmonics. Importantly, the
boost of broad-band power at late times visible in the power spectrum plot corresponds largely to correlations at scales much smaller than the acoustic
peak.

1999; Seo and Eisenstein, 2005; Angulo et al., 2005; Springel et al., 2005; Jeong and Komatsu, 2006; Huff et al., 2007; Angulo
et al., 2008; Wagner et al., 2008).

Fortunately, the large scale of the acoustic peak insulates it from most of non-linear structure formation (Eisenstein
et al., 2007b). A typical pair of dark matter particles changes its comoving separation by 10h−1 Mpc (rms value) between
high redshift and z = 0. These motions broaden the acoustic peak, but the rms displacement is only mildly larger than
the 8h−1 Mpc scale set by Silk damping. The apparent displacement along the line of sight is larger in redshift space,
because the peculiar velocity is well correlated with the displacement. Fig. 11 shows the correlation function and power
spectrum from N-body simulations; one can see that the acoustic peak in the correlation function becomes broader at low
redshift. The corresponding effect in the power spectrum is the decreased amplitude of the wiggles at higher wavenumber.
Roughly speaking, one can think of the width of the evolved ξ(r) peak as the quadrature sum of the initial width and
the rms pairwise displacement ΣNL (see Orban and Weinberg, 2011, who examine idealized BAO models numerically and
analytically). Equivalently, the oscillations in P(k) are damped by a factor exp(−k2Σ2

NL). As discussed in Section 4.3.4, the
broadening of the BAO feature does not significantly bias the acoustic scale measurement provided one is using a suitable
template-fitting method. However, it does degrade the precision of the measurement for a given survey volume, as it is
harder to centroid a broader feature.

To change the acoustic scale itself, one needs instead to move pairs systematically closer or systematically further away.
This is a much weaker effect than the rms motion of particles, as it depends on the density variations in 150 Mpc spheres,
which are percent level. Moreover, pairs of overdensities fall toward each other and pairs of underdensities fall away from
each other, and both situations count equally toward a two-point statistic, causing a partial cancellation.

Padmanabhan and White (2009) compute the change in the acoustic peak location at second-order in gravitational
perturbation theory. Crocce and Scoccimarro (2008) have done similar calculations in renormalized perturbation theory.
Both calculations reveal a second-order term of the form dξ/dr , which corresponds to moving the acoustic peak.
Padmanabhan and White (2009) compute the size of this effect to be around 0.25% at z = 0.

N-body simulations reveal a similar story. Seo et al. (2010b) measure the shift in the acoustic scale in a large volume of
simulations and detect a shift from α = 1 of 0.3% ± 0.015% at z = 0.0, with a scaling in redshift proportional to the square
of the linear growth function as expected for a second order effect (left panel of Fig. 12). Padmanabhan and White (2009)
validate their analytic calculation with a similar set of simulations.

Redshift-space distortions have further effects on the BAO signal beyond the extra broadening from the large-scale
peculiar velocity. Small-scale velocities, e.g., the Finger of God effect, blurs the measurement of clustering along the line of
sight, thereby broadening the acoustic peak.Moreover, the peculiar velocities create anisotropy in the broadband clustering,
which must be carefully accounted for when extracting the acoustic scale (Section 4.3.4).

Linear bias, with galaxy density contrast δg = bδm, changes the amplitude of ξ(r) or P(k) but not the shape. However, any
realistic bias relationmust be at least somewhat non-linear,which alters the relativeweighting of overdense andunderdense
regions and should shift the acoustic scale at second order. Early work attempted to measure this shift in simulations (Seo
and Eisenstein, 2003; Angulo et al., 2008), but the volume of the simulations was insufficient to get a conclusive detection
of the effect. More recently, Padmanabhan and White (2009) explored galaxy bias as the ratio of the second-order to first-
order bias term, finding shifts of a few tenths of a percent for reasonable bias cases. Mehta et al. (2011) treated the problem
numerically with halo occupation distributions, finding shifts of 0.1% to 0.8% at z = 1 depending on the strength of the
bias (right panel of Fig. 12). For halo-based models or other prescriptions that tie galaxy bias to the local density field, it
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Fig. 12. The shifts of the acoustic scale in cosmological N-body simulations. (Left) Shifts of the acoustic scale in the redshift-space matter power spectrum
vs. redshift from Seo et al. (2010b). The open symbols show the acoustic scale shifts prior to reconstruction; the dashed lines show a scaling of the square of
the linear growth function. The solid symbols show the shifts after reconstruction is applied. The error bars are derived from the variance among simulations.
(Right) Shifts of the acoustic scale in the redshift-space power spectrum of mock galaxy distributions at z = 1 fromMehta et al. (2011). The acoustic scale
shift from the matter distribution in the same boxes has been subtracted so as to decrease sample variance. Galaxies are placed via HOD prescriptions;
increasing mass thresholds leads to lower number densities and higher clustering bias. The open symbols show the shifts prior to reconstruction; the solid
symbols, after reconstruction. The errors in the right panel are larger due to the smaller simulated volume and the lower number density of tracers. In all
cases of both panels, reconstruction decreases the errors on the acoustic scale and reduces the shift to be consistent with zero. The left panel is based on
63 simulations, each using 5763 particles in a 2h−1 Gpc cube. The right panel is based on 40 simulations, each with 10243 particles in a 1h−1 Gpc cube.

therefore appears that bias-induced shifts are small, and corrections of modest fractional accuracy (e.g., to 20% of the shift
itself) will suffice to make them negligible. The relevant bias parameters should be tightly constrained by smaller scale
clustering measurements and higher order statistics, enabling cross-checks of the model used for correction.

Non-local bias models that tie galaxy formation efficiency directly to the environment on much larger scales (e.g., Babul
andWhite, 1991; Bower et al., 1993) could perhaps induce larger shifts of the acoustic scale. However, such models require
fairly extreme physical effects, and they can be readily diagnosed via their impact on clustering at scales below the BAO scale
(Narayanan et al., 2000). A survey capable of measuring the acoustic scale to the sub-percent statistical level will provide in
its millions of galaxies extensive opportunities to constrain even very general bias models accurately enough to predict the
acoustic scale shift to within 10%–20% of its value, sufficient to bring the systematic error below the statistical error.

4.3.3. Reconstruction
By broadening and shifting the BAO feature in ξ(r), non-linear gravitational evolution degrades BAO precision and

introduces a possible systematic. Is it possible to remove these effects by ‘‘running gravity backwards’’ to reconstruct the
linear density field? The Zel’dovich (1970) approximation – in which particles follow straight line trajectories in comoving
coordinates at the rate predicted by linear perturbation theory – captures important aspects of non-linear evolution on
large scales (e.g., Weinberg and Gunn, 1990; Melott et al., 1994). Eisenstein et al. (2007a) show that a simple reconstruction
scheme based on applying the (reversed) Zel’dovich approximation to the smoothed non-linear density field is remarkably
successful at recovering BAO information, effectively shifting the low redshift curves in Fig. 11 back toward the high redshift
curves. Fig. 13, from Padmanabhan et al. (2012), illustrates how reconstruction works in the idealized case of an initial
perturbation that exactly mimics the ‘‘acoustic ring’’ pattern.

Seo and Eisenstein (2007) and Seo et al. (2010b) investigate the effects of reconstruction in more detail, showing that
it noticeably improves the scatter and decreases the shift of the recovered acoustic scale from the matter density field of
N-body simulations. The latest simulations demonstrate that the non-linear shift of the scale has been removed to 0.02%
or better (see Fig. 12, left). Moreover, comparing the initial conditions to final conditions on a mode-by-mode basis shows
that the linear density field has been recovered to roughly double the pre-reconstruction wavenumber. Padmanabhan et al.
(2009) analyze the method analytically, revealing the improvement while also noting that the recovered density field is not
exactly the linear one.

Mehta et al. (2011) extend this analysis to HOD-basedmock galaxy catalogs in simulations. They consider a range of HOD
prescriptions and find that the reconstruction of the linear density field is not degraded by this form of galaxy bias and that
the shift of the acoustic scale after reconstruction still vanishes, this time to 0.1% precision (Fig. 12, right). This success is not
surprising: the halo field traces thematter field fairly accurately on the scales required for reconstruction, so one is correctly
estimating and removing the large scale displacements. Non-linear galaxy bias still alters the weighting of convergent and
divergent flows, but if the flows are being mostly removed, then it does not matter how they are weighted.

Reconstruction is thus a powerful tool: one is achieving better statistical precision for a given survey, typically by a factor
of 1.5 to 2, equivalent to a factor of 2–4 increase in survey size. Meanwhile, one is mitigating the primary systematic error
from non-linear clustering and galaxy bias. As an added benefit, one can use the estimate of the large scale displacements
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Fig. 13. A pedagogical illustration of how reconstruction can improve themeasurement of the acoustic scale; this figure is from Padmanabhan et al. (2012).
Each panel shows a thin slice of a cosmological density field. (Top Left) At early times, the density is nearly constant. We mark a set of points at the origin
in blue and a ring of points at 150 Mpc in heavy black. We measure the distances between the black points and the centroid of the blue point; the rms of
these distances is represented by the Gaussian in the inset. (Top Right) At later times, structure has formed (in this calculation, simply by the Zel’dovich
approximation), and the points have moved. The red circle shows the initial radius of the ring, centered on the current centroid of the blue points. The fact
that the black points no longer fall on the red ring indicates that the acoustic peak has been broadened. The inset shows that the new rms of the radial
distance (solid line) is larger than the original (dashed line). (Bottom Left) Arrows show the Zel’dovich displacements responsible for the structure that
has formed. The idea of reconstruction is to estimate these displacements and move the particles back. (Bottom Right) We illustrate this by smoothing the
density field by a 10h−1 Mpc filter and moving the particles back. Because the displacement field is imperfectly estimated, small-scale structure remains.
But the black points now fall closer to the red ring, so that the rms of the radial distance is close to the initial (inset). The actual reconstruction algorithm
of Padmanabhan et al. (2012) is more complex, but this example shows the basic opportunity. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 14. The ability of reconstruction to correct redshift-space distortion of the BAO feature; figure panels taken from Padmanabhan et al. (2012). The left
panel shows contours of the galaxy correlation function from N-body mock catalogs, multiplied by r2 to enhance the large scale features, as a function of
transverse (r⊥) and line-of-sight (r∥) separation. Apart from statistical fluctuations, this correlation function is isotropic. The middle panel shows contours
of the galaxy correlation function in redshift-space. Peculiar velocities induce anisotropy, breaking the BAO ring into two arcs. The right panel shows
the redshift-space correlation function of the galaxy distribution after reconstruction, including peculiar velocity correction at the level of the Zel’dovich
approximation, which largely restores the isotropy of the BAO ring.

to remove large-scale redshift-space distortions,26 as illustrated in Fig. 14, which decreases that degradation of the BAO
accuracy and also pushes most of the BAO signal into the monopole and quadrupole components of ξ(s) or P(k). Without
reconstruction, the redshift-space distortions contain significant terms in the hexadecapole and beyond, and the quadrupo-
lar squashing of the Alcock–Paczynski effect couples to the quadrupole redshift-space distortion to produce BAO signal in
the hexadecapole. To the extent that one is recovering the linear density field, one can also hope that the large-scale density

26 The line-of-sight peculiar velocity is, in the Zel’dovich approximation, equal to f (z)H(z) times the line-of-sight component of the 3-d displacement.



124 D.H. Weinberg et al. / Physics Reports 530 (2013) 87–255

field is more Gaussian, which is a major simplification for computing likelihood functions. However, this last property has
not been extensively tested.

The first applications of BAO reconstruction to observational data appear in Padmanabhan et al. (2012) and Anderson
et al. (2012). For the SDSS-II (DR7) LRG sample, reconstruction shrinks the BAO distance error from 3.5% to 1.9%, equivalent
to a factor of three increase in survey volume. It also improves the agreement between the observed and predicted shapes
of the correlation function in the BAO regime, thereby increasing the statistical significance of the BAO detection from 3.3σ
to 4.2σ . For the BOSS (DR9) sample, reconstruction produces little improvement in the BAO measurement, although this is
consistent with the variation among DR9 mock catalogs (see discussion by Anderson et al., 2012).

There is an extensive literature on reconstruction methods for large-scale structure (e.g., Peebles, 1989; Weinberg,
1992; Nusser and Dekel, 1992; Croft and Gaztanaga, 1997; Narayanan and Weinberg, 1998; Mohayaee et al., 2006). Even
simple methods appear adequate for BAO recovery, but better reconstruction is valuable for other applications of large-
scale structure (Reid et al., 2010). Since BAO surveys are typically sparse, an important area for continuing research is the
performance of methods in the presence of both galaxy bias and significant shot noise. The effectiveness of reconstruction
as a function of sampling density might have important implications for survey design, favoring different choices compared
to the statistical considerations discussed in Section 4.4 below.

4.3.4. Fitting to data
It is worth stressing that ‘‘the acoustic scale’’ is only an approximate description of amore complicated physical situation.

For high precision work, we cannot separate the concept of the acoustic scale from the context of a Boltzmann code
prediction for the matter power spectrum and CMB anisotropy power spectrum. The sound horizon defined by Eq. (52)
does not correspond to the exact maximum of the acoustic peak in the correlation function, nor do the harmonics in the
matter power spectrum have an identical scale to those in the CMB anisotropy spectrum. The differences arise from effects
such as the fact that photons decouple from the baryons earlier than the baryons decouple from the photons, that the post-
recombination matter growing mode is largely set by the velocity perturbation at recombination rather than the density
perturbation, and that Silk damping alters the effective redshift of recombination as a function ofwavenumber. These effects
are accurately calculated in the Boltzmann codes, resulting in precise predictions for the matter and CMB power spectra.

When onewants to extract the acoustic scale (i.e., tomeasure distance using the BAO standard ruler) fromameasurement
of the two-point clustering, the appropriate thing to do is to use the predicted clustering for the cosmology one is testing
as a template. The optimal plan is then to fit that template to the data over a range of scales using the correct covariance
matrix or likelihood. Some early works instead used non-parametric models for the acoustic peak, such as a Gaussian in
configuration space or a damped sinusoid in Fourier space (Blake and Glazebrook, 2003), or simply identified the maximum
of the correlation function (Guzik et al., 2007; Smith et al., 2008).We believe that, because the acoustic scale is predicted only
in the context of an early universe model with parameters taken from fits to CMB data, there is no extra value in avoiding
the linear-theory model predictions.

Having said that, one doeswant tomodify the template to allow for effects of non-linear structure formation and perhaps
to marginalize over broad-band terms that might enter from scale-dependent clustering bias or velocity bias or from errors
in the calibration of one’s survey. This procedure has been carried out by several different authors. For example, Seo and
Eisenstein (2007) and Seo et al. (2010b) fit the measured power spectrum to the form

Pmeasure(k) = B(k)Pm(k/α)+ A(k), (54)

where A(k) and B(k) are smooth functions with parameters to be fit. Pm(k) is the linear theory model with the acoustic
oscillations additionally damped by large-scale structure,

Pm(k) = exp(−k2ΣNL)(Plin(k)− Pnw(k))+ Pnw(k), (55)

where ΣNL is a constant fit from simulations. Pnw is the no-wiggle power spectrum from Eisenstein and Hu (1998), hand-
crafted to edit out the acoustic oscillations. Plin is the exact linear theory power spectrum; note that Pm(k) goes to this exact
linear theory result in the limit of negligible damping (ΣNL → 0), so the approximate form of Pnw(k) is acceptable. The
broadband termsA(k) andB(k)will correct for non-linear power, the shot noise, scale-dependent bias, and any imperfections
in the survey. The primary goal for the fit is tomeasure α, a factor that dilates the scale of the predicted clustering (and of the
BAO feature in particular) relative to the observed clustering. A value α = 1 indicates agreement with the acoustic scale of
the original model. A value α ≠ 1 indicates that the acoustic scale of the linear-theorymodel is incorrect or that the distance
scale assumed in measuring the galaxy clustering was wrong. Simple alterations of this prescription can be made for fitting
the correlation function ormixed-spaceω or wavelet statistics (Xu et al., 2010; Arnalte-Mur et al., 2012). This approach thus
allows one to fit for the scale of a standard ruler without having to recompute a full predicted power spectrum at every point
in parameter space.

This fitting procedure is only compelling to the extent that the recovered value of α is stable (to within the statistical
errors) as one varies the prescription for the marginalization of parameters in A(k) and B(k). Too little freedom and onemay
be biased by broadband tilts andmodulations that one has not modeled properly; toomuch freedom and one will fit out the
acoustic signature and reduce the constraining power of the data. Fortunately, the separation between the acoustic scale
and the typical non-linear scale and Silk damping scale is large, i.e., the acoustic peak in the correlation function is narrow.
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This gives considerable freedom to fit away broadband nuisance terms while not impacting the acoustic peak. Seo et al.
(2010b) show stable results for α for various choices, e.g., polynomials of different order. Similarly, α is robust to changes
in the choice ofΣNL, so one is not sensitive to how one estimates that parameter in simulations or mock catalogs.

An equivalent method has been used by Percival et al. (2007, 2010), and in related works. Here, one fits a spline to the
measured power spectrum and divides by that spline. One does similarly for the template Pm(k) and fits that to the residual
spectrum of the data. This is equivalent to taking B(k) to be a spline and setting A(k) = 0. Clearly the performance depends
on the number of spline points, but there is a broad stable region.

The definition of the acoustic scale as the distance a primordial sound wave could travel before recombination (Eq. (52))
is borne out in such fits. If one fits with the power spectrum from a cosmology that is moderately wrong, then one infers a
different α, but this change in α is proportional to the ratio of the acoustic scales, as defined by the sound horizon integral
for each cosmology. The stability of this scaling appears to be much better than the statistical errors implied by the surveys
that are defining the range of interesting cosmological parameter space (Seo et al., 2010b). In other words, one can use the
acoustic scale integral to adjust distance scale measurements of DA/rs and Hrs between different cosmologies within the
domain of interest.

Extending these approaches to the anisotropic case so as to extract DA and H separately is more complicated and has not
been fully developed. The primary obstacle is to account for the anisotropic distortions from peculiar velocities. Examples
of fit methodologies include Okumura et al. (2008), Padmanabhan and White (2009), Shoji et al. (2009), Chuang and Wang
(2012), Kazin et al. (2012), and Xu et al. (2013). The ability of reconstruction to mitigate peculiar velocity distortion (Fig. 14)
may be a significant asset for disentangling DA and H .

With better modeling of non-linear structure and galaxy clustering bias, one could of course extract additional
cosmological information from the two-point clustering of galaxies. In particular, one can measure the distance scale
from the curvature (i.e., non-power-law form) of the spherically-averaged power spectrum or correlation function. This
physical scale arises from the size of the horizon atmatter–radiation equality, parameterized asΩmh2 in typical cosmologies.
However, this curvature is a much broader feature and thus provides less leverage on distance. Most important, the width
of the feature is comparable to the scale itself, implying that one must control all extra broad-band sources of power and
scale-dependent galaxy biases in order to extract accurate distance information. This ismuchmore challenging than the BAO
application, but it is an important frontier of the field of large-scale structure. In particular, the application of this approach
to the quadrupole distortion known as the Alcock–Paczynski effect will be discussed in Section 7.3.

4.4. Observational considerations

4.4.1. Statistical errors
The primary challenge of the BAOmethod is that very large samples of galaxies (or other tracers) are required to detect the

acoustic oscillations and hencemeasure a distance. Like detecting an emission line in a galaxy spectrum in order tomeasure
a redshift, one must have high enough signal-to-noise to detect the BAO peak or one gets no useful distance information at
all. The minimum useful survey volumes are of order 1h−3 Gpc3, which yield a distance precision of about 5%.

The two components of the statistical error are sample variance and shot noise (Kaiser, 1986a). A given survey volume
contains only a certain number of Fourier modes; in the periodic box approximation dNmodes/dk = 4πk2V/[(2π)32], where
the final factor of 2 in the denominator accounts for the fact that the density field is real. In a Gaussian random field, the
real and imaginary parts of each mode are independent with an intrinsic variance of P(k)/2. In addition, each mode is
imperfectly measured due to shot noise; when treated in the Gaussian approximation (ignoring the 4-point contributions
from the Poisson distribution), this raises the variance on the square of the complex norm to [P(k)+ 1/n]2, where n is the
number density of tracers. The result is that the fractional error bar on themeasurement of eachmode isσP/P = (nP+1)/nP .
When combining information from modes, we should sum the inverse variances, which are

P2

σ 2
P

=


nP

nP + 1

2

. (56)

We see that for n ≫ 1/P(k)we get unit information from eachmode but that the information drops rapidly for n < 1/P(k).
We note that the relevant P is the redshift-space power spectrum; this can be substantially larger than the real-space power
spectrum for nearly radial large-scale modes, thereby decreasing the shot noise impact on BAO estimation of the Hubble
parameter.

Themode-counting argument above neglects boundary effects, effectively assuming that the survey volume is reasonably
contiguous with a high filling factor on scales of 150 Mpc. In real space, we can express this as the requirement that the
number of pairs of survey galaxies at 150 Mpc separation not be significantly diminished compared to the case of a filled
periodic box. In Fourier space, we must ensure that the survey window function not create aliasing between modes in the
crests and troughs of the acoustic oscillations.

Converting a power spectrum forecast into constraints on the distance scale requires marginalizing over other cosmo-
logical parameters. This has been done with Fisher matrix analyses (Seo and Eisenstein, 2003; Seo and Eisenstein, 2007) or
withMonte Carlo approaches (Blake and Glazebrook, 2003; Glazebrook and Blake, 2005; Blake et al., 2006). Several analyses
have focused on the anisotropy of the power spectrum in order to measure H(z) and DA(z) separately.
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Table 2
BAO forecasts for a full-sky BAO survey.

zmin zmax Volume % Err DA(z) % Err H(z) ΩΛ(z) S/N σw

0.00 0.15 0.33 2.8 4.9 0.708 7.3 0.64
0.15 0.32 2.62 0.95 1.7 0.616 18.2 0.088
0.32 0.51 7.89 0.53 0.96 0.515 27.0 0.036
0.51 0.73 16.5 0.35 0.63 0.413 32.9 0.021
0.73 0.99 28.4 0.26 0.46 0.318 34.9 0.015
0.99 1.28 42.9 0.21 0.36 0.236 33.3 0.013
1.28 1.62 59.0 0.17 0.28 0.170 30.2 0.012
1.62 2.00 75.8 0.14 0.24 0.119 25.2 0.013
2.00 2.44 92.3 0.13 0.21 0.082 20.0 0.014
2.44 2.95 108 0.12 0.18 0.056 15.5 0.016
2.95 3.53 121 0.11 0.17 0.038 11.4 0.020
3.53 4.20 133 0.10 0.15 0.025 8.3 0.025
4.20 4.96 142 0.10 0.15 0.017 5.8 0.033

These forecasts assume a full-sky survey, use nP = 2 at k = 0.2h Mpc−1 , and assume reconstruction
improvements in the non-linear damping by a factor of 2. Statistical errors scale as f −1/2

sky . The first and
second columns give the inner and outer edges of redshift bins; the bins have equal width in ln(1 + z).
The third column gives the comoving volume of the bin in h−3 Gpc3 , assuming Ωm = 0.25. The fourth and
fifth columns give 1σ fractional errors (in percent) in DA(z) and H(z), the angular diameter distance to and
Hubble parameter at the bin center; note that the errors on these two quantities are 40% correlated. We
assume the sound horizon is known. The sixth column givesΩΛ(z), i.e., the ratio of the dark energy density
to the critical density at that redshift in a Λ-model. Column 7 givesΩΛ(z)H/2σH , which is the significance
at which one would detect the cosmological constant at redshift z using only the H(z) BAO constraint and
assuming perfect knowledge of the matter density and curvature (a good approximation, but not exact).
Column 8 shows the error on a constant value of w that would be obtained by comparing the BAO H(z)
measurement for this one redshift to the value of ρDE at z = 0, assuming the latter is known perfectly.

Seo and Eisenstein (2007) constructed a fast approximation to the full Fisher matrix calculation using an idealized
treatment of the acoustic oscillation, including non-linear structure formation and redshift-space distortions. This method
allows forecasts for H and DA precision as a function of survey redshift, number density, and volume (see their Eq. (26)).
Tests with simulations (Seo et al., 2010b; Mehta et al., 2011) have shown this forecast to be accurate to within 10%–20%,
with a small trend toward over-optimism at nP < 1. Whether this trend is intrinsic to shot noise or to the fact that the low
number density models used more massive mass thresholds for halo bias is not clear at present.

Table 2 presents a summary of cosmic variance limited BAO performance. This is a tabulation of the Seo and Eisenstein
(2007) forecasts for a full-sky survey, using even binning in ln(1 + z). We assume a shot noise level of nP = 2 at
k = 0.2h Mpc−1 (see Section 4.4.3), and that reconstruction has decreased the non-linear displacements by a factor of
two in length scale, i.e., reducing the quantity ΣNL in Eq. (55) by a factor of two below its full non-linear value at each
redshift. Fig. 15, discussed further in the next section, presents graphical summaries of themain features of Table 2. One can
see that the precision available in DA(z) and H(z) is excellent: of order 0.2% per redshift bin at high redshift. At low redshift,
the precision is worse because there is far less cosmic volume. Of course, these statistical errors scale as f −1/2

sky , where fsky is
the fraction of sky surveyed.

4.4.2. From BAO to dark energy
We will explore how these performance estimates map to dark energy parameter forecasts in Section 8, but here

we describe some simplified treatments in order to build intuition. Beginning at low redshift, if we consider that CMB
anisotropies give precise values forΩmh2 and the acoustic scale rs, then a BAO detection near z = 0 is measuring a standard
ruler and hence H0 (Eisenstein and Hu, 1998). Combining that with Ωmh2 yields Ωm. No BAO measurement can be strictly
at z = 0, but the inference ofΩm and H0 depends only on the distance scale between z = 0 and the survey redshift. Even at
z = 0.35, this brings in only amild dependence onw andΩk (Eisenstein et al., 2005). Hence, low-redshift BAOmeasurements
offer a strong measurement ofΩm. DeterminingΩm breaks a key degeneracy for the SNmeasurements betweenΩm andw.

Moving to higher redshift (z & 1), we next consider the evolution of the density of dark energy using only the H(z)
information from BAO (right panel of Fig. 15). If we know the matter density and spatial curvature perfectly, then the
Friedmann equation directly relates the measurement of H(z) to the density of dark energy at that redshift. Considering the
null hypothesis of the cosmological constant, we would achieve a detection of the dark energy density with a significance
ofΩΛH/2σ(H), where σ(H) is the error on H(z). We next want to consider the variation in the dark energy density. Taking
an example in which one assumes the z = 0 value is known perfectly, we can translate the error at a given redshift to the
error on the exponent of a power-law variation, which can in turn be rewritten as an error on a constant w (Eq. (23)). Of
course, a full analysis must include the uncertainties on the matter density, spatial curvature, and z = 0 value ofΩΛ.

Despite the simplifications, Table 2 and Fig. 15 offer some important results for building intuition. We find that the
sensitivity of BAO H(z) to dark energy has a broad maximum over the range 0.6 < z < 3.5. This plateau arises because
the declining dynamical importance of dark energy is compensated by the increasing statistical precision afforded by larger
comoving volume. For w = −1, dark energy is only 10% of the total density at z = 2, but a cosmic-variance-limited BAO
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Fig. 15. Illustrative BAO forecasts for a full-sky survey, from Table 2. All errors scale as f −1/2
sky ; note that y-axes are inverted so that smaller errors appear

higher on the plot. (Left) The fractional error on DA(z) and H(z) in logarithmic redshift bins, as open and solid points, respectively. Note that performance
of order 0.2% per bin is possible at high redshift. Here we assume the sound horizon is known. (Right) Illustration of the dark energy leverage available
simply from the H(z) information in the previous panel. Assuming perfect knowledge of the matter density (i.e., ΩmH2

0 ) and curvature, measurement of
H(z) determines the dark energy density. The solid black points show the resulting fractional errors on the dark energy density as a function of redshift,
assuming that the value is close to the cosmological constant. Errors of order 5%, i.e., a 20-σ detection of dark energy, are possible at 0.5 < z < 2, even
if the dark energy density is simply constant. The evolution of dark energy can be expressed by comparing the density at high redshift to that at z = 0,
assuming the latter is known. The open red points give the error on a power-law evolution in 1 + z, expressed as the error on a constantw. One sees that
there is a broadmaximum in performance extending out to z ≈ 3. Of course, wemust measure the dark energy density at z = 0; the blue arrow shows the
fractional error on that density that would result from a 1% measurement of H0 (which one might get from direct measures or from a combination of BAO
and supernovae), assuming perfect knowledge of the matter density. That the blue arrow is comparable to or above the solid points indicates that we can
reasonably expect to be limited by our higher redshift data. The open points are optimistic in that we have assumed perfect knowledge of various inputs;
the intended lesson is that the large volume and larger redshift lever arm at higher redshift can offset the fact that the dark energy makes up a smaller
fraction of the cosmic total. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

measurement can detect that density at 20-σ significance. The large lever arm to z = 0 translates this into a 1.3% constraint
on a constant w model. Of course, if w > −1, then ρDE is higher at high redshift than it is for a cosmological constant,
increasing the statistical significance with which BAO can detect it.

Meanwhile, the transverse acoustic scale at z ∼ 2 and above can be compared to the angular acoustic scale in the CMB to
give a combination constraint on early dark energy and the curvature of the universe (Mcdonald and Eisenstein, 2007). This
has considerable value in breaking degeneracies between curvature and dark energy parameters at lower redshift, and it
should be considered an important consistency check for theΛCDM interpretation of the CMB. A clear detection of non-zero
curvature would have major implications for inflation, and perhaps for quantum cosmology theories (Gott, 1982; Guth and
Nomura, 2012; Kleban and Schillo, 2012). If the Alcock–Paczynskimethod can be applied at smaller scales to obtain a precise
determination of H(z)DA(z), then the BAO values of DA(z) can also be used to improve H(z) determinations and thus the
dark energy density constraints (see Section 7.3).

4.4.3. Sampling density
The acoustic oscillations in the power spectrum are primarily at wavenumbers 0.1–0.2h Mpc−1, so we want to design

surveys with nP(k = 0.2hMpc−1) & 1. Furthermore, if one wins sample size proportionally to survey time, then nP(k) = 1
is the optimal balance of survey depth to sample volume at a given wavenumber (Kaiser, 1986a). One should beware that
this assumption rarely holds in surveys withmulti-object instruments: the exposure time is driven by the faintest objects in
the survey, so that brighter galaxies are being overexposed in the chosen observation time. Also, the number density is often
a function of redshift, so one cannot hit the optimal density everywhere in the survey. Finally, onemight care about distance
precision differently at different redshifts because of one’s specific goals for testing dark energy models. See Parkinson et al.
(2007) for a worked example of survey optimization.

For the concordance cosmology, the amplitude of the power spectrum at k = 0.2h Mpc−1 is about 2700σ 2
8,gh

−3 Mpc3,
where σ 2

8,g is the variance of the fractional overdensity of the chosen tracer at the survey redshift in spheres of 8h−1 Mpc
radius. This implies that we seek number densities around n = (4 × 10−4h3 Mpc−3)/σ 2

8,g . Fortunately, this is well below
the density of L∗ galaxies.

Higher galaxy bias is a good thing for the statistical errors of a BAO survey. The power spectrum amplitude scales as the
square of the bias, so an early-type galaxy is 3–4 times more valuable (in the sense of boosting nP) than a late-type galaxy.
Given that there is no identified risk – higher bias galaxies have larger acoustic scale shifts, but this is correctable (Fig. 12,
right) – it makes sense to use higher bias tracers when possible. However, lower bias tracers can be more effective if one
can acquire their redshifts sufficiently quickly!

The balance of shot noise to sample variance is more complex in the case of surveys with the Lyα forest or HI intensity
mapping. However, the idea is the same: onewants tomake amap inwhich the pixel noise is dominated by sample variance,
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but not by much. The power at k = 0.2h Mpc−1 corresponds roughly to density variance of 8h−1 Mpc spheres. Hence, we
seek to measure the density of individual regions of this size to a precision slightly better than the intrinsic rms for such
volumes for the chosen tracer (i.e., bσ8). If one is measuring too well, one would prefer to do shallower measurements over
a wider region. In the case of the Lyα forest, this criterion concerns both the areal density of the quasar sightlines and the
signal-to-noise ratio of the spectra (Mcdonald and Eisenstein, 2007; Mcquinn and White, 2011).

4.4.4. Spectroscopic vs. photometric redshifts
Photometric redshifts offer a cheap way to measure many galaxy redshifts and hence to measure the BAO (Seo and

Eisenstein, 2003; Glazebrook and Blake, 2005; Dolney et al., 2006; Seo and Eisenstein, 2007). However, the larger errors are
a challenge. For velocity errors larger than 1000 km s−1 one is smearing out the acoustic scale along the line of sight and
failing to measure H(z). Note that this scale is set by the width of the acoustic peak, not by the acoustic scale. One only
retains full information with rms precision below 300 km s−1.

TomeasureDA(z), in principle precisions of σz/(1+z) of 4% are enough.Worse precision causes catastrophic degradation
because the oscillations in angular power at the front and back of the photometric redshift slab fall out of phase. Redshift
precision of 3%–4% yields poor constraints on the BAO per unit volume, with a rule of thumb that one needs ten times more
volume for a photometric redshift survey than a spectroscopic survey (Blake and Bridle, 2005; Seo and Eisenstein, 2007).
Better redshift precision reduces this gap. At z < 0.7, current and ongoing spectroscopic surveys are already covering 1/4 of
the sky, so photometric redshift surveys are only competitive at higher redshifts. Extracting large-scale structure and BAO
from photometric redshift surveys requires very stringent calibration and more extensive modeling than for spectroscopic
surveys. Photometric surveys with many narrow bands offer an intermediate approach between imaging and spectroscopy,
which may be advantageous in some regimes (Benítez et al., 2009).

4.4.5. Tracers of structure
As we have seen, BAO surveys require surveys of very large volumes with modest sampling density. One wants to map a

wide range of redshift so as to measure the history of expansion. The current generation of surveys are mapping of order 1
million galaxies, and approaching the cosmic variance limit at z > 1 requires of order 108 galaxies.

We have a lot of freedom in selecting the objects to trace the density field. Usually, we require isotropy of the selection
but do not require that the selection be unchanging as a function of redshift. One is seeking to minimize the observational
cost for a given well-sampled survey volume. There are many competing considerations (Glazebrook and Blake, 2005).
One desires a tracer with a strong spectroscopic signature to allow a redshift determination to about 300 km s−1 rms as
fast as possible, with few catastrophic redshift errors. One desires a combination of density and clustering bias so that
nP(k = 0.2hMpc−1) & 1. One desires a higher clustering bias, so that the required number density is lower; this allows one
to use brighter objects and reduce exposure time. For targeted surveys, one desires that the tracer can be readily selected,
so that one does not waste resources on undesired objects. In more detail, one desires photometric redshifts good enough
that one can shape the n(z) profile in a way that keeps nP close to unity at high redshift without being swamped by low
luminosity objects at low redshift. And, of course, the observed wavelength of the spectroscopic feature determines a great
deal about the instrumentation.

Luminous red galaxies are an effective choice at lower redshifts. They have strong absorption features, notably the
4000Å break, and high surface brightnesses to allow rapid spectroscopy. They have a high bias (b ∼ 2) to reduce the required
number density and hence the number of spectroscopic fibers. They are also easy to select with photometric redshifts:
essentially they are the reddest galaxies at a given observed flux (Eisenstein et al., 2001).

As we work to z = 1 and beyond, the advantages of using emission-line galaxies increase. Red galaxies are very faint
in the optical at z & 1 because of K corrections, and the 4000 Å break moves into the infrared where the forest of OH
sky glow lines makes spectroscopy more difficult. But the star formation rates of normal galaxies at z > 1 are about ten
times higher than today, and this high star formation produces strong emission lines. These emission lines can be detected
even when the stellar continuum cannot, and the galaxies with the strongest lines can be measured in remarkably little
time. Spectral resolution of a few thousand is desirable to work between the OH sky glow lines and to resolve the [OII]
doublet. The challenge is primarily one of selection, how to use photometric data to pick out the star forming galaxies with
the strongest lines. Between the lower clustering bias and the failure rate on weaker-lined systems, one needs to survey
many more blue galaxies than red. Current expectations are that the transition point from preferring red galaxies vs. blue
is z ≈ 1 (Glazebrook and Blake, 2005). Slitless spectroscopy offers an alternative route to surveying emission line galaxies,
without prior target selection (see Section 4.6).

Clusters of galaxies have been proposed as tracers (Angulo et al., 2005; Hütsi, 2006). These can be readily found from
imaging data sets but have the disadvantage that their nP does not reach unity. Also, acquiring spectroscopic redshifts for
the clusters imposes requirements similar in area and depth to a red galaxy survey, so the gain in a highly multiplexed fiber
survey is much smaller than one would expect based on numbers alone. Quasars have a similar problem of having nP < 1,
but they are extremely luminous and easy to select. This makes them a possible target for a sparse, wide-field survey at
z > 1 (Sawangwit et al., 2012), and they are readily added to a multi-fiber survey targeting emission line galaxies or LRGs
at other redshifts.

Using the Lyα forest as a tracer is attractive because each spectrum yieldsmany densitymeasurements (effectively about
50) rather than just a single point in a map (White, 2003; Mcdonald and Eisenstein, 2007; Norman et al., 2009; Mcquinn
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andWhite, 2011). One wants to sample the width of the acoustic peak, which is about 20h−1 Mpc FWHM. This implies that
one needs spectral resolution of only a few hundred andmoderate angular density of the lines of sight, preferably about 100
per square degree. Quasars of this surface density are much brighter than the Lyman-break galaxies that would be required
to match the effective sampling density. As one has little gain from reducing the photon noise errors to below the intrinsic
variation of the forest on 10h−1 Mpc scales, one can afford to use low signal-to-noise ratio spectra. The challenge here is
systematics, as one must control the continuum of the quasar and the spectrophotometry of the measurements to utilize
the spectral information. It is also possible that theory systematics associated with the state of the IGM enter; so far, IGM
uncertainties have not been shown to affect BAO measurements from the forest, but the case has not been investigated
as thoroughly as it has for galaxies. The recent detection of BAO in the Lyα forest at a scale and amplitude compatible
with theoretical expectations (Busca et al., 2012; Slosar et al., 2013) is already encouraging, but much work remains to
demonstrate that systematic effects are below the achievable level of statistical precision.

Star-forming galaxies also can be observed in the radio using the 21 cm line of neutral hydrogen. This is a much weaker
line, but future generations of radio interferometers such as the Square Kilometer Array offer phenomenal survey speed
because one can synthesize millions of simultaneous beams computationally. Such instruments could in principle achieve
spectroscopic samples of 109 galaxies out to z = 2 − 3 (Abdalla and Rawlings, 2005).

A different concept is that of 21 cm intensity mapping (Peterson et al., 2006; Ansari et al., 2008; Chang et al., 2008;
Loeb and Wyithe, 2008; Wyithe et al., 2008; Seo et al., 2010a). Here one does not identify individual galaxies but instead
measures the combined emission of the 21 cm line from all galaxies in a volume of order 10 Mpc on a side. The fluctuations
in the map encode the large-scale density field and hence the BAO. Relative to an interferometer like the SKA, one uses
shorter baselines (around 300 m) and a nearly filled aperture to maintain surface brightness sensitivity.27 Because one is
not resolving individual galaxies above the instrumental noise, one is using all of the neutral hydrogen even from low-mass
galaxies. In principle, one can map the BAO to the cosmic variance limit out to z ≈ 3 with new interferometric arrays. The
challenge is foreground subtraction, as the cosmic signal is several orders of magnitude below the Galactic and extragalactic
emission levels. A first detection of large-scale structure in redshifted 21 cm has been reported by Chang et al. (2010) by
cross-correlating with an optical galaxy redshift survey at z = 0.8; cross-correlation removes foregrounds that are not
themselves correlated with the optical galaxies. For intensity mapping to work on its own, one of course needs to measure
the auto-correlation signal.

Unlike for the case of galaxies, diffuse HI mapping does not provide the mean level of emission (interferometers are not
sensitive to this, and even if they were the Galactic emission would swamp extragalactic HI); therefore δHI is measured only
up to a multiplicative constant. This does not present a problem for the BAO technique because one is using the shape and
not the amplitude of the power spectrum. It does have an impact on redshift-space distortions (Section 7.2), as without
the mean level one cannot turn the observable β into an estimate of the rate of growth of structure f σ8(z). This drawback
is, however, also an opportunity to learn about astrophysics: measurement of βHI combined with independent knowledge
of f σ8(z) would allow us to infer the mean HI signal and thus obtain the cosmic abundance of neutral gas as a function of
time (Wyithe and Brown, 2010).

4.5. Systematic uncertainties and strategies for amelioration

Given that we seek to measure the acoustic scale and hence cosmic distance scale to a high level of precision, it is
important to consider the systematic errors that could cause the inferred DA(z)/rs and H(z)rs to be incorrect. We consider
three classes of systematic errors: (1) observational errors, in which one mis-measures the large-scale structure of the
universe; (2) astrophysical errors, in which our model of large-scale structure for a given cosmology is incorrect; and
(3) cosmological errors, in which we mispredict the sound horizon given our measurements because of new cosmological
physics, either in the early universe or at late times.

4.5.1. Measurement systematics
The measurement of large-scale structure requires the ability to produce a well-calibrated density map of the universe.

The data need not be homogeneous in quality so long as the inhomogeneities are known well enough that one can correct
for them statistically.

Observational errors involve imperfections in one’s map of the density field. Examples of sources can be photometric
miscalibrations of the input catalog, mis-assessments of the incompleteness in the input catalog, redshift failures or errors,
incorrect tracking of the target selection, failure to correct for deleterious interactions between targets (e.g., fiber collisions),
or imperfect assessment of the redshift distribution of the map. Another class of problems involves understanding of the er-
rors of themap, as onemust assess both the statistical properties of the density field and the point sampling of it by galaxies.

Fortunately, these issues have been extensively studied in the general context of themeasurement of large-scale structure
(e.g., Tegmark et al., 1998). BAOmeasurement itself is only a particular application of large-scale structure data, and it turns
out to be a relatively easy one because the acoustic peak is narrow in scale andhence onehas another differential opportunity

27 An interferometer directly measures the Fourier transform (in the transverse direction) of the emission field; antennas separated by a distance L
measure Fourier modes with k⊥ = 2πL/(λDA).
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in the experimental design. That is, one can compare the behavior at 150 Mpc separation to the average of that at 120 and
180 Mpc, so as to remove smooth errors. The only way to produce a non-smooth error is to have a sharply preferred scale
in the systematic error.

For galaxy redshift surveys, there is wide expertise in how to calibrate surveys and track their selection functions, and
there are many tests that can be employed to look for specific problems. Failing that, residual errors are often intrinsically
radial or angular in their nature, so one can reject the purely radial and purely angular modes from a survey (Vogeley and
Szalay, 1996; Tegmark et al., 1998). This is a small cost in information content for an intrinsically 3-d field. A more targeted
version of this idea is to use angular templates to remove systematic errors with particular angular dependence, e.g., survey
depth variations due to sky brightness, seeing, or stellar density (Ho et al., 2008; Ross et al., 2011, 2012). A further related
idea is that for a sharp scale in a systematic error to be a real threat, it must be sharp for three dimensional spheres of
separation. For example, even if a survey has an error that is modulated on a circular field of view, the diameter of the field
affects a range of 3-d separations at a given redshift simply because of the random orientations of pairs to the line-of-sight.

The BAO method is ultimately tied to the separation of galaxies, which depend on astrometric positions and redshifts.
These quantities can be exquisitely well measured, and achieving 0.1% precision on one’s astrometric and wavelength scale
is easy. The concern about systematic errors in the map is that an erroneous tilt in the correlation function would cause one
to mismeasure the centroid of the acoustic peak. This is a weaker effect, and one can marginalize against such tilts if one
wants, using the techniques in Section 4.3.4.

In short, it is very likely that a reasonable design for a galaxy redshift survey will lead to sufficient accuracy for the BAO
method. The greater challenge for such surveys is to control the clustering analysis for the broadband cosmological signals,
which require a factor of more than ten better accuracy.

On the other hand, the observational systematics for the Lyα forest and 21 cm intensitymapping techniques are a serious
concern. Here we are trying to use every spectral pixel for our mapping data, rather than differencing spectral pixels to
measure a single redshift per object. Imperfections in the calibration of the spectra or the subtraction of sky emission or
Galactic foregrounds will appear as cosmic structure.

For the Lyα forest, we measure the absorption by assuming that the quasar continuum is intrinsically smooth. However,
even an unabsorbed spectrum would have variations due to the intrinsic spectrum of the quasar and any errors in the
removal of the sky emissions or flat-fielding of the detector. We do not know the detailed unabsorbed quasar spectrum
but instead need to estimate it from the ensemble properties of quasars or from fitting to less absorbed pixels. The BAO
signal is a very weak modulation on large scales. Modeling errors far too weak to show up in any one spectrum could inject
correlations that bias the BAO scale or simply increase the noise far above the expected sample variance. The most detailed
discussions of systematic errors in large-scale Lyα forest measurements are those of Mcdonald et al. (2006) and Slosar
et al. (2011). Measuring the scale of the BAO feature again appears much easier than determining the broad-band shape or
absolute amplitude of the power spectrum. Studies to date have not identified observational problems that would prevent
high precision BAO measurements, but the field is in its early days.

For 21 cm intensity mapping, we are looking for the correlations of the extragalactic line emission as a function of
wavelength (redshift) and sky position. However, the Milky Way is producing synchrotron and free–free emission that is
three orders of magnitude higher than the extragalactic signal and highly variable on the sky (Chang et al., 2008, 2010).
Fortunately these emission mechanisms are smooth as a function of frequency, unlike the cosmological signal where
frequency maps to redshift, which should enable foreground removal (e.g., Liu and Tegmark, 2012). The challenge here is
primarily instrumental: undesired features in radio interferometers such as far sidelobes or standing waves in the antenna
are strongly frequency dependent and canmimic a cosmological signal if not suppressed.Moreover, theGalactic synchrotron
radiation is polarized, and Faraday rotation within the galaxy can lead to strongly wavelength-dependent polarization
amplitude (e.g., Haverkorn et al., 2003), so the instrument and softwaremustmeasure the total intensity and remove Stokes
Q and U from their maps — a major challenge given that radio antennas are inherently polarized. The problems are similar
to those of the 21 cmmapping of the epoch of reionization, where several experiments are trying to achieve first detections.
Projects aimed at z = 1 are being started in order to investigate and hopefully control the observational systematics.

4.5.2. Astrophysical systematics
Astrophysical systematic errors are principally due to non-linear structure formation, redshift-space distortions, and

galaxy clustering bias. These were discussed in Section 4.3.2. Our understanding of these effects in cold dark matter models
has been greatly advanced by numerical simulations and analytic theory over the past decades. Fortunately, the acoustic
scale is much larger than the scales of non-linear structure formation and the hydrodynamic effects on galaxy formation.
Gravitational forces are by far the dominant effect on 150 Mpc scales, and we can compute these at high accuracy.

Galaxy clustering bias based on halo occupations has been shown to bemanageable for the BAOmethod. The raw shifts of
the acoustic scale are below 1%, and they can be reduced below any reasonable detection limit with reconstruction (Mehta
et al., 2011), as shown in Fig. 12. Hence, the concern is now for a more complicated clustering bias, e.g., one that couples
more directly to the large-scale density field or that features large-scale cooperative effects between galaxies (Bower et al.,
1993). But clustering bias is no longer an arbitrary bogeyman. We have many observational probes that should test a bias
model: two-point and higher-point clustering over all scales, redshift-space distortion patterns, cross-correlations between
types of galaxies, galaxy–galaxy weak lensing maps, and various measures of halo masses. While the simplest formulation
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of HOD is surely not the whole story of clustering bias (e.g., Gao et al., 2005; Harker et al., 2006; Gao and White, 2007), the
model has passed significant tests. An alternativemechanism that couples to large-scale densities in a very differentmanner
so as to alter the BAO scale will almost certainly produce far more detectable effects on smaller scales.

A possible complication to galaxy biasing at the BAO scale was pointed out by Tseliakhovich and Hirata (2010) and Yoo
et al. (2011). At the time of recombination, the pressure of the photons causes the baryonic matter to have a relative velocity
compared to the dark matter, with a typical value vbc ∼ 30 km s−1. This relative velocity is largely due to the same standing
acousticwaves that produce the BAO feature; it is coherent on scales of a fewMpc and has a feature in its correlation function
at 150 Mpc. After recombination, the sound speed in the baryons drops to 6 km s−1, so the relative velocity is supersonic.
Tseliakhovich and Hirata (2010) argue that this boosts the effective Jeans mass as small dark matter structures fail to retain
baryons, thereby suppressing the formation of the earliest galaxies (Mhalo ∼ 106M⊙ at z > 10). This level of suppression
depends on the local vbc, which varies on large scales. It is unclear whether this varying suppression causes a detectable
imprint on the properties of much more massive galaxies at low redshift; it may be that it is completely erased as galaxy-
mass (> 1011M⊙) halos form andwipe out the small-scale initial conditions, or it may be that feedbackmechanisms such as
early metal pollution allow some trace of vbc modulation to survive in structures at z ≪ 10. In the latter case, it represents
a potentially serious concern because (unlike other systematic errors) the modulation contains the BAO scale (Yoo et al.,
2011). However, the form of the modulation is predictable, and Yoo et al. (2011) find that the measurements of the galaxy
bispectrum would enable the detection and removal of this effect.

Besides gravity, the only physical effect that we reasonably suspect can modulate galaxy properties on large scales is
radiation transport. For example, it is predicted that reionization proceeds with bubbles of scales of 10 Mpc for hydrogen
and 100 Mpc for He II. This may affect the late-time galaxy density field in non-gravitational ways (Mcquinn et al., 2007;
Iliev et al., 2008; Mesinger and Furlanetto, 2008; Zheng et al., 2011; Wyithe and Dijkstra, 2011). However, the scale of the
reionization bubbles is not sharp enough to mimic the acoustic peak, e.g., any reasonable variation in the luminosity of the
ionizing sources will produce a wide spread of bubble sizes. Reionization effects could be a larger issue for the Lyα forest
than for galaxy surveys because one is mapping the IGM directly. Simulations of Gpc3 volumes that incorporate models of
these reionization effects will be needed to see whether they can detectably influence BAO measurements, but the absence
of a sharply preferred scale in reionization should again provide protection if one marginalizes over broad band tilts.

4.5.3. Cosmological systematics
Cosmological effects that alter the sound horizon or the detailed prediction of the linear power spectrum must contend

with the fact that the z = 1000 universe and the acoustic oscillations themselves are exquisitely well observed in the
CMB anisotropies. For example, a change in the recombination history could alter the sound horizon, but this produces
correspondingly larger changes in the damping tail of the primary anisotropies (Eisenstein and White, 2004; de Bernardis
et al., 2009). Effects such as particle decays that change the expansion history so as to alter the sound horizon affect the
gravitational potential of the fluctuations and have large impact on the CMB anisotropies.

Models that combine adiabatic perturbations with smaller isocurvature ones offer additional degrees of freedom to
constrain in the CMB. Most such combinations yield differences that can be detected in the acoustic peak structure of
the CMB before they affect late-time BAO inferences. However, Mangilli et al. (2010) show that a particular combination
of isocurvature modes may exist that can change the sound horizon by a moderate amount before the CMB anisotropies
are observably altered. This possibility bears more investigation, e.g., of other late-time observable consequences of such a
model (Mangilli et al., 2010; Carbone et al., 2011; Zunckel et al., 2011).

Finally, we note that if the sound horizon or power spectrum template predicted from z = 1000 is wrong, then the effect
on the BAO distance scale will typically be a multiplicative error across all redshifts. This would alter the inference ofw(z),
but with a particular redshift dependence that one might choose to be suspicious of if one found it.

In short, while not all cosmological possibilities have been cataloged for their effect on the BAO method, one should
always judge such possibilities in light of the CMB as well. The combination of CMB and BAO is likely to be self-diagnosing
of new cosmological physics at high redshift. There may be exotica that can slip through this net, but we do not view this
potential confusionwith dark energy dynamics as a demerit of themethod. Large cosmological surveys offer a rich spectrum
of possible analyses with which to corroborate our model of structure formation, and the discovery of any discrepancy from
vanillaΛCDM will surely inspire a vigorous search for alternative explanations.

4.6. Space vs. ground

The principal challenge of the BAOmethod is obtaining the redshifts of millions of faint galaxies. Certainly we can obtain
redshifts from the ground for tracers at any redshift; the difficulty is in doing this quickly and cheaply enough.

Most BAO work to date has used multi-fiber spectroscopic surveys at optical wavelengths. This is practical for surveys of
order 107 galaxies. At z > 1, one relies on finding very luminous line emitters, and the desired number of galaxies to reach
the cosmic variance limit is of order 108. Routing optical fiber to 108 objects is technically very demanding. We expect that
fiber-fed optical galaxy redshift surveys will do an excellent job out to z = 1 and will make a start at 1 < z < 1.5, but will
not approach the cosmic variance limit at z > 1.

Photometric redshifts of either galaxies or clusters are an option to sample a large volume at z ≈ 1 with upcoming
surveys and probably at higher redshifts with deeper surveys like LSST. Redshifts z < 0.7 will be done better with funded
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spectroscopic programs. One is free to pick a subset of galaxies on which one has better photometric redshift performance.
However, photometric redshifts are best when relying on strong breaks, notably the 4000 Å and Lyman break. The former
requires near-IR data at z & 1; the latter requires space UV data at z . 3. As mentioned above, photometric redshifts are not
precise enough to capture the BAO H(z) information, which is a large loss at higher redshifts. We expect that the upcoming
generation of imaging surveys will be the first to map the BAO at z ≈ 1 over large areas of the sky. This will achieve an
important constraint on DA(z). Later spectroscopic surveys will improve the DA(z)measurement and add H(z).

A space mission offers the opportunity for slitless spectroscopy (Glazebrook et al., 2005). This efficiently finds the
strongest line emitters over a wide instantaneous field. Slitless spectroscopy of faint objects is only practical in space, where
the foreground (or ‘‘sky’’) emission is low. This is particularly attractive in the near-IR, where the zodiacal background light
is low and the Hα line from z > 1 galaxies is very bright. The UV with Lyα is another opportunity.

At z > 2, the Lyα line (whether in emission or in the forest) can penetrate the atmosphere. This offers a renewed op-
portunity for ground-based work, but only the Lyα forest is likely to be able to approach the cosmic variance limit in the
foreseeable future. As described above, this method still has significant uncertainties about its observational and theoretical
systematics. Galaxy samples would again require>108 objects to reach the cosmic variance limit, a factor of 100 more than
planned surveys. The Lyα forest gets undesirably thick at z > 3.5, and BAO surveys above this redshift might require a space
mission, such as the Cosmic Inflation Probe (Melnick et al., 2009).

A 21 cm facility such as the SKA capable of detecting individual high-redshift galaxies is a multi-billion dollar project
and hence well in the future, albeit with a large cosmological payoff. We note that not all technical implementations of
the SKA permit full-sky mapping, and keeping this option does increase the cost of the correlator. The 21 cm intensity
mapping technique is considerably cheaper, butwe do not knowwhether it can achieve the required control of observational
systematics. Applying intensity mapping to the reionization epoch could eventually measure the distance scale at z > 6
(Mao and Wu, 2008; Rhook et al., 2009).

A space mission that would target of order 1081 < z < 2 galaxies is the only robust near-term path to approaching the
cosmic variance limit for BAO over the enormous comoving volume available in this redshift range. Intensity mapping is an
attractive opportunity, but it needs substantially more development before it can be realistically assessed. Ground-based
galaxy redshift surveys and Lyα forest surveys will explore z > 2, though in the near-term approaching the cosmic variance
limit depends on controlling systematic errors in the Lyα forest method, which are not yet understood at the percent or
sub-percent level.

4.7. Prospects

In contrast to essentially all of the other observational probes that we consider in this review, we anticipate that even the
most ambitious BAO studies will remain limited by statistical errors rather than systematic errors. This assumption could
prove incorrect, either because we are overoptimistic about BAO systematics or because we are too pessimistic about other
methods. But it does imply a natural long-term target for BAO investigations of cosmic acceleration: survey a large fraction
of the entire comoving volume out to z ≈ 3.5, beyond which the sensitivity to dark energy begins to decline (Table 2), with
high enough sampling density that the BAO measurements are limited by sample variance rather than shot noise. No one
survey will reach this goal on its own; rather, a variety of projects can gradually map out the available volume by using
different facilities and techniques to target different redshift ranges and areas of sky. Surveys that cover the same redshift
range with the same technique are not redundant unless they cover the same region of the sky. To zeroth order, the primary
metric for a BAO survey is the comoving volume that is covered at adequate sampling density, and it makes sense to choose
redshift ranges according to observational convenience (though of course one can further optimize both survey strategy
and instrument design). Relative to the current state of the art described in Section 4.2 – roughly speaking, analyses that
have probed fsky = 0.4 to z = 0.15, fsky = 0.25 to z = 0.45, and fsky = 0.08 to z = 0.8 – BAO surveys have tremendous
possibility for growth, with correspondingly great opportunities for improved precision and redshift leverage on DA(z) and
H(z) (Fig. 15).

With the completion of WiggleZ (Parkinson et al., 2012), the only spectroscopic BAO survey currently operating is SDSS-
III BOSS (Dawson et al., 2013). BOSS is approximately midway through its five years of spectroscopic observing and will
conclude in mid-2014. Forecasts for the galaxy survey predict 1.0% precision on DA at z = 0.35 and z = 0.6 and 1.8%
precision on H(z) at these redshifts. The Lyα forest survey is expected to yield 4.5% precision on DA and 2.6% on H(z) at
z = 2.5. BOSS will provide a solid BAO anchor at low redshift, the first BAOmeasurements z > 2, and the first practical test
of the Lyα forest technique.

The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) is largely funded and currently under construction.
HETDEX plans a survey of 800,000 Lyα emission-line galaxies over 420 square degrees at redshifts 1.8 < z < 3.7, using a
blind-pointing strategy with a large set of integral-field spectrographs (Hill et al., 2006). The forecast precision on DA and
H is of order 2% from BAO alone, with additional gain possible if one can take advantage of the increased linearity of the
large-scale density field at high redshift to model the full anisotropic clustering signal of the galaxies.

PanSTARRS and DES are two near-term imaging surveys with the depth and area needed to probe BAO at z ≈ 1. BAO
analyses will likely focus on red galaxies as they afford more robust photometric redshifts and the two cameras employ
red-sensitive detectors that achieve good depth in the z and y bands. These projects will likely yield the first strong BAO
constraints at z = 1.
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A multitude of more ambitious projects are being planned. On the imaging front, LSST should eventually yield an
enormous sample of galaxies with good photometric redshifts, enabling photo-z BAO studies to reach to z = 2 and beyond.
Two near-term Spanish projects, PAU and JPAS, aim to do shallower imaging with many medium-band filters, designed to
achieve high enough redshift precision to recoverH(z) information out to z ≈ 1 (Benítez et al., 2009; Gaztañaga et al., 2012).
(PAU would use a new large-format camera built for the William Herschel Telescope while JPAS would use a new telescope
dedicated to the project.) This medium-band strategy is intermediate between photometric and spectroscopic approaches.

Returning to spectroscopy, eBOSS, part of a proposed (but not yet fully funded) programof post-2014 surveys on the Sloan
2.5-meter telescope, would extend the BOSS survey in several directions, using higher redshift LRGs (to z = 0.8), emission
line galaxies, and quasars, including a denser set of z > 2 quasars to improve measurements from the Lyα forest. eBOSS
would cover 1500–3000 deg2 depending on strategy details that are still to be decided. The BigBOSS experiment (Schlegel
et al., 2011) would use spectrographs fed by 5000 optical fibers over a 3-degree field on the Mayall 4-meter telescope at
Kitt Peak to survey 14,000 deg2. For its five-year primary survey, BigBOSS would target luminous red galaxies to z = 1
and emission line galaxies to z = 1.7, more than 10 million galaxies in total, with sampling density nP > 1 out to
z ≈ 1 − 1.2. BigBOSS would target high redshift quasars with a high enough density to approach the sample variance limit
for the Lyα forest method at 2 < z < 3. The BigBOSS instrument could in principle be moved to the Blanco telescope
at CTIO to conduct a similar survey of the southern hemisphere. Alternatively, the DES collaboration has considered a
4000-fiber instrument (DESpec) that would use the DECam optical corrector on the Blanco (Abdalla et al., 2012); this
instrument could pursue a similar galaxy redshift survey but would not (in its current design) have the blue wavelength
coverage needed tomap the Lyα forest. The SuMIRe project proposed for the Subaru 8-meter telescope would use optical/IR
prime focus spectrographs fed by 2400 fibers to carry out a large galaxy redshift survey, mapping BAO in the redshift range
0.7 < z < 2.4. The current baseline program would survey 4 million [OII]-emitting galaxies over 1420 deg2. Collectively,
these ground-based optical/IR projects could cover a substantial fraction of the sky with fully sampled galaxy surveys to
z ≈ 1.2, provide interesting BAO measurements with lower sampling densities to z ≈ 1.7, and possibly measure BAO to
something approaching the cosmic variance limit at z = 2–3 using the Lyα forest.

Both Euclid andWFIRST plan large BAO surveys asmajor components of their dark energy science programs, using slitless
near-IR spectroscopy to measure redshifts of strong Hα emitters. Current incarnations of these plans are described in the
Euclid Red Book (Laureijs et al., 2011) and the WFIRST Science Definition Team’s final report (Green et al., 2012), though
technical specifications and survey strategies may evolve to some degree prior to launch. The present baseline strategy for
Euclid has a survey area of approximately 14,000 deg2 and redshift range 0.7 < z < 2.0, while the baseline strategy for
WFIRST adopts a smaller area (3400 deg2), fainter flux limit, and higher redshift range (1.3 < z < 2.7). Green et al. (2012; see
their Figs. 24 and 25) attempt a side-by-side comparison of Euclid and WFIRST BAO performance, using common modeling
assumptions that include recent estimates of the luminosity function (Sobral et al., 2013) and clustering bias (Geach et al.,
2012) of high-redshift Hα emission line galaxies. In their calculations, Euclid achieves a sampling density nP > 1 out to
z ≈ 0.9, falling to nP ≈ 0.15–0.3 at z = 1.3–2.0. WFIRST maintains nP > 1 out to z ≈ 2.4, falling to nP ≈ 0.5 at z = 2.7.
For Euclid they forecast fractional errors σH/H of 1.3%–1.8% in bins of ∆z = 0.1 out to z = 1.5, rising to 2.5% at z = 2.0,
while for WFIRST they forecast σH/H = 1.7%-1.8% (again in∆z = 0.1 bins) out to z = 2.4, rising to 2.4% at z = 2.7. These
numbers should be takenwith a grain of salt, as they depend onuncertain hardware and software performance and ondetails
of survey strategy. For example, a 2.4-meter implementation of WFIRST could potentially survey 3–4 times larger area at
similar depth (Dressler et al., 2012). By the time these missions are launched, results from earlier dark energy experiments
or developments in modeling techniques could well favor alternative strategies, e.g., with deeper sampling but smaller sky
area. Furthermore, the Euclid and WFIRST dark energy programs are both limited by observing time, and either could be
more powerful with a longer mission. It is clear, however, that these missions can dramatically improve our knowledge of
dark energy evolution at z = 1–3.

Shifting wavelengths, several 21 cm intensity mapping experiments for the range 0.8 < z < 3 are being planned,
using different techniques. The CHIME project aims to build a 100 m2 filled interferometer using a cylindrical telescope
array (Peterson et al., 2006) and conduct a lengthy survey at 0.8 < z < 2.5. If the foregrounds can be adequately controlled,
CHIME would be a powerful demonstrator of the 21 cmmethod and would yield excellent cosmological information. Other
projects include the FFT-based Omniscope (Tegmark and Zaldarriaga, 2010) and the Baryon Acoustic Oscillation Broadband
andBroad-beam (BAOBAB) interferometer array (Pober et al., 2013).Moving beyond intensitymapping, the SKA could enable
an HI-redshift survey of a billion galaxies, reaching the sample variance limit over half the sky out to z = 3 (Abdalla and
Rawlings, 2005), which would be a good approximation to the ultimate BAO experiment.

5. Weak lensing

The subtle distortion of shapes of distant galaxies by gravitational lensing is a powerful probe of both the mass
distribution and the global geometry of the universe. It has, however, turned out to be one of the most technically difficult
of the cosmological probes. This section will cover the range of applications of weak lensing (which we will sometimes
abbreviate toWL), the recent and plannedweak lensing surveys, and the technical aspects of weak lensing image processing
and control of systematics. By covering the latter subjects in some detail (including some methods that we think have been
under-appreciated or under-utilized), we hope to stimulate further progress and be helpful to readers who are already
experts in weak lensing.
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This section is organized as follows: we begin with a qualitative overview of weak lensing and its uses (Section 5.1). We
then go into a mathematical treatment of the various statistics that can be used and their dependences on the background
cosmology and matter power spectrum (Section 5.2). We then review the observational results from recent weak lensing
surveys (Section 5.3). Section 5.4.1 discusses the statistical errors and cosmological sensitivity of cosmic shear surveys at
a rule-of-thumb level; we expect this to be a useful entry point for readers interested in understanding survey design.
We then turn to more technical aspects of survey design and analysis, including source redshift estimation and the galaxy
populations of optical/near-IR and radio surveys (Sections 5.4.2–5.4.4), CMB lensing (Section 5.4.5), the measurement of
galaxy shapes (Section 5.5), and astrophysical uncertainties (Section 5.6). We summarize the major systematic errors and
mitigation strategies (Section 5.7). We finally consider the advantages of a space mission for weak lensing (Section 5.8) and
prospects for the future (Section 5.9).

Some of the material in this section is technical and in a first reading may be either skipped or skimmed; but given that
so much of the promise of weak lensing depends on these issues, we felt compelled to include them. The more technical
sections have been denotedwith an asterisk (*). Theymay be thought of as analogous to, e.g., the ‘‘Track 2’’material inMisner
et al. (1973).

5.1. General principles: overview

The images of distant galaxies that we see are distorted by gravitational lensing by foreground structures. In rare cases,
such as behind clusters, one observes strong lensing: the deflection of light by massive structures can result in multiple
images of the same background galaxy. More often, however, images of galaxies are subjected only toweak lensing: a small
distortion of their size and shape, typically of the order of 1%. Since one does not know the intrinsic size or shape of a given
galaxy,weak lensing canonly bemeasured statistically by examining the correlations of shapes in deep andwide sky surveys.
However, the payoff if these statistical correlations can be measured is enormous: weak lensing provides a direct measure
of the distribution of matter, independent of any assumptions about galaxy biasing. Since this distribution can be predicted
theoretically, even in the quasilinear regime, and since its amplitude can be directly used to constrain cosmology (unlike for
galaxy surveys where one must marginalize over the bias), weak lensing has great potential as a cosmological probe.

In principle, one may attempt to observe either the shearing of galaxies (shape distortion) or their magnification (size
distortion). In practice, the shape distortions have been used much more widely, since the mean shape of galaxies is known
(they are statistically round: as many galaxies are elongated on the x-axis as on the y-axis) and the scatter in their shapes is
less than the scatter in their sizes.

A variety of statistical approaches have been used to extract information from weak lensing shear (see later subsections
for references). The simplest is the angular shear correlation function, or its Fourier transform, the shear power spectrum.
These are related to integrals over the matter power spectrum along the line of sight, and as such in the linear regime at
low redshift they scale as ∝ Ω2

mσ
2
8 .

28 Since the angular power spectrum is rather featureless, more information can be
extracted via tomography — the measurement of the shear correlation function as a function of the redshifts of the galaxies
observed, including the use of cross-correlations between redshift slices. Information on the relation between galaxies and
matter can be obtained via galaxy–galaxy lensing, i.e., the correlation of the density field of nearby galaxies with the lensing
shear measured onmore distant galaxies. In the linear regime, the galaxy–galaxy lensing signal scales as∝ bΩmσ

2
8 and thus

provides information on the bias of the lensing galaxies, while in the non-linear regime it probes individual galaxy halos and
hence places constraints on the halo occupation distribution (Section 2.3). Combination of this with the galaxy clustering
signal (which scales as∝ b2σ 2

8 ) enables one to eliminate the bias andmeasureΩmσ8. The scaling of the galaxy–galaxy lensing
signal as a function of the source redshift, known as cosmography, depends purely on geometric factors and hence can be
used to partially29 construct a distance–redshift relation. Finally, the low-redshift matter distribution is non-Gaussian, so
higher-order statistics such as the bispectrum or 3-point shear correlation function carry additional information.

For all of the applications of weak lensing to cosmology, deep wide-field imaging is essential. One can see this from a
simple order-of-magnitude estimate. For a scatter in galaxy shapes of σγ ∼ 0.2, measuring a 1% shear with unit signal-to-
noise ratio requires ∼400 galaxies (0.2/

√
400 ≈ 0.01). Measuring the amplitude of density perturbations to 1% accuracy

requires that this be done over ∼104 patches of sky, giving a requirement of order 107 galaxies, which for a density of 15
resolved galaxies per arcmin2 amounts to surveying 200 deg2 of sky. This is the scale of the largest current surveys such
as CFHTLS; in practice the errors from these surveys are likely to be closer to several percent due to ‘‘factors of a few’’ that
we have dropped here, and due to the inclusion of systematic errors. The eventual goal of the weak lensing community is
one or more ‘‘Stage IV’’ surveys (such as LSST on the ground and Euclid andWFIRST in space) that would measure shapes of
∼109 galaxies and achieve an additional order of magnitude in precision. Such surveys will have to face the daunting task
of reducing systematic errors by another order of magnitude.

There are unfortunately many sources of these systematic errors, and most of the effort of the weak lensing community
has been devoted to defeating them. One is the measurement of galaxy shapes: while gravitational lensing by a large-scale

28 Warning: these scalings are altered even at modest redshift, or in the non-linear regime where the exponent of σ8 becomes closer to 3.
29 The cosmography distance scale suffers from three degeneracies, including the absolute-scale degeneracy that affects supernova measurements; see
Section 5.2.7.
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density perturbation can coherently align the images of many galaxies, this can also arise from shaking of the telescope
or optical aberrations. The accurate determination of the point-spread function (PSF) of the telescope (usually based on
observations of stars) and removal of its effects is thus critical. This problem gets much worse if one tries to model galaxies
with sizes similar to or smaller than the PSF. High-resolution, stable imaging can help with this problem, motivating
placement of future instruments at the best ground-based sites or in space. The determination of redshifts for the large
number of source galaxies is also a concern. It is not practical to obtain a robust spectroscopic redshift of every galaxy, and
hence ‘‘photometric redshifts’’ – estimates of galaxies’ redshifts based on their broadband colors – are used. These must be
calibratedwith well-known biases, scatters, and outlier distributions. Finally, there are astrophysical uncertainties: galaxies
can suffer ‘‘intrinsic alignments’’ (non-random orientations), and the matter power spectrum may deviate from pure CDM
simulations at small scales. Much of our discussion here will be focused on the methodologies that have been developed to
suppress systematics at each stage of the observations and analysis.

5.2. Weak lensing principles: mathematical discussion

Wewill nowgo into greater detail on themathematical aspects ofweak lensing, both the construction of theweak lensing
field and the various statistics that one can extract from it. The modern theoretical formalism of weak lensing traces back
largely to the papers of Blandford et al. (1991); Miralda-Escudé (1991), and Kaiser (1992), though one can find roots in the
much earlier papers of Kristian and Sachs (1966) and Gunn (1967).

5.2.1. Deflection of light in cosmology
Gravitational lensing gives a mapping from the intrinsic, unlensed image of the sources of light on the sky — the source

plane — to the actual observable sky — the image plane. Our ultimate goal is to extract information about the statistics and
redshift dependence of this mapping and use it to constrain cosmological parameters. Our task here is thus two-fold. First,
wemust derive themapping function that relates the source to the image plane. However, sincewe do not know the intrinsic
appearance of the sources, we cannot directly infer the lens mapping from observations. Therefore, our second task will be
to determine what properties of the lens map can be measured, and with what accuracy.

In a fully general context, the lens mapping can be obtained by taking an observer and following the geodesics corre-
sponding to that observer’s past light cone.Wewill make some simplifying approximations here, namely that: (i) the space-
time is described by a Friedmann–Robertson–Walker metric with scalar perturbations and negligible anisotropic stresses
(appropriate for nonrelativistic matter, scalar fields, andΛ); (ii) deflection angles are sufficiently small that we may use the
flat-sky approximation; (iii) the evolution of perturbations is slow enough that wemay neglect time derivatives of the grav-
itational potentialΦ in comparison to spatial derivatives (i.e., nonrelativistic motion); and (iv) such perturbations are small
enough that we may compute the lens mapping only to first order in perturbation theory.30 Within these approximations,
we may write the angular coordinates (θ1, θ2) of a light ray projected back to comoving distance DC (see Eq. (7)) in terms of
the position (θ I1, θ

I
2) in the image plane as31

θi(DC ) = θ Ii − 2
 DC

0
G(DC1,DC )

∂Φ

∂θi
[DC1, θi(DC1)] dDC1, (57)

where G is the Green’s function,

G(DC1,DC ) =

 DC

DC1

[DA(DC2)]
−2dDC2 = cotK (DC1)− cotK (DC ). (58)

Here cotK (DC ) is the cotangentlike function,

cotK (DC ) =

D−1
C flat

K−1/2 cot(K 1/2DC ) closed
|K |

−1/2 coth(|K |
1/2DC ) open,

(59)

with the dimensional curvature K defined in Eq. (8), andΦ is the Newtonian gravitational potential.
The potential derivative in Eq. (57) is evaluated at the position of the deflected ray θI(DC1), so it represents an implicit

solution to the light deflection problem. However, in linear perturbation theory (see our assumption iv above), we may
evaluate it at the position of the undeflected ray. This is known as the Born approximation. Whenwe do this, it is permissible
to pull the angular derivative out of the integral and write

θ Si = θ Ii +
∂ψ(DC , θ

I
i )

∂θ Ii
, (60)

30 These approximations are sufficient to analyze present power spectrum data, but corrections to (iv) will become necessary in the future.
31 The derivation of Eq. (57) can be found in many works, though not always in the same notation. See, e.g., Eq. (6.9) in the classic review by Bartelmann
and Schneider (2001). The appendix of Hirata and Seljak (2003a) gives a shorter derivation in more similar notation.
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where ψ is the lensing potential:

ψ(DC , θi) = −2
 DC

0
[cotK (DC1)− cotK (DC )]Φ(DC1, θi) dDC1. (61)

Here it is important to remember that DC represents the distance to the sources; one integrates over lens distances DC1.
Eq. (60) provides themapping from the observed image plane to the source plane, θ Si (θ

I
i ). Inwhat follows, wewill assume

that this mapping is one-to-one: this is known as the regime of weak lensing. In the small portion of sky covered by very
massive objects, the alternate regime of strong lensing occurs, in which several points in the image plane map to the same
point in the source plane. Strong lensing is an important probe of the matter distribution in clusters, but we will not pursue
it in this article; we briefly discuss some applications of strong lensing to cosmic acceleration in Section 7.10.

5.2.2. Cosmic shear, magnification, and flexion
Wehavenowaccomplished our first task: deriving the lensmapping from thematter distribution. However,wenowneed

a way to classify the observables in the lens mapping. The potentialψ is of course not observable itself: like the Newtonian
gravitational potential, its zero-level is arbitrary. Its angular derivative ∂ψ/∂θi is the deflection angle: the difference between
the true position of a source θ Si and its apparent position θ Ii . However, since sources (in practice, galaxies) can be at any
position, we cannot measure the deflection angle either.

Let us now consider the second derivative of the lensing potential. It is simply the Jacobian of the mapping from image
to source plane:

∂θ Si

∂θ Ij
= δij +

∂2ψ

∂θiθj
=


1 − κ − γ+ −γ×

−γ× 1 − κ + γ+


. (62)

We have separated the 3 independent entries in the symmetric 2 × 2 matrix of partial derivatives into 3 components: the
magnification (or convergence) κ and the 2 components of shear, γ+ and γ×. The magnification has three effects:

• It makes the angular size of a galaxy look larger by a factor of 1 + κ .
• It makes the galaxy appear brighter by a factor of the inverse-determinant of the Jacobian, 1+2κ , since lensing conserves

surface brightness as dictated by Liouville’s theorem.
• It dilutes the number density of galaxies by a factor of 1− 2κ , since the angular spacing between neighboring galaxies is

increased by a factor 1 + κ .

Magnification is a ‘‘scalar’’ in the sense that it is invariant under rotations of the (θ1, θ2) coordinate axes.
The shear stretches the galaxy along one axis and squeezes on the other: the image of an intrinsically round galaxy

appears elongated along the θ1 axis if γ+ > 0 and along the θ2 axis if γ+ < 0. The γ× component stretches and squeezes
along the diagonal (45◦) axes. The shear is a ‘‘spin-2 tensor’’ in the sense that under a counterclockwise rotation of the
coordinate axes by angle δ, it transforms as

γ+

γ×


new

=


cos 2δ sin 2δ

− sin 2δ cos 2δ


γ+

γ×


old
. (63)

If all galaxies were round, then each galaxy would provide a direct estimate of the shear, since we could find the values
of (γ+, γ×) that transformed an initially circular galaxy into the observed image. In reality, galaxies come in many shapes,
and any such estimate of the shear components will have some standard deviation σγ known as the shape noise. But in an
ensemble average sense galaxies are round — there are as many galaxies in the universe elongated along the θ1 axis as the
θ2 axis. Thus, if we take N galaxies in the same region of sky, we may expect that the shear components in that region can
be measured with a standard deviation of ∼σγ /

√
N .32

Several caveats are in order at this point, and they form the basis for most of the technical problems in weak lensing.
One is that a circular galaxy re-mapped by the Jacobian (Eq. (62)) becomes an ellipse, but since in the real sky one does
not observe a population of galaxies with homologous elliptical isophotes, there is no unique procedure to estimate the
shear. Moreover, real telescopes, even in space, have finite resolution, and the observed image is convolved with a PSF that
smears the galaxy and may introduce spurious elongation on some axis. These two problems together are referred to as the
shape measurement problem. Amore fundamental issue is that real galaxies are not randomly oriented: they have preferred
directions of orientation that are correlated with each other and with large-scale structure, and thus contaminate statistical
measures of the cosmic shear field. This is known as the intrinsic alignment problem. Finally, as already mentioned above,

32 As discussed further in Section 5.5.2 below, a typical population of optically imaged galaxies (bulges and randomly oriented disks) has an rms ellipticity
erms ∼ 0.4 per component, which translates into an rms shear error σγ ≈ 0.2 via the shear response factor (Eq. (112)). Because there are two components
to shear one might expect to do a factor of

√
2 better in statistical measurements, but in the shear correlation function or power spectrum only one of

the two measurable components (the ‘‘E-mode’’ discussed in the next section) contains a cosmological signal at leading order, so the relevant number
for order-of-magnitude sensitivity estimates is generally σγ ≈ 0.2. Similarly, for galaxy–galaxy or cluster–galaxy weak lensing, only the tangential shear
contains cosmological information.
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relating the lensing potentialψ to the gravitational potentialΦ(z), and hence to cosmological parameters, requires accurate
knowledge of the source galaxy redshift distribution, presenting the photometric redshift calibration problem.Wewill discuss
all of these problems in Sections 5.4–5.7.

Measuring magnification κ has proven more difficult than measuring shear. One might imagine comparing the size,
magnitude, or abundance of galaxies in some region of sky to a typical or ‘‘reference’’ value, but there is a verywide dispersion
in galaxy sizes and magnitudes, and since some galaxies are too faint to observe even in deep surveys one cannot measure
such a thing as the total number of galaxies. Rather, one canmeasure the cumulative number of galaxies brighter than some
flux threshold, N(> F). If the number counts have a power-law slope α, i.e. N(> F) ∝ F−α , then magnification will perturb
this distribution by a factor

N(> F , observed) ∝ [1 + 2(α − 1)κ]F−α. (64)

There are two competing effects here: in regions of higher magnification the galaxies appear brighter, which gives the 2ακ
factor in Eq. (64), but there is also the dilution of galaxy number, which is responsible for the ‘‘−1’’ term. Unfortunately,
for optical galaxies the observed number count slope is close to the critical value α ≈ 1 for which magnification is not
measurable. Moreover, the intrinsic clustering of galaxies gives large fluctuations in the number density that greatly exceed
those due to lensing effects. For these reasons,magnification has lagged behind shear as a cosmological probe, and the cosmic
magnification signal was not seen until Scranton et al. (2005)measured it using cross-correlation of foreground galaxies and
background quasars. Ménard et al. (2010) provide amore detailed analysis, using color information to simultaneously detect
lensing magnification and reddening of quasars by dust correlated with intervening galaxies.

The most promising route to utilizing the cosmic magnification signal is to use scaling relations that relate the size of a
galaxy (as quantified by, e.g., the half-light radius) to parameters that are magnification-independent and can be measured
in photometric surveys (Bertin and Lombardi, 2006), such as the surface brightness, the Sersić index, or (for AGN) variability
amplitude. Huff and Graves (2011) present a first application of this ‘‘photometric magnification’’ method to galaxies, and
Bauer et al. (2011) an application to quasars.

After shear and magnification comes the third derivative of the potential, i.e. the variation of shear and convergence
across a galaxy. This effect is called the flexion, and it manifests itself via asymmetric banana and triangle-like distortions of
an initially circular galaxy (Goldberg, 2005). Flexion has beenmeasured by several groups (e.g. Leonard et al., 2007; Velander
et al., 2011; Leonard et al., 2011), and there is a growing literature on the theory of flexion measurement that parallels the
formalism required for shear measurement (e.g. Massey et al., 2007c; Schneider and Er, 2008; Rowe et al., 2012). However,
because of the extra derivative it is sensitivemainly to structure at the very smallest scales, so it is primarily a tool for cluster
lensing rather than cosmological applications on larger scales.

5.2.3. Power spectra and correlation functions*
Just as for any other random field in cosmology, one may construct statistics for the cosmic shear field. The most popular

are the power spectrum and its real-space equivalent, the correlation function.
To construct the power spectrum, we take the Fourier transform of the shear field,

γ̃+,×(l) =


γ+,×(θ)e−il·θd2θ ↔ γ+,×(θ) =


γ̃+,×(l)eil·θ

d2l
(2π)2

. (65)

When considering the shear produced by a plane wave perturbation of the lensing potentialψ(θ), it is convenient to rotate
the Fourier-space components from the coordinate axis basis to a basis aligned with the direction of the wavevector, which
is a preferred direction in the problem. The rotated components are called the E-mode and B-mode:

γ̃E(l) = cos(2φl)γ̃+(l)+ sin(2φl)γ̃×(l) and γ̃B(l) = cos(2φl)γ̃×(l)− sin(2φl)γ̃+(l), (66)

where tanφl = l2/l1, with l1 and l2 being the components of l in the pre-rotated coordinate system. Thus the E-mode of the
shear field corresponds to galaxies that are stretched in the direction of the wave vector and squashed perpendicular to it,
whereas the B-mode corresponds to stretching and squashing at 45◦ angles. One may then define the power spectra:

⟨γ̃ ∗

E (l)γ̃E(l
′)⟩ = (2π)2CEE(l)δ(2)(l − l′), (67)

and similarly for CEB(l) and CBB(l). Rotational symmetry of structure in the universe guarantees that these depend only on
the magnitude of l and not its direction, and reflection symmetry guarantees that CEB(l) = 0.

In order to compute these power spectra, we need to express the Fouriermodes in terms of those of the lensing potential.
From the definition, Eq. (62), the shear is seen to be the derivative of the deflection angle and hence the second derivative
of the lensing potential,

γ+(θ) = −
1
2


∂2ψ

∂θ21
−
∂2ψ

∂θ22


and γ×(θ) = −

∂2ψ

∂θ1 ∂θ2
. (68)

Using the replacement ∂/∂θi → ili, we find in Fourier space

γ̃+(l) =
1
2
(l21 − l22)ψ̃(l) =

1
2
l2 cos(2φl)ψ̃(l) and γ̃×(l) = l1l2ψ̃(l) =

1
2
l2 sin(2φl)ψ̃(l). (69)
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Substitution into Eq. (66) implies that

γ̃E(l) =
1
2
l2ψ̃(l) and γ̃B(l) = 0. (70)

We thus arrive at the remarkable conclusion that cosmic shear possesses only an E-mode; the B-mode shear must vanish,
and we have CBB(l) = 0. Confirming this prediction of vanishing B-mode provides a valuable, though not foolproof, test for
systematics in WL surveys.

The E-mode shear power spectrum is simply (l2/2)2 times the lensing potential power spectrum. The lattermay be found
from the Limber (small-angle) approximation33 in terms of the Newtonian potential power spectrum, yielding

CEE(l) = l4
 DC

0
[cotK (DC1)− cotK (DC )]

2 PΦ(k = l/DA1)

D2
A1

dDC1. (71)

(Here the power spectrum is evaluated at the redshift corresponding to DC1.) We may put this in a more familiar form by
recalling Poisson’s equation, which tells us that the potential and matter density perturbations are related by

PΦ(k) =


3
2
ΩmH2

0 (1 + z)
2

k−4Pδ(k), (72)

yielding

CEE(l) =

 DC

0
[W (DC1,DC )]

2 Pδ(k = l/DA1)

D2
A1

dDC1, (73)

where the lensing window function34 is35

W (DC1,DC ) =
3
2
ΩmH2

0 (1 + z1)D2
A1[cotK (DC1)− cotK (DC )]Θ(DC − DC1). (74)

The window function describes the contributions to lensing of sources at DC from lens structures at distance DC1. Note that
it vanishes as the lens approaches the source (DC1 → DC ). In this equation, DA1 is the comoving angular diameter distance
(Eq. (9)) to DC1: in a curved universe DA1 ≠ DC1. Note that in a flat universe, the window function reduces to

Wflat(DC1,DC ) =
3
2
ΩmH2

0 (1 + z1)
DC1(DC − DC1)

DC
Θ(DC − DC1). (75)

One may also define the angular correlation function of the shear for two galaxies separated by angle ϑ . Since the shear
is a tensor, this is more complicated than the correlation function for scalars. Without loss of generality, we may rotate the
coordinate system so that the galaxies are separated along the θ1-axis, and then take the + and × components of the shear.
We then define the shear correlation functions,

C++(ϑ) = ⟨γ+(0)γ+(ϑ)⟩ and C××(ϑ) = ⟨γ×(0)γ×(ϑ)⟩. (76)

As in the scalar case, these are related to the power spectra:

C++(ϑ) = ⟨γ+(0)γ+(ϑ)⟩

=


d2l
(2π)2


d2l′

(2π)2
⟨γ̃+(l)γ̃+(l′)⟩ exp(il′ϑ cosφl′)

=


d2l
(2π)2


cos2(2φl)CEE(l)+ sin2(2φl)CBB(l)


exp(ilϑ cosφl)

=


∞

0


J0(lϑ)+ J4(lϑ)

2
CEE(l)+

J0(lϑ)− J4(lϑ)
2

CBB(l)


ldl
2π
, (77)

where J0 and J4 are spherical Bessel functions. The expression forC×× is similar, butwith PEE and PBB switched. The correlation
function {C++(ϑ), C××(ϑ)}, if measured over all scales, contains exactly the same information as the power spectrum
{CEE(l), CBB(l)}, as one can be derived from the other. Therefore, the choice of which to measure is usually a technical one
based on the ease of data processing and handling of covariance matrices. The condition for no B-modes, CBB(l) = 0∀l, is
more complicated in correlation-function space.

33 See Limber (1953) and Limber (1954) for an introduction to the theory. An exposition in terms of the power spectrum is given by Peebles (1973).
34 Warning: many conventions in use!
35 The Heaviside step functionΘ is technically unnecessary in Eq. (74), but it is convenient when considering multiple populations of sources.
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An infinite number of other second-order statistics (i.e., expectation values containing two powers of shear) can be con-
structed, such as the aperture-mass variance (Schneider et al., 1998), ring statistics (Schneider and Kilbinger, 2007), and
finite-interval orthogonal basis decompositions (a.k.a. COSEBIs, Schneider et al., 2010). These alternative statistics were in-
troduced because they have useful properties from the point of view of data processing or systematics control – e.g., for
separation of E and B modes, or restriction to a particular range of scales – but all of them are expressible as integrals over
the power spectrum or correlation function.

Formulas such as (73) and (77) may be generalized to the full sky, as was first done for CMB polarization (Kamionkowski
et al., 1997; Zaldarriaga and Seljak, 1997), but for cosmic shear most applications involve small angular scales where the
flat-sky approximation suffices.36

Having built the formalism to describe the statistics of weak lensing, we can now consider the proposed ways of using it
to measure cosmology. Somemethods will depend only on the expansion history of the universe, while others are sensitive
to the growth of perturbations.

5.2.4. Method I: cosmic shear power spectrum*
The conceptually simplest approach to using WL is to collect a sample of source galaxies, obtain an estimator for the

shear at each galaxy, measure the correlation function or power spectrum, and do a comparison to Eq. (73). Of course not
all galaxies are at the same redshift, but there is a probability distribution of distances p(DC ), and the observed mean shear
in a particular region of sky is then

γ+,×(θ) =

 DC,max

0
p(DC )γ+,×(DC , θ) dDC , (78)

whereDC,max is the comoving distance to the farthest galaxy in the slice. The power spectrumof this field can then bewritten
as

CEE(l) =

 DC,max

0
[Weff(DC1)]

2 Pδ(k = l/DA1)

D2
A1

dDC1. (79)

This is similar to Eq. (73) withW replaced by an effective window function,

Weff(DC1) =

 DC,max

0
p(DC )W (DC1,DC ) dDC , (80)

which is simply the usual window function appropriately weighted over the source galaxies.
The cosmic shear power spectrum CEE(l) is sensitive to many cosmological parameters. Being an integral over the matter

power spectrum, it is ∝ σ 2
8 in the linear regime, although its behavior in the non-linear regime is closer to ∝ σ 3

8 . It also
contains two powers of Ωm, so we expect that the most important dependences in the problem are that the WL power
spectrum scales as ∼Ω2

mσ
3
8 . This is qualitatively correct, but the matter power spectrum and the mapping between DA and

DC at finite redshift contain sensitivities to all of the cosmological parameters, and so a full answer to the question ‘‘what
does the shear power spectrum constrain?’’ requires us to actually do the integral to obtain CEE(l).

The sensitivity to every parameter is both a virtue of the WL power spectrum and its greatest fault: the featureless WL
power spectrum contains too many parameter degeneracies. One way to break these degeneracies is to combine WL with
other probes, as discussed in Section 8. However, there are also ways of using WL that provide additional information and
break these degeneracies internally, as we now discuss.

5.2.5. Method II: power spectrum tomography*
We can improve on the WL power spectrum constraints if we can split the source galaxies into redshift slices. In most

practical cases, this would be done with photometric redshifts. In this case, instead of having a single power spectrum, we
have N(N + 1)/2 power spectra and cross-spectra; if we denote the slices by α, β ∈ {1, 2, . . . ,N}, then these spectra are

CαβEE (l) =


Weff,α(DC1)Weff,β(DC1)

Pδ(k = l/DA1)

D2
A1

dDC1, (81)

where Weff,α is the effective window function for the α slice. Note that because the window functions are multiplied,
this power spectrum depends only on the matter power spectrum at redshifts closer than that of the nearby slice, i.e. at
z < min{zα, zβ}. This makes sense because a given lens structure must be in front of both sources to contribute to the shear
cross-correlation. Lensing analysis that splits samples by redshift and uses the redshift scalings to constrain cosmology is
known as tomography.

36 The leading order curved sky correction is the replacement of the scalar wavenumber |l| with
√
l(l + 1), where here ‘‘l’’ is the spherical multipole

number. Further corrections are of the order of 1/l2 and are most important for the lowest multipoles.
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Fig. 16. The E-mode shear power spectra predicted for theWMAP 7-year best fit cosmology (Ωm = 0.265, σ8 = 0.8,H0 = 71.9 km s−1 Mpc−1). The curves
show power spectra for sources at z = 0.5 (bottom), 1.0, and 2.0 (top). The diagonal line shows the shot noise contribution at a source density of neff = 10
galaxies per arcmin2; for this power spectrum measurement the shot noise scales as n−1

eff . At small scales, where the noise power spectrum exceeds the
signal, it is not possible to measure individual structures in the weak lensing map. However, with sufficient sky coverage, high-S/N measurement of the
power spectrum or correlation function is still possible (see Section 5.4.1, particularly Eq. (96)).

Like the shear power spectrum, the tomographic spectra are sensitive to both the background geometry and the growth
of structure: the shear power spectrum at l depends on the DC (z) relation, on Pδ(k = l/DA; z) as a function of redshift, and
on the curvature K .37 With a single power spectrum CEE(l) there is no hope of disentangling these functions with WL alone.
Onemight hope that having the tomographic cross-spectra as a function of zα and zβ would allow the relevant degeneracies
to be broken. Unfortunately, such a program runs into three problems:

• A real WL survey has a maximum source redshift, and there is obviously no sensitivity to structures farther than this.
• There exist exact degeneracies among {DC (z), Pδ(k = l/DA; z), K} that lead to exactly the same lensing power spectra for

all (l, zα, zβ). The most obvious of these is the re-scaling degeneracy: since lensing measures only dimensionless shears,
it cannot measure the absolute distance scale, only distance ratios. Two other degeneracies are discussed by Bernstein
(2006); see also Section 5.2.7.

• The broad, smooth nature of the lensing window functionsWeff,α(DC ) implies near-degeneracies between power spectra
at adjacent redshifts. For example, if one were to test a nonstandard cosmology in which Pδ(k, z) had a rapid oscillation
in z superposed on the expected evolution, the rapid oscillation would contribute little to Eq. (81) and would be easily
buried by statistical or systematic errors.

Despite these drawbacks, tomographic power spectra have far fewer parameter degeneracies than the shear power spectrum
alone. More importantly, havingN(N +1)/2 power spectra providesmany additional opportunities for internal consistency
tests and rejection of systematic errors.

Some examples of theoretical tomographic power spectra are shown in Fig. 16.

5.2.6. Method III: galaxy–galaxy lensing*
A third way to use weak lensing is to look not just at the shear power spectrum but at its correlationwith the distribution

of foreground galaxies. This subject is known as galaxy–galaxy lensing (GGL), and it is a powerful probe of the relation
between dark matter and galaxies. The angular cross-power spectrum between the galaxies in one redshift slice α (the
‘‘foreground’’ or ‘‘lens’’ slice) and the E-mode shear in a more distant slice β (the ‘‘background’’ or ‘‘source’’ slice) is defined
by

⟨δ̃α∗

g (l)γ̃
β

E (l
′)⟩ = (2π)2CαβgE (l)δ

(2)(l − l′), (82)

where δαg is the 2-dimensional projected galaxy overdensity and δ̃αg is its Fourier transform, and α and β represent redshift
slices. It can be computed via Limber’s equation as

CαβgE (l) =


pα(DC1)Weff,β(DC1)

Pgδ(k = l/DA1)

D2
A1

dDC1, (83)

37 There is also a factor of ΩmH2
0 in the window functions, but for now we will assume this combination has been measured accurately from the CMB.

Our forecasts in Section 8 marginalize over the uncertainty in this combination, which matters at the precision of Stage IV experiments.
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where Pgδ(k) is the 3-dimensional galaxy–matter cross-spectrum. The real-space correlation function of galaxy density and
shear is

Cαβg+(ϑ) = −


∞

0
CαβgE (l)J2(lϑ)

l dl
2π
. (84)

In the case where the foreground galaxy slice (α) is narrow – either due to use of spectroscopic foregrounds or high-quality
photo-zs – the probability distribution in Limber’s equation (Eq. (83)) becomes a δ-function, and the galaxy–matter cross-
spectrum can be obtained.

One can also measure GGL by computing the mean tangential shear (i.e., shear in the direction orthogonal to the lens–
source vector) of background galaxies around foreground galaxies as a function of radius. This view of the measurement is
taken in many papers, but it is (almost) mathematically equivalent to correlating the shear field of the background galaxies
with the density field of the foreground galaxies.

From the perspective of dark energy studies, the principal advantage of GGL over the shear power spectrum is observa-
tional: the shear is being correlated with galaxies rather than itself. A spurious source of shear, e.g. from imperfections in
the PSF model, is a source of systematic error in the shear power spectrum, but in GGL it is only a source of noise because it
is equally likely to arise in regions of high and low foreground galaxy density. The principal disadvantage of GGL is that its
interpretation requires assumptions about the galaxies, which must ultimately be justified empirically.

Galaxy–galaxy lensing can be used in the linear, the weakly non-linear, and the fully non-linear regimes:

• Linear regime: In the linear regime, the galaxy–matter cross spectrum is Pgδ(k) = bPδ(k), where b is the galaxy bias factor.
Thus CαβgE (l) is proportional to bσ 2

8 , whereas the galaxy power spectrum is proportional to (bσ8)2. This provides a way to
measure the linear bias of the galaxies and hence obtain σ8. Unfortunately, onemust reach very large scales (tens ofMpc)
for linear perturbation theory to be valid at the few percent level of accuracy, and at these scales the signal-to-noise ratio
of current GGL results is very low.

• Weakly non-linear regime: At scales of order ∼10 h−1 Mpc, non-linear effects simply represent a correction to the linear
theory, and one might hope that a judicious combination of observables can remove them. The key is to note that when
stochasticity between galaxy and matter densities is included, the GGL signal is proportional to brσ 2

8 , where r is the
galaxy–matter cross-correlation coefficient, so all we require to extract b and σ8 individually from GGL and galaxy
clustering observables is a theoretical prediction for the stochasticity. This is a convenient result because simulations
show that r = 1 is a much better approximation in the weakly non-linear regime than b = constant. This type of
analysis is also best done in real space rather than Fourier space so that the 1-halo contributions (see Section 2.3) to both
clustering and lensing can be eliminated. A specific outline for how to do this, including the next-order perturbation
theory corrections to r = 1 and comparison to simulations, is presented by Baldauf et al. (2010).

• Fully non-linear regime: GGL canbeused on the scale of individual halos (k ∼ 1–10Mpc−1) to relate galaxy properties such
as luminosity, color, and stellar mass to the properties of the host dark matter halo. Such relations cannot be predicted
ab initio because of the complicated astrophysics involved. Empirical constraints on these relations are useful for dark
energy studies mostly because they enable us to test some of the underlying assumptions of galaxy clustering models.
To gain some cosmological power beyond the weakly non-linear regime, one can construct full galaxy HOD models and
marginalize over their parameters, using both GGL and galaxy clustering as constraints (Yoo et al., 2006; Leauthaud
et al., 2011, 2012). Within the weakly non-linear regime, this approach effectively uses the HOD fits to compute the
scale-dependence of br , drawing on the information in the small-scale galaxy clustering to improve the constraints.

Yoo and Seljak (2012) provide an extensive discussion of the cosmological constraints that can be derived from the
combination of GGL and galaxy clustering, on small and large scales, in the simplified casewhere one isolates the population
of central galaxies, so that there is one galaxy per dark matter halo.

Cluster–galaxy lensing is similar to GGL, but one takes clusters of galaxies rather than individual galaxies as the reference
points (Mandelbaum et al., 2006; Sheldon et al., 2009).Wewill discuss this idea further in Section 6, arguing that it offers the
most reliable route to calibrating clustermass–observable relations andhas the potential to sharpen cosmological parameter
constraints significantly. Cluster–galaxy lensing may also be a useful tool for calibrating uncertainties in shear calibration
and photometric redshifts, since the shear signal in the cluster regime is stronger and the cluster photometric redshifts
themselves are usually well determined.

5.2.7. Method IV: cosmography*
The previous sections motivate us to ask whether there is a way to combine the observational advantages of GGL with

the model independence of the shear power spectrum. There is, although there is a large price to pay: one can only obtain
geometrical information.

The idea is to consider narrow slices of galaxies centered at redshifts zα < zβ < zγ and measure the lensing of galaxies
in slices zβ and zγ by galaxies in the foreground slice zα . The ratio of the galaxy-shear cross-spectra is, using Eq. (83),

CαβgE (l)

CαγgE (l)
=

cotK DC (zα)− cotK DC (zβ)
cotK DC (zα)− cotK DC (zγ )

. (85)



142 D.H. Weinberg et al. / Physics Reports 530 (2013) 87–255

One can see that all dependence on the power spectra and the distribution of galaxies has been canceled, allowing a purely
geometric test of cosmology. This is called the cosmography or shear-ratio test (Jain and Taylor, 2003; Bernstein and Jain,
2004).

One can see from Eq. (85) that cosmography can determine the cotK DC (z) relation up to any affine transformation,
i.e. transformations of the form

cotK DC (z) → a0 + a1 cotK DC (z), (86)

which leave the ratios of differences of cotK DC (z)s unaffected. (Recall that cotK DC = 1/DC in a flat universe.) It is clear that
a1 is the familiar overall rescaling degeneracy: cosmography measures only dimensionless ratios and cannot distinguish
two models with different H0 but the same values ofΩm,w, etc. Precisely the same degeneracy afflicts the supernova DL(z)
relation because the absolute magnitude of a Type Ia supernova is not known a priori. The a0 degeneracy is trickier, arising
from the fact that∞ is not a special distance in lensing problems.38 Finally, since only cotK DC (z) is measured, cosmography
cannot by itself provide a model-independent measurement of the curvature of the universe. But aside from these three
degeneracies – a1, a0, and K – the entire geometry of the universe over the range of redshifts observed is measurable.

Unfortunately, the aforementioned degeneracies are similar in functional form to the effects ofΩm andw, and they have
severely limited the application of cosmography thus far. This is particularly true for observations restricted to low redshift:
if one Taylor expands the distance as tanK DC (z) = c1z + c2z2 + c3z3 + · · · then any cosmological model is degenerate
with one that has (c1, c2) = (1, 0), and hence one must go through at least the z3 term before cosmography provides any
useful information. For example, at (zα, zβ , zγ ) = (0.25, 0.35, 0.70), the difference in the shear ratio (Eq. (85)) between an
Ωm = 0.3 flat ΛCDM cosmology and a pure CDMΩm = 1 cosmology is only 1%! In early work (Mandelbaum et al., 2005)
cosmography was therefore used as a test for shear systematics rather than a cosmological probe.

The outlook for cosmography is much brighter as we probe to larger redshifts, or if we consider dark energy models
with complicated redshift dependences that cannot be mimicked by the degeneracy of Eq. (86). A particularly promising
possibility is to use cosmography with lensing of the anisotropies in the CMB (z = 1100) to obtain a much longer lever
arm (Acquaviva et al., 2008). In principle one can also apply the cosmography method to strong gravitational lenses (see
Section 7.10 below). Here the challenge is that different sources probe different locations in the lens, so one must be able to
constrain the lens potential extremely well to extract useful cosmographic constraints.

5.2.8. Method V: non-Gaussian statistics*
The primordial density fluctuations in the universe were very nearly Gaussian, as evidenced by the CMB. In this case, the

fluctuations are fully described by the power spectrum, and this has become the common language of CMB observations.
However, non-linear evolution makes the matter fluctuations and hence the lensing shear in the low-redshift universe
highly non-Gaussian on small and intermediate scales. Therefore, many other statistical measures of the shear field have
been proposed, the most popular of which is the bispectrum.

The bispectrum is obtained by taking the product of three Fourier modes:

⟨γ̃ αE (l1)γ̃
β

E (l2)γ̃
γ

E (l3)⟩ = (2π)2BαβγEEE (l1, l2, l3)δ
(2)(l1, l2, l3). (87)

Statistical homogeneity forces the three wave vectors involved to sum to zero so the bispectrum is actually a function
of the triangle configuration; rotational and reflection symmetry then tell us that it depends only on the side lengths
(l1, l2, l3),39 which must satisfy the triangle inequality. Because there are 2 shear modes (E and B), there are actually 4
types of bispectrum: EEE, EEB, EBB, and BBB, but only EEE can be produced cosmologically. Limber’s equation expresses it in
terms of the 3-dimensional matter bispectrum,

BαβγEEE (l1, l2, l3) =


Weff,αWeff,βWeff,γ

Bδ(l1/χ, l2/χ, l3/χ)
D4
A1

dDC1. (88)

The bispectrum contains information equivalent to the shear 3-point correlation function. The theory of transformations
between the two and the implied symmetry properties have been extensively studied (Zaldarriaga and Scoccimarro, 2003;
Schneider and Lombardi, 2003; Takada and Jain, 2003; Schneider et al., 2005). Halo model based descriptions of the 3-point
function are also available (e.g. Cooray and Hu, 2001).

The original motivation to study the WL shear bispectrum was to break the degeneracy between Ωm and σ8
(e.g. Bernardeau et al., 1997; Hui, 1999; Takada and Jain, 2004). At low redshift, and on large scales where perturbation the-
ory applies, the WL power spectrum is proportional toΩ2

mσ
2
8 , whereas the bispectrum is proportional toΩ3

mσ
4
8 ; it contains

three powers of the shear and hence three powers ofΩm, but the matter bispectrum is generated by non-linear interactions
and is proportional to the square of thematter power spectrum, i.e., to σ 4

8 rather than σ 3
8 . Unfortunately, this route to degen-

eracy breaking has proven difficult because of the low signal-to-noise ratio and high sampling variance of the bispectrum

38 This is the same reason that the ‘‘∞’’ setting on the focus knob for a camera is not special.
39 The EEB and BBB bispectra flip sign under reflections of the triangle, and some convention, e.g. that the sides are given in counterclockwise order, must
be imposed to avoid ambiguity.



D.H. Weinberg et al. / Physics Reports 530 (2013) 87–255 143

and because the degeneracy directions of the power spectrum and bispectrum are almost parallel in the (Ωm, σ8) plane. A
more interesting application of the WL bispectrum in future surveys may be as a constraint on modified gravity theories,
though this has not yet been well studied.

5.3. The current state of play

Weak lensing as a cosmological probe is only a decade old, although the ideas go back much further. Zwicky (1937)
famously suggested gravitational lensing as a tool to determine cluster masses (although the discussion focused on strong
lensing).We separately consider here themore recent history of cosmic shear studies, and of galaxy–galaxy lensing as a cos-
mological probe. Also the techniques and applications associatedwith lensing outside the optical bandpasses are sufficiently
different that we place them in a separate section. Lensing by clusters is considered in the cluster section (Section 6).

5.3.1. Cosmic shear
Kristian (1967) described an initial attempt to measure statistical cosmic shear using photographic plates taken on the

Palomar 5 m telescope. He even correctly identified intrinsic alignments as a systematic error, and noted that the distance
dependence could be used to separate them from true cosmic shear. Interestingly, the objective of this analysis was to search
for cosmological-scale gravitational waves or other large-scale anisotropies (Kristian and Sachs, 1966). The author set a limit
on themagnetic part of theWeyl tensor40 of. 200H−2

0 , which he describes as ‘‘about the best that can be donewith this kind
of measurement’’. Fortunately this has not remained the case — indeed it was improved upon by two orders of magnitude
by Valdes et al. (1983).

The modern era of lensing studies was introduced by the availability of arrays of large-format CCDs. Mould et al. (1994)
searched for cosmic shear and reached percent-level sensitivity, but did not detect a signal. Cosmic shear was finally
detected in 2000 by several groups (Wittman et al., 2000; Bacon et al., 2000; Van Waerbeke et al., 2000), and in deeper
but narrower data from HST (Rhodes et al., 2001; Refregier et al., 2002). Over the same period, several additional square
degrees were observed with long exposure times in excellent seeing using ground-based telescopes (Van Waerbeke et al.,
2001, 2002; Bacon et al., 2003; Hamana et al., 2003). The first wide-shallow surveys were also carried out from the ground:
the 53 deg2 Red-Sequence Cluster Survey (Hoekstra et al., 2002) and the 75 deg2 CTIO survey (Jarvis et al., 2003). These
studies established the existence of cosmic shear, but at a level far below that which would be expected inΩm ∼ 1 models
normalized to the CMB. The large error bars in early studies meant that only a single amplitude could be measured, yielding
a constraint on the combination σ8(Ωm/0.3)ν , where the exponent ν varied between 0.3 and 0.7 depending on the scale and
depth. In the first detection of the cosmic shear bispectrum, achieved with the VIRMOS-DESCART survey, Pen et al. (2003)
measured the skewness of the filtered shear signal and used it in combination with the power spectrum to rule out large-
Ωm, low-σ8 solutions, findingΩm < 0.5 at 90% confidence. The deep COMBO-17 survey first detected the evolution of σ8 as
a function of cosmic time (Bacon et al., 2005).

However, the early studies of cosmic shearwere not free of trouble. As one can see from Table 3, whilemost were broadly
in agreement with σ8 in the 0.7–0.9 range, a detailed comparison shows that themeasurements were not all consistent. This
discrepancy stimulated discussions about a number of possible ancillary issues with the data, such as the role of intrinsic
alignments, whether the source redshift distribution N(z) was properly calibrated, and whether the models for the non-
linear power spectrumand assumptions about the P(k) shapeparameterΓ could be leading to discrepancies.More seriously,
most of the early measurements contained B-mode signals at levels not far below the E-mode. This was a clear signal of
contamination of non-cosmological origin, probably PSF correction residuals. Also, intrinsic alignments of galaxies were
detected at high significance even in the linear regime, at a level that represented a potentially serious systematic error
even for then-ongoing surveys (Mandelbaum et al., 2006).

It was clear by 2006 that weak lensing was a very hard observational problem and that a great deal of work lay ahead
to turn it into a precision cosmological probe. This resulted in a reduction in the rate of new cosmic shear results, the
reorganization of the field into larger teams, and detailed looks at systematic errors ranging from optical distortions in
telescopes to intrinsic galaxy alignments. Several wide-field optical surveys were ongoing at the time, including the deep
170 deg2 CFHT Legacy Survey (forwhich cosmic shearwas a key science driver) and the very deepmultiwavelength COSMOS
survey with high-resolution optical imaging from HST /ACS (Massey et al., 2007b; Schrabback et al., 2010). The CFHTLS
presented some early results (Hoekstra et al., 2006; Semboloni et al., 2006a; Fu et al., 2008), but following this there was a
rather bleak period of time. No new ground-basedwide-field cosmic shear results were published, and no new large surveys
were undertaken with HST, nor do future large HST weak lensing surveys seem likely.41

In the past five years, however, great progress has been made in overcoming the difficulties that at first appeared so
daunting. The community made a massive investment in algorithms to determine and correct for PSF ellipticities (we will

40 Equivalent to ∼ω2h, where ω is the gravitational wave frequency and h is the strain.
41 The premier lensing instrument on theHST (the Advanced Camera for Surveys) failed in January 2007.While its wide-field channel was restored during
the 2009 servicingmission, the sky coverage possiblewith ACS is not competitivewith next-generation ground-based surveys, and it seemsunlikely amajor
cosmic shear program will be undertaken with HST. Rather, the next major steps in space-based cosmic shear will likely be the Euclidmission planned for
2020 and theWFIRST mission planned for the early 2020s.
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Table 3
A summary of cosmic shear results from the literature obtained in the optical. Note that some of these results are independent analyses or extensions of
previous data sets and hence are not independent.

Reference Telescope/instrument Area (deg2) Number of galaxies Result

Bacon et al. (2000) WHT/EEV-CCD 0.5 27k σ8 = 1.5 ± 0.5 (@Ωm = 0.3)
VanWaerbeke et al. (2000) CFHT/UH8K+CFH12K 1.75 150k Detectiona

Wittman et al. (2000) Blanco/BTC 1.5 145k Detectionb

Rhodes et al. (2001) HST/WFPC2 0.05 4k σ8(Ωm/0.3)0.48 = 0.91+0.25
−0.30

VanWaerbeke et al. (2001) CFHT/CFH12K 6.5 400k σ8(Ωm/0.3)0.6 = 0.99+0.08
−0.10 (95%CL)c

Hoekstra et al. (2002) CFHT/CFH12K +Blanco/Mosaic II 53 1.78M σ8(Ωm/0.3)0.55 = 0.87+0.17
−0.23 (95%CL)

Refregier et al. (2002) HST/WFPC2 0.36 31k σ8 = 0.94 ± 0.14 (@Ωm = 0.3,
Γ = 0.21)

Bacon et al. (2003) Keck II/ESI +WHT 1.6 σ8(Ωm/0.3)0.68 = 0.97 ± 0.13
Brown et al. (2003) MPG ESO 2.2m/WFI 1.25 σ8(Ωm/0.3)0.49 = 0.72 ± 0.09d,e

Jarvis et al. (2003) Blanco/BTC+Mosaic II 75 2M σ8(Ωm/0.3)0.57 = 0.71+0.12
−0.16 (2σ )

Hamana et al. (2003) Subaru/SuprimeCam 2.1 250k σ8(Ωm/0.3)0.37 = 0.78+0.55
−0.25 (95%CL)

Rhodes et al. (2004) HST/STIS 0.25 26k σ8(Ωm/0.3)0.46(Γ /0.21)0.18 =

1.02 ± 0.16
Heymans et al. (2005) HST/ACS 0.22 50k σ8(Ωm/0.3)0.65 = 0.68 ± 0.13
Massey et al. (2005) WHT/PFIC 4 200k σ8(Ωm/0.3)0.5 = 1.02 ± 0.15
Hoekstra et al. (2006) CFHT/MegaCam 22 1.6M σ8 = 0.85 ± 0.06 @Ωm = 0.3
Semboloni et al. (2006a) CFHT/MegaCam 3 150k σ8 = 0.89 ± 0.06 @Ωm = 0.3
Benjamin et al. (2007) Variousg 100 4.5M σ8(Ωm/0.3)0.59 = 0.74 ± 0.04
Hetterscheidt et al. (2007) MPG ESO 2.2m/WFI 15 700k σ8 = 0.80 ± 0.10 @Ωm = 0.3
Massey et al. (2007b) HST/ACS 1.64 200k σ8(Ωm/0.3)0.44 = 0.866+0.085

−0.068
Schrabback et al. (2007) HST/ACS 0.4 100k σ8 = 0.52+0.11

−0.15(stat)±0.07(sys) @
Ωm = 0.3f

Fu et al. (2008) CFHT/MegaCam 57 1.7M σ8(Ωm/0.3)0.64 = 0.70 ± 0.04
Schrabback et al. (2010) HST/ACS 1.64 195k σ8(Ωm/0.3)0.51 = 0.75 ± 0.08
Huff et al. (2011) SDSS 168 1.3M σ8 = 0.636+0.109

−0.154 @Ωm = 0.265h

Lin et al. (2012) SDSS 275 4.5M σ8(Ωm/0.3)0.7 = 0.64+0.08h
−0.12

Jee et al. (2013) Mayall+CTIO/Mosaic 20 1M σ8 = 0.833 ± 0.034i

Kilbinger et al. (2013) CFHT/MegaCam 154 4.2M σ8(Ωm/0.27)0.6 = 0.79 ± 0.03
a Consistent withΩm = 0.3 (Λ or open), cluster normalized;Ωm = 1, σ8 = 1 excluded.
b Consistent withΛCDM or OCDM, but not COBE normalizedΩm = 1.
c Reanalysis by Van Waerbeke et al. (2002) gives σ8 = 0.98 ± 0.06 (Ωm = 0.3, Γ = 0.2, 68%CL).
d Reanalysis by Heymans et al. (2004) to correct for intrinsic alignments gives σ8(Ωm/0.3)0.6 = 0.67 ± 0.10.
e Bacon et al. (2005) used a subset of this data to show that the matter power spectrum increased with time.
f In the Chandra Deep-Field South; the authors warn that this field was selected to be empty, hence σ8 may be biased low.
g A combination of 4 previously published surveys.
h Both based on the same raw SDSS data, but with analyses and reduction pipelines by 2 different groups.
i Other parameters fixed to WMAP 7-year values.

review some of these in Section 5.5), and in investigating the physics that determines the PSF, including such complications
as atmospheric turbulence (Heymans et al., 2012a). Equally important, these methods were tested in public challenges on
simulated data (STEP1, Heymans et al., 2006; STEP2, Massey et al., 2007a; GREAT08, Bridle et al., 2010; GREAT10, Kitching
et al., 2010; see further discussion in Section 5.5). Progress was also made on astrophysical systematic errors. We learned
that large-scale intrinsic galaxy alignments are strongest for luminous red galaxies (Hirata et al., 2007; Mandelbaum et al.,
2011), and that the linear alignmentmodel, once considered a crude analytical tool (Catelan et al., 2001), is in fact an excellent
description of the observations of early-type galaxies at ≥ 10h−1 Mpc scales (Blazek et al., 2011).

As a result of this great effort by the community, the Stage II weak lensing results are finally coming to fruition and
yielding large data sets that pass the standard systematics tests (e.g., B-modes consistent with zero). Two groups (Lin et al.,
2012; Huff et al., 2011) have performed a cosmic shear measurement using the Sloan Digital Sky Survey deep co-added
region — a 120-deg long stripe observed many times over the course of three years as part of the SDSS-II supernova survey.
These analyses used different methods to co-add their data and correct for the PSF ellipticity, and they imposed different
selection cuts and hence had different redshift distributions, yet the results were in agreement (and slightly more than 1σ
below the WMAP prediction for σ8). The largest of the Stage II weak lensing programs was the CFHT Legacy Survey. After
a thorough analysis, the lensing results and cosmological implications were recently published (Heymans et al., 2012b;
Benjamin et al., 2013; Erben et al., 2012; Kilbinger et al., 2013; Miller et al., 2013). They appear consistent with the standard
ΛCDM cosmology with WMAP-derived initial conditions, with the amplitude σ8 measured to ±0.03.

A summary of the current status of optical cosmic shear results is shown in Table 3.

5.3.2. Galaxy–galaxy lensing as a cosmological probe
Like cosmic shear, galaxy–galaxy lensing is an old idea. The earliest astrophysically interesting upper limit was that

of Tyson et al. (1984), who used the images of 200,000 galaxies measured by the now-obsolete method of digitizing
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photographic plates to exclude extended isothermal halos with vc > 200 km s−1 around an apparent magnitude-limited
sample of galaxies. Galaxy–galaxy lensing was observed at ∼4σ by Brainerd et al. (1996), the first clear detection of
cosmological weak lensing. Their analysis used a total of 3202 lens–source pairs in a field of area 0.025 deg2. Several other
detections followed this in deep surveys with limited sky coverage (Hudson et al., 1998; Smith et al., 2001; Hoekstra et al.,
2003). However the full scientific exploitation of the galaxy–galaxy lensing signal – in contrast to cosmic shear – favors
wide-shallow surveys over deep-narrow surveys, since the S/N in the shape-noise limited regime scales as only n̄1/2

source
rather than n̄source. Therefore, in the decade of the 2000s the leading galaxy–galaxy lensing surveys became the 92 deg2
Red-Sequence Cluster Survey (RCS; Hoekstra et al., 2004, 2005; Kleinheinrich et al., 2006) and eventually the 104 deg2 SDSS
(references below). The availability of spectroscopic redshifts in the latter allowed the signal from low-redshift galaxies to be
stacked in physical rather than angular coordinates, enabling the detection of features as a function of transverse separation.
The spectroscopic survey also provided detailed environmental information, measures of star-formation history, and full
3-dimensional clustering data (e.g., correlation lengths and redshift-space distortions) for the lens galaxies.

The SDSS remains the premier galaxy–galaxy lensing survey today, for both galaxy evolution and cosmology applications,
and it likely will remain so until DES and HSC results become available. The SDSS Early Data Release, comprising only a few
percent of the overall survey, already detected the galaxy–galaxy lensing signal with high significance (Fischer et al., 2000;
Mckay et al., 2001). Some of the major results of cosmological importance from the SDSS galaxy–galaxy lensing program
have been:

• The galaxy bias can be constrained directly by going to the very largest scales and measuring galaxy–galaxy lensing in
the 2-halo regime. By dividing the galaxy clustering signal by the galaxy-mass correlation function, Sheldon et al. (2004)
found for L∗ galaxies a bias of b = (1.3 ± 0.2)(Ωm/0.27)r , where r is the stochasticity (presumably ∼1 at the largest
scales), with no evidence of scale dependence.42 ,43

• The measurement of halo masses – or more accurately, HOD parameters (see Section 2.3) – with galaxy–galaxy lensing
also enables one to predict the galaxy bias, by using the bias–mass relation b(M). One can in principle use this to
constrain cosmological parameters, since the clustering of the lens galaxies can be measured and hence one can obtain
σ8,gal ≡ bσ8. The results of this analysis on 300,000 lens galaxies at z ∼ 0.1 were presented by Seljak et al. (2005). The
direct constraints on σ8 itself (with other parameters fixed) were uninteresting because the inferred bias at fixed halo
mass is a decreasing function of σ8, and the observable product σ8b is almost independent of σ8. However, cosmological
parameters that change the shape of the power spectrum can be constrained quite well — e.g., a decrease in small-scale
power canmake halos rarer and hence decrease bwithout a compensating change inσ8. This breaks degeneracies internal
to the CMB alone. Combining with first-year WMAP data, Seljak et al. (2005) found that for the case of three degenerate
neutrinos one must have


mν < 0.54 eV (95%CL).

• The halo mass–concentration relation c(M) (e.g., Bullock et al., 2001) is not in and of itself especially useful as a dark
energy probe; it depends somewhat on Ωm, but also on baryonic physics. Nevertheless, testing it is important for any
cosmological application of the 1-halo regime, including cosmic shear (King andMead, 2011), and galaxy–galaxy lensing
is well suited to measuring it at a range of halo masses. (For clusters other techniques are available, such as strong
lensing or X-raymeasurements.)Mandelbaumet al. (2008)measured this relation across the 1012–1015M⊙ range, finding
c200b(M) = (4.6±0.7)M−0.13±0.07

14 , whereM is the halomass in units of 1014h−1M⊙. The normalization is about 2σ below
the theoretical predictions, but the discrepancy may well be a statistical accident, particularly given that other methods
have led to larger concentrations.

• Reyes et al. (2010) tested GR by comparing the galaxy-mass correlation function, measured via weak lensing, to the
galaxy-velocity correlation function, measured via redshift-space distortions. The SDSS luminous red galaxy sample was
chosen due to its large volume. This measurement requires an overlapping spectroscopic and WL survey. They find
that

EG =
Υgm(R)
βΥgg(R)

= 0.39 ± 0.06, (89)

where Υ is a filtered correlation function (averaged over scales R = 10–50h−1 Mpc) and β is the redshift-space
distortion parameter of Eq. (43). The combination EG is equal to Ωm/f (z) at the redshift of the lenses, for which GR
predictsΩ0.45

m (z = 0.32) = 0.408 ± 0.029. This measurement establishes that the peculiar velocities of galaxies are, to
∼15% precision, in agreement with expectations based on the potential structure traced by lensing.

All of these measurements will become possible with much smaller error bars once the Stage III WL experiments are
operational. We look forward in particular to much smaller error bars on b/r and EG derived from the largest scales, as
well as improvements on c(M).

42 Since lensing measures δρ rather than δρ/ρ, there is a factor ofΩm in this measurement.
43 A re-analysis with the final SDSS imaging data set and improved treatment of the stochasticity is underway.
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5.3.3. Lensing outside the optical bands
All wavelengths of light are gravitationally lensed. The optical44 is not special in this regard — rather, the emphasis on

optical wavelengths has been technological, as this is the cheapest band in which to observe and resolve large numbers
of galaxies at cosmological distances and obtain some redshift information. However, advances in technology in other
wavebands have resulted in weak lensing being detected at several other wavelengths:

• In the radio, kilometer-scale interferometers are required to resolve extragalactic sources, and at the present time one
cannot obtain a radio photo-z because of the featureless synchrotron spectra. However, Chang et al. (2004) detected
cosmic shear of extended radio sources using the Very Large Array FIRST survey.

• Lensing of the CMB has been of interest for some time as it provides the most distant possible source screen. The first
search was carried out in cross-correlation by Hirata et al. (2004) using luminous red galaxies in SDSS as the lenses and
WMAP temperature anisotropies as the sources. The signal was detected three years later with combinations of SDSS
and NVSS data, and two additional years of WMAP data (Smith et al., 2007; Hirata et al., 2008). Recently, the Atacama
Cosmology Telescope (ACT) carried out a cosmic shear autocorrelation analysis using the CMB as a source and detected
the signal at 4σ (Das et al., 2011). While apparently weak, this measurement shows thatΩΛ > 0 using CMB data alone,
without assuming a flat universe (Sherwin et al., 2011). The ACT and South Pole Telescope (SPT) collaborations are next
planning polarization surveys, which should yield much higher S/N detections of lensing and provide constraints on the
neutrino mass.

5.4. Observational considerations and survey design

5.4.1. Statistical errors
The forecasting of statistical errors on the cosmological parameters is much more involved for WL than for supernovae

or BAO because of the complex dependence of the observables on the underlying model. Nevertheless, some intuition can
be gained by making approximations to enable exact evaluation of the integrals. Specifically, we assume (i) a single source
redshift zs; (ii) a power-law matter power spectrum,

Pδ(k, z) = 4.2 × 10−4σ 2
8H

−3
0 G2(z)(k/H0)

−1.3, (90)

where the slope k−1.3 is chosen to match that of the ΛCDM power spectrum at a scale of ∼10 Mpc and the normalization
is chosen to give the correct σ8; (iii) evaluation of the normalization (1 + z)G(z) not at the true lens redshift zl (over which
we integrate from 0 to zs) but at a ‘‘typical’’ lens redshift zs/2; and (iv) a flat universe. Then Eq. (73) gives

CEE(l) = 1.1 × 10−3σ 2
8


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zs
2


G
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2
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m[H0DC (zs)]2.3l−1.3. (91)

The variance per logarithmic range in l is

∆2(l) ≡
l2

2π
CEE(l) = 1.8 × 10−4σ 2
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
G
 zs
2

2
Ω2

m[H0DC (zs)]2.3l0.7; (92)

this is a measure of the shear variance at a particular angular scale θ ∼ l−1. Recall that (1 + z)G(z) varies from ≈0.75 at
z = 0 to one at high redshift (see Fig. 3). Since H0 enters only in the combination H0DC (z), and DC (z) ∝ H−1

0 , we see again
that the WL signal depend on relative rather than absolute distances.

In practice, Eq. (92) is only a rough guide because of deviations of Pδ(k) fromapower law and the non-linear enhancement
of the matter power spectrum on small scales. Nevertheless, we can see several important features:

1. The typical shear, given by

∆2(l), is of order 1% at cosmological distances (zs ∼ 1) and degree scales (l ∼ 100). The

shear fluctuations are larger at smaller scales.
2. The shear power spectrum scales as∝ σ 2

8 . Assuming a knownbackground cosmology and source redshift, ameasurement
of the power spectrum to X% determines σ8 to an uncertainty of 1

2X%. In the non-linear regime the dependence of the
shear power spectrum is closer to σ 3

8 , so in practice the constraint on σ8 is better than Eq. (92) would suggest.
3. Alternatively, if one assumes perfect knowledge of the growth of structure (hence σ8,Ωm, andG), then the distanceDC (zs)

to the sources can be determined to an uncertainty of 1
2.3X%. Lensing thus acts as a standard ‘‘ruler’’.

4. Measuring the shear power spectrum as a function of source redshift zs allows one to measure some combination of
the growth function and the distance as functions of redshift. However, one does not measure both separately. In order
to simultaneously constrain the functional forms G(z) and DC (z), lensing must be combined with another cosmological
probe.

44 By ‘‘optical’’, we mean to include near-infrared wavelengths λ > 0.7 µm at which stars are still the dominant source of luminosity, and which are
observed through traditional optical telescopes and with detector technology based on the creation of electron–hole pairs in semiconductors.
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5. Systematic errors in any of the terms in Eq. (92) will bias the cosmology results. In particular, a 1% change in zs,
e.g. 1.00 → 1.01, changes the power spectrum by 2%. (This is the result of a full calculation, not evident by simple
inspection of the equation.) Therefore, careful estimation of the source redshift distribution is required for a WL survey
— a challenge when relying on photometric redshifts for the vast majority of sources.

The statistical uncertainty on the shear power spectrum is determined by two factors: sampling variance at low l and
shape noise at high l. Sampling variance uncertainty is associated with the fact that there are only a finite number N of
Fourier modes in the survey area, and consequently the fractional uncertainty in the power can be no smaller than

√
2/N

(where the 2 arises because power is the variance of γl, not the rms amplitude). If we measure the power spectrum in a bin
of width∆l, then the number of modes is N = 2l∆lfsky, where fsky is the fraction of the sky observed. This corresponds to a
sampling variance uncertainty

σ [CEE(l)]
CEE(l)

=
1

l∆l fsky
, sampling variance only. (93)

If we measure modes up to some lmax, there are l2maxfsky modes, and the sampling variance uncertainty in the normalization
of the power spectrum is

√
2f −1/2

sky l−1
max.

At high l, the errors on the WL power spectrum become dominated not by the number of modes available but by how
well eachmode can bemeasuredwith a finite number of galaxies. Individual galaxies are not round, and so a shear estimator
applied to a galaxy has an intrinsic scatterσγ ∼ 0.2 rms in each component of shear (γ+ or γ×), for typical galaxy populations
with rms ellipticity erms ∼ 0.4 per component. This phenomenon is known as shape noise. Since it is uncorrelated between
distinct galaxies (at least as a first approximation), shape noise produces a white noise (l-independent) power spectrum,45

C shape
EE (l) =

σ 2
γ

n̄eff
, (94)

where n̄eff is the effective number of galaxies per steradian (this is the true number of galaxies with a penalty applied for
objects where the observational measurement error on the shear becomes comparable to σγ ; see below). Since the cosmic
shear CEE(l) is decreasing with l, there is a transition scale ltr where the shape noise becomes comparable to the lensing
signal. Using Eq. (92), we estimate

ltr = 1300
 σ8
0.8
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0.77

. (95)

At angular scales smaller than θ ∼ l−1
tr , lensing cannot detect (at S/N > 1) a typical fluctuation in the density

field.46 Statistical measurements are still possible, however, and the power spectrum can be measured to an accuracy of
√
2/N C shape

EE (l)where N is the number of modes. Thus, in the shape-noise limited regime,
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
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1.3

, l > ltr. (96)

One can see from this equation that the fractional uncertainty on CEE(l) in bins of width∆l/l ∼ 1 increases with l for l > ltr.
Thereforewe arrive at the important conclusion that the power spectrum is bestmeasured at the transition scale ltr: on larger
scales sampling variance degrades themeasurement even though individual structures are seen at high signal-to-noise ratio
(SNR), and on smaller scales shape noise dominates. The aggregate uncertainty in the normalization of the power spectrum
is thus of order

σ(normalization)
normalization

∼
1

ltr

fsky
. (97)

A full-sky experiment47 reaching tens of galaxies per arcmin2 at redshifts of order unity would have ltr ∼ 1000 and so could
measure the normalization of the power spectrum to a statistical precision of order 0.1%. This would be an unprecedented
measurement of the strength of matter clustering. However, as we will see below, there are substantial statistical and
systematic hurdles to such an experiment.

Finally, we consider galaxies measured at finite SNR. In the above analysis, we assumed that each galaxy provided an
estimate of the shear with uncertainty σγ . At finite SNR there is also measurement noise σobs, so that each galaxy provides

45 We give the E-mode noise here. There is an equal amount of shape noise power in the B-mode, but the lensing B-mode is used only as a systematics
test because it contains no cosmological signal to first order.
46 High-amplitude features such as clusters may still be visible.
47 In practice the Galactic Plane must be avoided, so it is unlikely that optical astronomy would push beyond fsky ∼ 0.7 for any cosmological application.
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an estimate with error

σ 2
γ + σ 2

obs. Using inverse-variance weighting, in the finite-SNR case the shape noise becomes
Eq. (94), with the effective source density

n̄eff =
1
A

Ngal
i=1

σ 2
γ

σ 2
γ + σ 2

obs,i
, (98)

where A is the survey area and the sum is over the galaxies. This is always less than n̄ = Ngal/A. The effective source density
n̄eff is limited in part by the depth of the survey: σobs,i typically scales with integration time as ∝ t−1/2, but once σobs,i ≪ σγ
one no longer continues to gain. How long does this take? In Section 5.5.3, we will show that for nearly circular, Gaussian
galaxies48

σobs =
1
ν


1 +

r2psf
r2gal


, (99)

where rpsf and rgal are the half-light radii of the PSF and the galaxy, respectively, and ν is the detection significance (in σ s).
Thus for galaxies with a similar size as the PSF, we expect to reach σobs = 0.1 (measurement noise half of shape noise) after
integrating long enough to see the galaxy at 20σ .

In principle, the summation in Eq. (98) is over all objects detected as extended sources, and any galaxy could be used
if its detection significance is high enough. In practice, this is dangerous: while one might hope to obtain σobs = 0.1 on a
galaxy with rgal = 0.5rpsf and a 50σ detection, the ‘‘ellipticity measurement’’ on this galaxy consists of measuring the small
deviation of the image from the PSF. Such a procedure tends to magnify systematic errors in the PSF model and is usually
unadvisable. Therefore, most WL surveys impose a cutoff on rgal/rpsf or some similar property.

5.4.2. The galaxy population for optical surveys
The design of a WL survey must begin by considering the population of galaxies. We will focus here on the population

in the 3-dimensional space of redshift z, effective radius reff, and apparent AB magnitude in the I-band (a convenient choice
for shape measurement with red-sensitive CCDs from the ground). The plots shown here are based on the mock catalog
of Jouvel et al. (2009), which uses real galaxies from the COSMOS survey but fills in missing information for individual
galaxies (e.g. redshifts or line fluxes) with photo-zs and models.

Fig. 17 shows themean surface density of galaxies and themedian source redshift as a function of limitingmagnitude IAB
for effective radius cuts of 0.15′′, 0.248′′, and 0.35′′. In general, one would like to use galaxies larger than the PSF to avoid
amplification of systematics when applying a PSF correction to the shapes. The ‘‘effective radius’’ (EE50, for 50% encircled
energy) of a typical ground-based PSF is ∼0.35′′ under good conditions, corresponding to a FWHM of ∼0.7′′. The 0.248′′ cut
is a factor of

√
2 smaller, appropriate if one canmake use of galaxies smaller than the PSF or has sufficient étendue to do the

entire survey under the very best seeing conditions. Measuring galaxies at reff = 0.15′′ is well beyond present ground-based
cosmic shear survey capabilities, for both algorithmic and PSF-determination reasons, and will likely require a space (or
balloon) based platform.

5.4.3. Photometric redshifts and their calibration
Modern WL analyses all use photometric redshifts in some way. They are central to tomography and cosmography

measurements, and they are also needed in most schemes to remove the intrinsic alignment contamination. In the case
of GGL, photo-zs are used to select sources that are actually behind the lens plane (sources in front of the lens are unlensed
and dilute the signal, whereas sources at the same redshift as the lens can contribute intrinsic alignments).

One can characterize the photo-z distribution using the joint probability distribution for the photo-z zp and the true
redshift z for some sample of galaxies, P(zp, z). In the case of lensing, we care about the conditional probability distribution,
P(z|zp). This distribution is sometimes characterized by its conditional bias and scatter,

δz(zp) = zp − ⟨z⟩|zp , σz(zp) =


⟨z2⟩|zp − ⟨z⟩ |

2
zp , (100)

but it is always non-Gaussian and in practice there are ‘‘outliers’’ or ‘‘catastrophic failures’’ with |z − zp| ∼ O(1). The
conditional probability distribution is not symmetric: Bayes’ theorem tells us that

P(z|zp) =
P(z)
P(zp)

P(zp|z), (101)

so a photo-z that is ‘‘unbiased’’ in the conventional sense of ⟨zp⟩|z = z may still have δz(zp) ≠ 0. It is not required that
photometric redshifts have δz(zp) = 0, but one does need to know the value of δz(zp) to relate observations to model

48 For realistic non-Gaussian profiles, the shape measurement error is usually worse by of order 20%.
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Fig. 17. The mean surface density of galaxies (top panel) and median redshift (bottom panel) as a function of limiting magnitude. The three curves show
different reff cuts: the top curve is a cut at 0.15′′ , which might be applied to a space-based survey; the middle curve is a cut at 0.248′′ , which would be
an optimistic choice from the ground; and the bottom curve is a cut at 0.35′′ , a more conservative choice for a ground-based survey with ∼0.7′′ seeing
(FWHM). For galaxy–galaxy lensing, one could make more aggressive cuts.

parameters. From the simplified example discussed in Section 5.4.1, we can see that a systematic error of∼0.01 in δz(zp)/zp
will lead to a normalization error in the matter power spectrum of the order of 2%. Similarly, if 1% of galaxies in a source
redshift bin zs are actually outliers with redshift z ≪ zs, they will dilute the expected lensing signal by 1%, and the power
spectrum by 2%.

If the full distribution P(z|zp) is known, then the shear cross-power spectra for any pair of redshift slices can be
determined for a given cosmological model. However, the use of photo-zs to suppress intrinsic alignments (Section 5.6.1)
does not work if the intrinsic alignments of the outliers are significant, or even if the scatter is large enough that galaxies
can evolve significantly within a redshift bin, so there is a strong motivation to reduce them to the minimum level possible.
Thus lensing programs must face two challenging problems: (i) obtaining a low outlier rate, and (ii) determining P(z|zp) to
sub-percent precision.

To understand how to reduce the outlier rate, we must investigate how photo-zs work: they take several broad-band
fluxes from a galaxy and try to identify spectral features (see Fig. 18). At low redshifts, the strongest feature in the optical
part of a galaxy spectrum is the break around 3800–4000 Å, arising frommetal line absorption in early-type galaxies and the
Balmer continuum (plus high-order lines) in late-type galaxies. As the redshift of the galaxy increases, this feature moves
to the red, and above redshifts of z ∼ 1.3 it is no longer useful for optical photo-zs (depending on the SNR in z and y
bands). At z ≥ 2, the Lyα break redshifts into the optical bands and can be used — but it is possible to confuse it with the
Balmer/4000 Å break. This is the principal example of a photo-z degeneracy.

The above discussion suggests that to reduce outliers across the whole range of redshifts used for WL surveys (z = 0 to
∼3) one desires coverage from blueward of the Balmer/4000 Å feature (i.e. a u-band) through the near-IR (J + H bands),
so that either the Balmer/4000 Å feature or Lyα is robustly identifiable. The optical bands can be easily observed from the
ground. As one moves redward, however, the sky brightness as observed from the ground increases rapidly, and obtaining
the J + H band photometry matched to the depth of future surveys is only practical from space.

One is then left with the problem of measuring the photo-z error distribution. Themost direct and conceptually simplest
way to do this is to collect spectroscopic redshifts of a representative subsample of the sources used forWL. This is, however,
very expensive in terms of telescope time: many galaxies have weak or absent emission lines (particularly if one restricts to
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Fig. 18. The SEDs of three stellar populations are shown: a single burst at age 25 Myr (top); a continuous star-forming population of 6 Gyr age (middle);
and a single burst at 11 Gyr (bottom). All have solar metallicity. Blueward of Lyα they have been adjusted for an IGM transmission factor of 0.8 (appropriate
for z = 2.25; see Mcdonald et al. (2006)), but other corrections (dust, nebular emission) are not included. The models are obtained from Bruzual and
Charlot (2003). Note the break at ∼0.37–0.40 µm present in all models, albeit with varying shape, strength, and precise location.

the optical range), and so one searches for absorption features of faint (i ∼ 22–25) galaxies. Stage III/IV experiments may
require O(105) redshifts to calibrate photo-zs at the level of their statistical errors, and we desire sub-percent failure rates
because the failures are likely concentrated at specific redshifts. These failure rates are far below those that have actually
been achieved by spectroscopic surveys at the desired magnitudes.

An alternative idea (Newman, 2008) is to use the 2-D angular cross-correlation of the photo-z galaxies with a large
area spectroscopic redshift survey, which can target brighter galaxies and/or the subset of faint galaxies that have strong
emission lines. For a bin of galaxies with photo-z centered on zp, the amplitude of cross-correlation is proportional to
bspec(z)bphot(z, zp)P(z|zp), where bspec and bphot are the clustering bias factors of the spectroscopic and photo-z galaxies,
respectively, at redshift z. The auto-correlations of the spectroscopic and photo-z samples provide additional constraints
on the bias factors, and one also has the normalization condition


P(z|zp) dz = 1 for each zp bin. The key uncertainty

in this approach is constraining the full redshift-dependent bphot(z, zp); if the bias varies with photo-z error (e.g., because
high-bias red galaxies and low-bias blue galaxies have different photo-z error distributions) then this dependence must be
modeled to extract P(z|zp) (Matthews and Newman, 2010). If one is using intermediate or small scale clustering, then one
must also allow for scale-dependent bias and for cross-correlation coefficients lower than unity between different galaxy
populations, which would lower the amplitude of cross-correlations relative to auto-correlations. Finally, the approach
requires a spectroscopic sample that spans the full redshift range of the photometric sample; a quasar redshift survey may
provide sufficient sampling density for probing the high-redshift tail of P(z|zp). The cross-correlation technique has to date
not been used for WL surveys, but it has been used to measure other redshift distributions — see, e.g., the application to
radio galaxies by Ho et al. (2008). Adding galaxy–galaxy lensing measurements to the galaxy clustering measurements may
improve the robustness and accuracy of the cross-correlation approach and allow some degree of ‘‘self-calibration’’ without
relying on an external spectroscopic data set (Zhang et al., 2010).

Overall, the problem of measuring P(z|zp) to the required accuracy remains one of the greatest challenges for future WL
projects. Given the difficulty of assembling an ideal spectroscopic calibration sample, the treatment of photo-z distributions
in Stage III and Stage IVWL analyses is likely to involve some combination of direct calibration, cross-correlation calibration,
empirically motivated models of galaxy SEDs, and marginalization over remaining uncertainties in parameterized forms of
P(z|zp). Tomographic WL measurements themselves have some power to constrain these distributions (at the cost of some
leverage on cosmological parameters), andweak lensing by clusters that havewell determined individual redshiftsmay also
be a valuable tool.

5.4.4. Lensing in the radio
An interesting alternative to shape measurement in the optical is to work in the radio part of the spectrum, where

late-type galaxies are observable via their synchrotron emission. In order to achieve the required resolution, one needs
to use a large interferometer: a fringe spacing of 1′′ is achievable at 1 GHz with a baseline of 60 km. One also needs a large
collecting area to obtain high-SNR images on a competitive number of galaxies; the SKA could in principle measure billions
of galaxies (Blake et al., 2004). But let us suppose such an interferometer were built. What would it do for WL? In principle,
it could solve many problems at once:

• Shape measurement: An interferometer directly measures the Fourier transform of the surface brightness of a galaxy,
Ĩ(u), thereby avoiding the difficulty of interpolating PSF properties from stars. On long baselines, the u-plane is usually
sparsely sampled, i.e., not all values of u are observed; the Fourier mode u = L⊥/λ, where L⊥ is the interferometer
baseline projected into the plane of the sky. At a given wavelength, as the Earth rotates, each baseline thus traces out
an ellipse in the u-plane. However, if one combines a finite range of λ and many baselines, one could fill in the u-plane,
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and model-fitting shape measurement techniques can work even with significant coverage gaps. Model-fitting methods
were used in the analysis of the FIRST survey at λ = 20 cm (Chang et al., 2004), which resulted in a 3σ detection of
cosmic shear.

• Redshifts: Late-type galaxies contain atomic gas, and thus radiate in the Hi 21 cm line. For nearby galaxies (z < 0.1) this
line has a long history of being used as a redshift indicator. A Stage IV radio interferometer survey could collect hundreds
of millions of spectroscopic redshifts in this line out to z ∼ 1–2, thereby obviating the need to rely on photo-zs and
calibrate photo-z error distributions. Conversely, it is not clear that one could make use of the many radio galaxies not
detected in Hi, as even photometric redshifts for large radio galaxy samples are difficult to obtain at high completeness.

• Shape noise reduction: The radio part of the spectrum offers interesting opportunities to reduce shape noise. For example,
if one spatially resolved the Hi disk of a galaxy, one could produce a velocity map. A perfect inclined disk has the long
axis aligned with the velocity gradient, and if sheared this alignment is destroyed, so a measurement of the velocity
gradient provides independent information on the intrinsic shape of the galaxy (Morales, 2006). Another idea is to use the
polarization of the synchrotron emission, which tends to be perpendicular to the galactic disk and hence is an indicator
of the position angle of the intrinsic minor axis (Brown and Battye, 2011). While promising, these ideas are new, and
their practical application to a WL survey may have to await at least a partial SKA.

5.4.5. Lensing of the CMB
It is also possible to do lensing analyses on the CMB. Here there are several advantages: the source redshift is known

exactly from cosmological parameters, zsrc = 1100; theory predicts exactly the statistical distribution of hot and cold spots
on the CMB, so there is no intrinsic alignment effect; and the PSF (or ‘‘beam’’ shape) of microwave experiments tends to be
far more stable than in the optical. The CMB is a diffuse field rather than a collection of objects (galaxies), so reconstructing
the shear requires a different mathematical formalism than for galaxy lensing. The basis for this formalism is two-fold:

• In the presence of lensing by a Fourier mode of the potential ψ̃(l), the CMB anisotropy field is no longer statistically
isotropic: different temperature Fourier modes become correlated, ⟨T̃ ∗(l1)T̃ (l2)⟩ ∝ ψ̃(l2 − l1). These products of tem-
perature modes can be used as estimators of the lensing potential (Hu, 2001).

• A more dramatic effect occurs for CMB polarization. The unlensed CMB polarization is pure E-mode,49 i.e., the polariza-
tion in each Fourier mode is parallel to the wavevector rather than at a 45◦ angle. Lensing shear changes the direction of
the wavevector l but not the polarization, so it can generate B-mode shear.

Until recently, because of SNR issues, lensing of the CMB had been detected only in cross-correlation with foreground
galaxies (Smith et al., 2007; Hirata et al., 2008; Bleem et al., 2012). The advent of the arcminute-scale CMB experiments ACT
and SPT (primarilymotivated by cluster cosmology using the SZ effect) has enabled robust detections of the power spectrum
of the CMB lensing field (Das et al., 2011; van Engelen et al., 2012).

Because CMB lensing only provides a single source slice, it is unlikely to ever replace galaxy lensing. However, in combi-
nation with galaxy lensing, it can provide the most distant source slice for tomography (Hu, 2002b) and cosmography (Ac-
quaviva et al., 2008).

5.5. Measuring shears

So far we have treated shear measurement as a black box: it takes in an image of the galaxy and some knowledge of
the instrument, and it returns γ̂+,×, an unbiased estimator for the true shear γ with some uncertainty per component σγ .
This black box is very complicated on the inside, as one needs an accurate and robust shape measurement algorithm, and
even providing the necessary inputs to such an algorithm, particularly an accurate determination of the PSF, has proven
to be difficult. After a brief overview of these algorithms, we describe the idealized problem of measuring shear from an
ensemble of galaxy images, then turn to a more detailed discussion of the challenges that arise in practice.

There are two general strategies for shape measurement methods in common use today. One class of methods is to
measure moments of galaxies (in real or Fourier space), and relate, e.g., the mean quadrupole moment of galaxies to the
shear. These methods started with ad hoc ‘‘PSF correction’’ prescriptions, but they have recently evolved toward methods
that attempt to statistically close the hierarchy of moments of galaxies and PSFs in a model-independent way. The other
class of methods is based on forward modeling: one adopts a model for a galaxy (e.g., an elliptical Sersić profile, or a
linear combination of basis images), simulates the observational procedure, and minimizes χ2. Both approaches have
their advantages and disadvantages. Much of the early WL work used moments-based methods, but for years a generally
applicable PSF correction scheme seemed out of reach. Some of the more recent incarnations of the Fourier domain
moments-based methods work for arbitrary distributions of galaxy and PSF profiles; however these are less mature in
their practical implementation, and they impose stringent requirements on input data quality (e.g., sampling). The forward
modeling methods can handle a much wider range of observational defects (e.g., under some circumstances one may even

49 Primordial gravitational waves can generate a B-mode on large scales, but such gravitational waves are adiabatically damped on angular scales below
a degree. Thus the ∼10′-scale B-mode should be dominated by lensing.
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be able tomeasure a galaxy containingmissing pixels), but they depend on amodel for the galaxy being observed; onemust
carefully assess the impact of an insufficiently general model. Both strategies require exquisite knowledge of the PSF.

Currently there are many algorithms in use in each category. The prototype moments-based method was that of Kaiser,
Squires, and Broadhurst (KSB; Kaiser et al., 1995; improved by Luppino and Kaiser, 1997; Hoekstra et al., 1998). Many
improvements of these methods have been made — e.g., in computing better conversion factors from shear to quadrupole
moments50 (Semboloni et al., 2006b). Elliptical-weighted moments and the concept of shear-covariance were introduced
by Bernstein and Jarvis (2002) and have been used extensively in SDSS (Hirata and Seljak, 2003b). Further progresswasmade
by moving to moments in Fourier space, where the PSF ‘‘correction’’ becomes trivial (one divides by the Fourier transform
of the PSF, at least in the regions where it is nonzero). This has culminated in the development of a shape measurement
method that is exact in the high-SNR limit (Bernstein, 2010). We discuss this method and its development in Section 5.5.2.
An early example of the model-fitting approach was im2shape (Bridle et al., 2002). More recently, Bayesian model fits have
been introduced that are stable at lower SNR (Miller et al., 2007; Kitching et al., 2008); these are currently being applied
to the CFHTLS. The ‘‘shapelet’’ basis (Refregier, 2003; Refregier and Bacon, 2003), derived from energy eigenstates of a 2D
quantum harmonic oscillator, is useful in both types of methods. The coefficients in a shapelet decomposition aremoments,
but one may also fit a model galaxy parameterized by its shapelet coefficients.

The various shape measurement algorithms have been tested and compared in blind simulations, such as the
Shear Testing Program (STEP1/STEP2; Heymans et al., 2006; Massey et al., 2007a), GREAT08 (Bridle et al., 2010), and
GREAT10 (Kitching et al., 2010). In most of these cases, the objective is to minimize both the shear calibration error m
(i.e. the error in the response to a given input shear) and the spurious shear c (i.e., the shearmeasured by the algorithm on an
unlensed sample of galaxies). The STEP2 simulations used typical ground-based PSFs and complex galaxymorphologies and
found thatmany of themeasurementmethods had shear calibration errors |m| of one-to-several percent, and spurious shear
|c| ranging from several ×10−4 to several ×10−3. This level of performance should thus be considered typical of the more
mature, heavily used shear measurement algorithms, although recent methods have done better. On the other hand, the
algorithmic errors are only a portion of the error budget in a WL experiment —most importantly, the early simulation tests
didnot require participants to recover the spatial variability of the PSF. Such a test is currently ongoing as part of theGREAT10
challenge (Kitching et al., 2010). Early results from GREAT10 are now available, but their significance is still being digested.

In the remaining portions of this sectionwewill discuss themathematical problem of shapemeasurement (Section 5.5.1)
and the basis for some of the commonly used methods (Section 5.5.2) and their statistical errors (Section 5.5.3). We cannot
of course do justice to every method that has been suggested or used. We have chosen to highlight the recent progress in
Fourier-spacemethods, since in principle they provide an exact solution in the limit of high SNR and are thus ripe for further
development and utilization (Bernstein, 2010). There are some biases that can result even for perfect shape measurement
(or galaxies measured with a δ-function PSF), including the noise-related biases and selection biases, which are probably
present at some level for all known algorithms; these are discussed in Section 5.5.4. Finally Section 5.5.5 describes the
determination of the PSF, which is taken as an input for any shape measurement algorithm.

5.5.1. The idealized problem
The idealized shape measurement problem is as follows: we have a galaxy in the source plane whose surface brightness

is f0(x), where x is a 2-dimensional vector in the plane of the sky. It is first sheared, i.e., the galaxy in the image plane is
f (x) = f0(Sx), where S is the shearing matrix,

S =


1 − γ+ −γ×

−γ× 1 + γ+


. (102)

(We assume |γ | ≪ 1 here and work to linear order in γ for simplicity, although higher-order corrections will be important
for Stage IV surveys.) We do not observe the actual image on the sky, however — we observe it through an instrument with
PSF51 G(x). The resulting image is

I(x) = [f ⋆ G](x) =


R2

f (x′)G(x − x′)d2x′
=


R2

f0(Sx′)G(x − x′)d2x′. (103)

This equation may also be written in Fourier space: if we define

Ĩ(u) =


R2

I(x)e−2π iu·xd2x ↔ I(x) =


R2

Ĩ(x)e2π iu·xd2u, (104)

then Eq. (103) simplifies to

Ĩ(u) = G̃(u)f̃0(S−1u). (105)

50 Massey et al. (2007a) Section 3.1.1 give an excellent technical review of the methods derived from KSB.
51 Here we use the term ‘‘PSF’’ to include not just the image of a point source produced by the telescope optics but also pointing jitter and detector effects.
For example, if the detector has square pixels, the PSF is that delivered by the telescope convolved with a square top-hat function.
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In practice, the image I is only obtained at discrete values of x, i.e., at the pixel centers spaced by separation∆. If the image
is oversampled, i.e., if the Fourier transform52 of the PSF is zero (or negligible) at wavenumbers above some |u|max with
|u|max < 1/(2∆), then it can be sinc-interpolated to recover the full continuous function,

I(x) =


n1n2

I(n1∆, n2∆) sinc
π(x1 − n1∆)

∆
sinc

π(x2 − n2∆)

∆
. (106)

The pixelization thus represents no special difficulty, except that the sinc function has noncompact support and must be
smoothly truncated. A second implication of oversampling is that integrals of the form


P(x)I1(x)I2(x) d2x, where P is a

polynomial in the coordinates and I1 and I2 are oversampled functions, can be replacedwithout error by (infinite) sums over
pixels:


→ ∆2. Again, in practice such sums must be truncated.

We will also define a critical wavenumber ucrit, which is the smallest wave number for which there is a Fourier mode
with G(u) = 0 with |u| = ucrit. Then we have G(u) ≠ 0 for any |u| < ucrit. This critical wavenumber determines the region
within the Fourier plane over which deconvolution is possible, and over which measurement of f̃ (u) is possible.

A shape measurement algorithm is a functional γ̂i[I;G], i ∈ {+,×}, that returns a shear estimate. When averaged over a
population of galaxies with the same shear, such an algorithm will yield an expectation value

⟨γ̂a⟩ = ca + (δab + mab)γb + O(γ 2). (107)

Here ca is called the additive shear error andmab is themultiplicative shear error or shear calibration error. An ideal algorithm
will have ca = mab = 0.

Many WL surveys take multiple exposures of each field; if they are oversampled, one may use Eq. (106) to reconstruct
a continuous function I(x) for each exposure. If the PSFs in each exposure differ (which they usually do), then to construct
a stacked image, one can either apply a convolution kernel to each input image to make the PSFs the same or do a noise-
weighted least squares fit to each Fourier mode f̃ (u). If the individual exposures are undersampled (as is likely for space-
based data) and appropriately dithered, methods are available in both Fourier space (Lauer, 1999) and real space (Fruchter,
2011; Rowe et al., 2011) to reconstruct a fully-sampled and hence continuous image I(x).53 In either case, the problem is still
one of measuring the shear from an ensemble of images of different galaxies. The one exception is that model-fitting shape
measurement techniques can operate either on the combined images or via a direct fit to the raw input images. Even in
this case, however, with many exposures (as planned for LSST) object detection will have to be carried out on the combined
image in order to reach the full survey depth.

One would intuitively expect that shape measurement becomes more difficult when the PSF is larger than the intrinsic
size of the galaxy being measured. This is indeed the case. While the idealized problem of measuring shapes in the presence
of a PSF is well-defined for any nonzero galaxy size, in practice both statistical and systematic errors blow up when the PSF
becomes significantly larger than the galaxy. The extent to which the systematic errors in the high-SNR, rgal < rpsf regime
can be addressed will likely determine the constraining power of large-étendue ground-based WL programs such as that
planned for LSST.

5.5.2. Shape measurement algorithms*
The most obvious – but flawed – way to construct a shape measurement algorithm is to simply use the quadrupole

moment tensor of a galaxy: one could compute

Qij[I] =


R2

I(x)(xi − x̄i)(xj − x̄j)d2x, (incorrect) (108)

where x̄ is the centroid and the [I] implies that we compute the quadrupole moment on an observed image. It is easily seen
from the properties of convolutions that Qij[f ] = Qij[I] − Qij[G], i.e., one may obtain the pre-PSF quadrupole moment of a
galaxy by subtracting the observed quadrupole moment from that of a PSF. Then one could construct the ellipticities of the
galaxy, which are simply the trace-free components of the quadrupole moment normalized by the trace:

e+[f ] =
Q11[f ] − Q22[f ]
Q11[f ] + Q22[f ]

and e×[f ] =
2Q12[f ]

Q11[f ] + Q22[f ]
. (109)

Since the quadrupole moment of f is simply related to that of f0 via

Qij[f ] = (S−1)ik(S−1)jlQkl[f0], (110)

52 It is important to recall that the definition of oversampling required for Eq. (106) operates in Fourier space. The commonly used condition for
oversampling that the FWHM should exceed 2 pixels is a good rule of thumb for smooth profiles such a Gaussian, but it is not appropriate for general
PSFs.
53 Much of the HST/COSMOSweak lensing work used the ‘‘Drizzle’’ algorithm (Fruchter and Hook, 2002), which in general leads to a slightly different PSF
in each pixel. However, this did not represent a limiting systematic for the ∼2 deg2 observed in COSMOS.



154 D.H. Weinberg et al. / Physics Reports 530 (2013) 87–255

we may derive the transformation law for ellipticities under infinitesimal shear:

e+[f ] = e+[f0] + 2γ+ − e+[f0](γ+e+[f0] + γ×e×[f0]) and

e×[f ] = e×[f0] + 2γ× − e×[f0](γ+e+[f0] + γ×e×[f0]). (111)

It is then easily seen that the mean ellipticity of a population of galaxies that has an initially isotropic distribution of

ellipticities – i.e., P(e+, e×) depends only on the magnitude

e2+ + e2× and not on the direction arctan(e×/e+) — is

⟨ea⟩ =

2 − e2rms


γa, (112)

where e2rms is the mean square ellipticity per component (+ or ×). Since we work to first order in γ , we may use the mean
square ellipticity of the observed sources in Eq. (112). So the galaxy ellipticity divided by 2 − e2rms is a shear estimator
satisfying our desired conditions: by comparison to Eq. (107) there is no additive or multiplicative bias.

The problem with this procedure is that the unweighted quadrupole moment, Eq. (108), involves an integral over the
entire sky, with a weight that increases∝ x2 as onemoves away from the centroid of the galaxy. Therefore its measurement
noise is infinite. It also fails to converge if the wings of the PSF decline as G(x) ∝ |x|−α for α ≤ 4, i.e., it fails to converge for
all PSFs realized in modern optical telescopes. Therefore Eq. (108) needs modification.

A conceptually simple approach is to do amodel fit to each galaxy. If one fits amodel of an exponential or de Vaucouleurs
profile galaxywith homologous elliptical isophotes, then one can obtain the quadrupolemomentQij[f ] analytically from the
model and hence the ellipticity of the galaxy. Modern model-fitting techniques can even fit more general radial profiles, or
simultaneously fit bulge + disk models. Model fitting is also robust against many types of nastiness that occur in real data,
such as dead pixels, cosmic rays, or non-linear detector effects. However, model fitting assumes that the galaxy actually
obeys the model — and especially at z > 1, the appearance of galaxies is not simple and they are not describable by simple
analytical functions. At present, our best approach to understandwhat happens when simplemodel fits are confrontedwith
complex galaxies is with simulations. One can even imagine ‘‘re-calibrating’’ these methods using the simulations, e.g. by
subtracting the simulated ci from each shear and multiplying by the matrix inverse of δij +mij (see Eq. (107)); but of course
one is then relying on the galaxy population in the simulation to closely trace reality.

One could also attempt to do a regularized deconvolution of the galaxy. The most popular such technique is a basis
function technique: one writes the galaxy image as f (x) =


n bnψn(x), where {ψn} are a finite basis set and bn are the fit

coefficients; this then becomes a model-fitting problem. A common choice is the ‘‘shapelet’’ basis, where the {ψn} are the
energy eigenmodes of the 2-D quantum harmonic oscillator (polynomials times Gaussians); this requires (N + 1)(N + 2)/2
eigenfunctions to represent the 0 · · ·N energy levels (Refregier, 2003; Refregier and Bacon, 2003). This basis is complete in
the limit of large N , and the Gaussian endows the basis coefficients with simple transformation properties under translation
and shear. Real galaxies often require very large N to be well-represented, however, especially for cuspy profiles.

A final class of ideas has been to note that any ellipticity formula that is shear-covariant in the sense of transforming via
Eq. (111) enables us to use Eq. (112). For example, suppose that we had the galaxy image f before PSF convolution, and did
an unweighted least-squares fit, in the sense of minimizing

c =


R2

[f (x)− fmodel(x|p)]2 d2x. (113)

Here fmodel is an elliptical Gaussian fit to the image with free amplitude A, centroid x̄i, and second moment matrix Q elfit
ij

(6 parameters). Then Q elfit
ij and the ellipticities constructed from it would be shear-covariant — even if the galaxy’s true

radial profile does not resemble a Gaussian!54 Early work on implementing this idea in the presence of a PSF attempted
to determine the second moment matrix of the image on the sky Q elfit

ij [f ] from the observed image and the PSF. For
example, Gaussian galaxies and PSFs satisfy Q elfit

ij [f ] = Q elfit
ij [I] − Q elfit

ij [G], and so ‘‘non-Gaussianity corrections’’ were
introduced (Bernstein and Jarvis, 2002; Hirata and Seljak, 2003b) that yielded shear calibration errors of a few percent.
But these methods were heuristic, and moreover they suffer from a fundamental limitation: Q elfit

ij [f ] depends on very high-
wavenumber Fourier modes u of the image, which are not preserved by the PSF, i.e. G̃(u) = 0. It is therefore mathematically
impossible to determine Qij[f ] from the data in a model-independent manner.

To understand this point more fully, and illustrate a solution, let us imagine that we are doing an unweighted least-
squares fit of a parameterized image fmodel(p), using Eq. (113). For convenience, we will write the parameters as p =

{A, σgal, x̄1, x̄2, e+, e×}, where σgal = (detQ)1/4 is a characteristic scale length of the galaxy, so that they have simple
transformation properties under rotations. Written in Fourier space, it becomes

c =


R2

[f̃ (u)− f̃model(u|p)]2 d2u, (114)

54 This is easily seen because the measure d2x in Eq. (113) is shear-invariant.
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and its minimum is given by the simultaneous solution of the 6 equations

0 =


R2

f̃ (u)
∂ f̃model(u|p)

∂pα
d2u, (115)

where pα is any of the 6 parameters. The problem occurs because ∂ f̃model(u|p)/∂pα has support at |u| > ucrit, where we
cannot determine f̃ (u).

A solution to this problem has been proposed by Bernstein (2010),55 which is in principle exact in the low-noise limit
and has been applied to simulations (but not yet to actual data). The key is to work in the Fourier domain, where the effect
of the PSF is simple and the effect of the shear is as simple as in real space. We present the solution here in its most general
form, and refer the reader to Bernstein (2010) for implementation details. The solution is to replace Eq. (115) with

0 = tα =


R2

f̃ (u)W̃α(u|p) d2u, (116)

whereW1 · · ·W6 are weight functions. These should be envisioned to be qualitatively similar to the derivatives in Eq. (115);
but the only rules that we will impose are that: (i) the Fourier transforms W̃α(u|p) have compact support, confined to
|u| < ucrit; and (ii) they are rotation and translation-covariant, e.g., changing the centroid parameter by δx̄ simply translates
the functionWα(x) → Wα(x− δx̄), and there is a similar transformation when rotating the ellipticity components.56 We do
not require the Wα to be shear-covariant: indeed, since a large shear can map any mode to another mode with |u| > ucrit,
such a requirement would be inconsistent with rule (i). Now we may write Eq. (116) as

0 =


|u|<ucrit

Ĩ(u)
W̃α(u|p)
G̃(u)

d2u. (117)

The combination W̃α/G̃ is well-defined, and Ĩ(u) is the Fourier transform of the observed image, so the parameters p can be
measured from the data.

By rule (ii), we have rotation covariance, so the mean of the ellipticities ⟨e⟩ over an isotropic population of galaxies is
zero — even if the PSF is anisotropic. Thus there is no additive bias (except for selection and noise effects — see warnings
below). However, dropping shear covariance has come at a price: the ellipticities (e+, e×) no longer transform according
to Eq. (111), and the responsivity coefficient ⟨e⟩ = Rγ must be determined. Fortunately, we can evaluate the effect of an
infinitesimal shear on Eq. (116): if S = 1 + δS, then to first order in δS,

δ f̃ (u) = −ui[δS]ij
∂ f̃ (u)
∂uj

, (118)

and so

0 = δtα = −


R2

ui[δS]ij
∂ f̃ (u)
∂uj

W̃α(u|p) d2u +


R2

f̃0(u)
∂W̃α(u|p)
∂pβ

d2u


δpβ . (119)

The integral in braces {} is simply a 6 × 6 matrix, which we denote Eαβ . Using integration by parts, the tracelessness of δS
in the first integral, and the substitution f̃ → Ĩ/G̃, we then find

δpβ = −[E−1
]βα[δS]ij


|u|<ucrit

Ĩ(u)
G̃(u)

ui
∂W̃α(u|p)
∂uj

d2u, (120)

which is well-defined. This equation tells us how the parameters for each galaxy vary under an infinitesimal shear; their
ensemble average gives R. Note that once shear covariance has been dropped, it is only possible to know the responsivity
factor R if one has a sample of real galaxies to observe, since one needs the sample of real galaxies to compute the matrix
Eαβ .

A related approach to solving the shear calibration problem was suggested by Mandelbaum et al. (2012). They noted
that given a high-resolution image of a galaxy (e.g., a space-based image) with PSF G1, it is often possible to construct a
lower resolution but sheared image of the same galaxy with PSF G2 in a model-independent way. One can thus directly test
any shear estimator on the sheared images, and extract the shear calibration factor. Conceptually, the criterion for this to
work is that all of the Fourier modes of the image observable using PSF G2 must be within the band limit of G1 with enough
‘‘padding’’ to make sure that the shear (which also shears the Fourier plane!) does not bring unobserved high-wavenumber
modes not seen with G1 into the region seen by G2. Mathematically, the criterion for this to be possible are that there exist

55 See also Kaiser (2000), which contains many of these ideas but seems to have been promptly forgotten by most of the WL community!
56 Note thatWx̄ must transform as a vector under rotations, andWe as a spin-2 tensor.
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two critical wavenumbers uc and ud such that (i) all the power in the low-resolution PSF is below uc, i.e. G̃2(u) = 0 for
|u| ≥ uc; (ii) the high-resolution transfer function G̃1(u) is far from zero, i.e. 1/G̃1(u) is well-behaved, at all |u| < ud; and
(iii) uc > (1 − γ )ud. Then one can use the Fourier-domain multiplication:

Ĩ(γ )2 (u) = G̃2(u)T̃ (S−1u)Ĩ1(S−1u), (121)

where T̃ (u) = 1/G̃1(u) for wave vectors |u| < ud. As implemented, this method requires a higher-resolution image of a fair
subsample of galaxies, which is not always available. It may however be quite useful in the Stage III ground-based programs,
where one might use HST data for the ‘‘high resolution’’ image; see Mandelbaum et al. (2012) for a preliminary application
of HST data to shear calibration in SDSS.

5.5.3. Shape measurement errors*
The statistical uncertainty in ellipticity estimation depends on the method used and the radial profile of the galaxy, as

well as the sizes of the galaxy and PSF and the SNR. Rules of thumb can be obtained by considering nearly circular Gaussians.
Propagating instrument noise through the elliptical Gaussian fittingmethod, Bernstein and Jarvis (2002) find, in the absence
of a PSF,

σ(e+[f ]) = σ(e×[f ]) =

√
16πn σf

F
=

2
ν
, (122)

where n is the flux noise variance per unit area, F is the galaxy flux, σf is the 1σ width of the galaxy (note: the effective
radius of a Gaussian is 1.177σf ), and ν is the detection SNR in an optimal filter. In the presence of a circular Gaussian PSF,
the ellipticity is diluted by

e[I] =
σ 2
f

σ 2
I
e[f ] =

σ 2
f

σ 2
f + σ 2

G
e[f ], (123)

where σG is the PSF width and σI is the width of the PSF-convolved galaxy image. Furthermore, the detection SNR is reduced
because the galaxy is smeared out into an aperture with more noise, so it follows that Eq. (122) should be modified by
replacing σf → σI ; and, if we want the uncertainty in the pre-PSF galaxy ellipticity, we must divide out the σ 2

f /σ
2
I factor

from Eq. (123). This gives

σ(e+[f ]) = σ(e×[f ]) =

√
16πn σ 3

I

Fσ 2
f

=
2
ν

σ 2
I

σ 2
f
. (124)

This provides a large advantage for making the PSF smaller than the galaxy: since the noise variance n scales with observing
time as t−1, the time required to measure the shape of a galaxy scales as

t ∝ σ 6
I ∝


1 +

σ 2
G

σ 2
f

3

; (125)

in the limit of a poorly resolved galaxy (σf ≪ σG) a factor of 2 improvement in the PSF provides a factor of 64 gain in speed.
However, as the PSF becomes smaller than the galaxy this advantage saturates.

Eq. (123) also illustrates another property of shapemeasurement: systematic errors aswell as statistical errors are inflated
by having large PSFs. For example, if there is a systematic error in the ellipticity of the observed image I , it propagates to the
estimated pre-PSF ellipticity e[f ] with a multiplying factor of (σ 2

f + σ 2
G )/σ

2
f . Therefore there is a systematics advantage to

having σG ≪ σf .
The shear uncertainty is a factor of ∼2 smaller than the ellipticity uncertainty owing to the responsivity factor 2 −

e2rms (Eq. (112)). It does however have a minimum value: the ellipticity of an individual galaxy has an RMS variation of
erms ∼ 0.4 per component, so there is a limiting ‘‘shape noise’’ contribution to the shear measurement uncertainty of
σγ ≈ 0.2. There are some ideas for how to circumvent this limit using the color- or scale-dependence of ellipticity (Lom-
bardi and Bertin, 1998; Jarvis and Jain, 2008) or taking advantage of the non-Gaussianity of the ellipticity distribution (Kaiser,
2000; Bernstein and Jarvis, 2002), but there are no clear routes to large improvement for optical galaxies. For galaxies im-
aged in the HI 21 cm line, one might be able to use kinematic signatures to distinguish random orientation from lensing
shear (e.g. Morales, 2006).

5.5.4. Noise rectification and selection biases*
Two pernicious biases can arise even for the ‘‘exact’’ shape measurement algorithms described above: the noise

rectification and selection biases.
Noise rectification bias arises whenever a non-linear transformation, such as ellipticity measurement, is applied to noisy

data. If we Taylor-expand the mean of the ellipticity measured on the true image Iobs around the noiseless image I , we find

⟨e[Iobs]⟩ = e[I] +
1
2


ab

∂2e
∂ I(xa)∂ I(xb)

Cov[I(xa), I(xb)] + · · · , (126)
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where the sum is over pairs of pixels in the image, and xa and xb are positions of those pixels. The bias is proportional to the
noise variance, i.e., to (S/N)−2 at leading order.

One might at first think that the pixel covariance is described by uncorrelated white noise, which is statistically shear-
invariant and thus leads to no bias, but in the presence of a PSF correction [i.e., dividing by G̃(u)] this is no longer the case. The
noise rectification bias was first recognized in the context ofWL by Kaiser (2000), who showed that because the centroiding
of a galaxy is more accurate on the ‘‘short’’ than the ‘‘long’’ axis of the PSF there is a preference for the measured second
moment of the galaxy to be elongated along the PSF, even if the PSF correction method is perfect in the deterministic case.
Thiswas generalized by Bernstein and Jarvis (2002) to incorporate other noise-related biases and byHirata and Seljak (2004)
to include the effect on shear calibration errors. Eq. (126) provides a unified framework for computing all of these biases
to order (S/N)−2. At low S/N higher-order terms in the expansion may become important, and the expansion itself may
break down, e.g., as fitting algorithms jump to alternate χ2 minima. It is our judgment that it is best to stay away from
this ‘‘nonperturbative noise’’ regime. For a recent investigation of noise rectification bias in the context of current shape-
measurement algorithms, see Melchior and Viola (2012).

Selection biases are well-known in astronomy. In our case, they will affect the shear if there is a bias in favor of detecting
galaxies in some orientations rather than others, producing an additive shear error, or if selection depends on themagnitude
of the ellipticity, which leads to a multiplicative shear error because galaxies are preferentially selected when their intrinsic
ellipticity is aligned with the shear (Hirata and Seljak, 2003b). A similar bias results if galaxies are weighted by various
properties (e.g., ellipticity uncertainty) that are not shear-invariant. The formalism of Section 5.5.2 can in principle handle
this problem if instead of computing ⟨e⟩ we compute ⟨we⟩ where the weightw = 0 for galaxies that are rejected. However,
the assessment of selection biases in practice has been addressed through simulations such as the STEP program.

A problem related to selection biases is blending: the superposition of images of two galaxies. If the galaxies are at the
same redshift, they are affected by the same shear, and an ideal shape measurement algorithm that measures the blend
should recover the ‘‘correct’’ answer— indeed, existingWL surveysmust containmany sources that are actually blendedwith
their own satellite galaxies. But if the deblending algorithm is not shear-invariant there can be a bias in the shear. Another
issue, particularly for ground-based Stage IV experiments that will aim for high source densities at modest resolution and
very small statistical errors, is accidental blending of galaxies at different redshifts (and hence different shears).

The general strategy for dealing with these categories of biases is: (1) make choices (e.g., S/N cuts) that keep them
small to the extent possible; (2) compute corrections using simulations and/or analytic estimates, and apply them to the
measurements; (3) test the accuracy of these corrections in the data by looking for the expected scalings with S/N, source
size, and so forth; and (4) marginalize over remaining uncertainties in the corrections.

5.5.5. Determining the PSF and instrument properties
Shape measurement algorithms are only as useful as their inputs: in this case a map of the PSF G(x) at each point in the

field. Determining the PSF to sub-percent accuracy is one of the major challenges in WL. Errors in the PSF model introduce
correlated structure into the ellipticity field of the galaxies, since residual anisotropy in the PSF determination is interpreted
as shear by a shape measurement algorithm.

Fortunately, Nature has provided us with stars, which under typical observing conditions can be treated as point sources.
Unfortunately, there is only a finite density of stars in high Galactic latitude fields, typically of order 1 per arcmin2, so one
must interpolate the PSF to the position of a galaxy. This is a demanding challenge; any error in the interpolated PSF is likely
to have spatial structure. It is also not an easy problem, as the PSF is an entire function G(x; θ) at every 2-d position θ on the
sky, and in contrast to shape measurement, interpolation from stars is underconstrained.57 To date, most of the methods
applied to real data are heuristic. For example, the SDSS analyses fit a low-order polynomial,

G(x; θ) =

N
i=0

N−i
j=0

M
k=1

aijkθ i1θ
j
2G
(k)(x), (127)

where the {G(k)} are the top M = 3 principal components of the stellar images, N = 2 is the interpolation order, and aijk
are coefficients. Small scale structure in the PSF variation may not be well represented by this approach unless N is large,
but if the required number of polynomial coefficients (N + 1)(N + 2)/2 exceeds the number of stars in each frame then
the method falls apart. If the small-scale structure is repeatable, for example if it is associated with low-order aberrations in
the telescope or the topography of the focal plane, then onemaymake progress by applying PCA to the angular dependence
in instrument-fixed coordinates (Jarvis and Jain, 2004), choosing the top K modes out of the space of (N + 1)(N + 2)/2
polynomials. Recent work has focused on improved interpolation schemes that outperform polynomials (e.g., Bergé et al.,
2012).

For space-based data, one can either build a physical model of the PSF (Rhodes et al., 2006) or use PCA (Jee et al., 2007).
However, for ground-based data where the PSF has a large contribution from atmospheric turbulence, the more empirical
interpolation schemes have been the methods of choice.

57 As a reminder, here x is used to refer to the location within the image of each star, i.e., of order ∼1′′ , whereas the independent variable θ accounts for
variation across the entire field, of order ∼1◦ .
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Once one has the PSF, one needs a method of quality assessment. We need to be able to determine, or at least bound,
the power spectrum of the residual PSF systematics that leak into cosmic shear results. (For GGL, this job is easier because
residual PSF anisotropy adds noise but does not correlate with the positions of the galaxies.) One way is to do null tests:
one can compute the correlation function of ellipticities of the stars and (supposedly) PSF-corrected galaxies, or search
for B-mode shear. The latter is not foolproof, as a PSF systematic of E-mode type can arise from some aberrations. A very
attractive (but underutilized) test is to mask some of the stars in the PSF fitting and compare the interpolated PSFs at their
locations to the observed stellar images. There are also methods for using combinations of these correlation functions to
test for ‘‘overfitting’’ — the phenomenon in which a too-general PSF model begins to fit noise or small-scale structure in the
stellar images, with the effect that the interpolated PSF is actually worse (Rowe, 2010).

Even when this is done, there remain two other errors that have received increasing attention recently, whichmay cause
the PSF of a galaxy to differ from that of a star:

• Color dependence: Real PSFs depend on the wavelength of light: a diffraction-limited telescope has a PSF size that scales
∝ λ, seeing through a Kolmogorov atmosphere gives a size∝ λ−1/5, aberrations introduceλ-dependence into not just the
size of the PSF but its morphology and radial profile, real detectors have response functions that depend on wavelength,
and in ground-based data atmospheric dispersion acts like a prism and causes a centroid shift with wavelength. Since
galaxies have different SEDs than the stars used to fit the PSF (the galaxies are usually redder), the PSFmeasured from the
stars is not always appropriate to the galaxies (Cypriano et al., 2010). Moreover, each galaxy contains a range of SEDs due
to differing stellar ages and metallicities and dust columns; and for each of these SEDs there is a different PSF, with the
resulting images superposed on the focal plane (Voigt et al., 2012). This represents a major challenge: while the centroid
wavelength of galaxies in a typical filter (λ/∆λ ∼ 5) varies by several percent, Stage IV surveys will require sub-percent
shear calibration accuracy, and as yet no WL survey has published a color correction to its PSF at all. While this area
requires much more work, in a problem of this complexity prevention is the first step to a cure. For example, one can
employ an atmospheric dispersion compensator on the ground, and one can use narrower filters. For smooth spectra or
spectra averaged over moderate redshift ranges, the variation of wavelength centroid scales as ∝ ∆λ2. The advantage
for narrower filters must of course be weighed against the slower survey speed with smaller ∆λ. If many observations
of a given field are taken under varying conditions, as planned for LSST, one has the intriguing possibility of using the
different seeing, focus, or hour angle dependences of these errors to solve them out and distinguish them from shear.
A final strategy is to use ‘‘calibration samples’’ of galaxies observed in multiple filters to correct the effect for a lensing
survey with a single, wide band (Semboloni et al., 2013).

• Detector effects: A CCD image can be altered during readout due to finite charge-transfer inefficiency. This results from
photoelectrons that temporarily bind to defects (‘‘traps’’) in the material, causing each sky object to leave a trail along
the readout direction. If not corrected, this can appear as a PSF anisotropy, and it is greater for faint objects than for bright
objects because some of the traps saturate, so stellar images tend to underestimate the effect. Charge transfer inefficiency
is primarily a concern for space-based data, since the principal cause of traps is radiation damage. Remedies applied to
HST data have included empirical corrections to the galaxy ellipticities as a function of row andmagnitude, or pixel-level
corrections that begin by ‘‘undoing’’ the charge transfer inefficiency before subsequent processing (Massey et al., 2010;
Rhodes et al., 2010).

• Near-infrared detectors (as planned forWFIRST ) suffer from different potential detector-induced systematic errors than
CCDs. In particular, since the image is read ‘‘in place’’ on the detector rather than transferred out as on a CCD, there is no
charge transfer inefficiency. Instead the major concerns have been interpixel capacitance (the sensitivity of the voltage
on each pixel to the charge collected in neighboring pixels); persistence (a charge trapping and release phenomenon
in which each exposure contains a small amount of residual signal from previous exposures); and reciprocity failure (a
detector exposed to twice the signal for half the time does not produce the same response, which becomes an issue for
comparing the images of stars and galaxies of very different magnitudes).

5.6. Astrophysical systematics

The principal advantage of weak lensing is that – despite its technical difficulty – it is directly sensitive to mass. It is thus
less affected by astrophysical uncertainties than other probes of cosmic structure such as the galaxy power spectrum or
X-ray cluster counts. However, it is not entirely free of astrophysical contamination. The twomajor sources of uncertainties
in this case are intrinsic galaxy alignments, which can mimic the coherent distortion of galaxies by gravitational lensing,
and the prediction of the matter power spectrum.

5.6.1. Intrinsic alignments*
We have thus far assumed that the intrinsic ellipticities of galaxies are independent, adding noise but not spurious signal

to cosmic shear measurements. However, the orientations of galaxies are determined by physical processes – mergers,
torquing by tidal fields from the host halo and large scale structure, etc. – that could produce correlated intrinsic alignments.
We first describe here the general formalism for the impact of intrinsic alignments, then consider what observations and
theory have taught us about them. We conclude by discussing prospects for intrinsic alignment removal.
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The field of intrinsic galaxy ellipticities is a tensor function e(r, n̂) of position r and viewing direction n̂. In this sense
it is very similar to CMB polarization. In principle it also depends on the type of galaxy under consideration and on the
observational details — for example, the B and I-band images of a galaxy could have different ellipticities. We may also
discuss either the unweighted intrinsic ellipticity field eunwt or the field weighted by the galaxies,

ewt(r, n̂) ≡ [1 + g(r)]eunwt(r, n̂), (128)

where g = (ngal − n̄)/n̄ is the galaxy overdensity. In what follows, we use e to denote the galaxy-weighted field ewt, since
this is most closely related to what one observes in a survey.

Like any other field, e can be Fourier transformed to give ẽ(k, n̂), with a power spectrum

⟨ẽ∗

a(k, n̂)ẽb(k
′, n̂′)⟩ = (2π)3δ(3)(k − k′)Pe;ab(k, n̂, n̂′), (129)

where a, b are spin-2 tensor indices. Here we break from the train of reasoning in CMB polarization studies: instead of doing
a multipole decomposition of e, we note that in the Limber approximation (which we use exclusively here) there is only
one relevant viewing direction – the direction to the observer – so n̂ = n̂′. Moreover, the Fourier wave vectors that we care
about are perpendicular to the line of sight, so k · n̂ = 0. We will thus write this particular configuration as simply Pe;ab(k).
An E/Bmode decomposition is also possible if we rotate the coordinate basis so that the E-component of ellipticity is aligned
along the direction of k and the B-component is at a 45◦ angle; we then have two ellipticity power spectra, PEE

e (k) and PBB
e (k)

(the EB-term vanishes by parity). One can also write correlations of the ellipticity with scalar fields such as the galaxy or
matter density. In this case, only the E-mode can be correlated, and we write Peδ , Peg , etc.

The measured shear on the sky is a superposition of the WL shear and the intrinsic ellipticity (converted to shear using
the algorithm-specific responsivity factor R):

γobs(θ) = γ (θ)+
1
R


p(DC )e(θ,DC ) dDC . (130)

Limber’s equation can then be used to obtain the observed shear power spectrum between the α and β redshift slices. The
E-mode contains three terms:

CαβEE (l; obs) = CαβEE (l;GG)+ CαβEE (l;GI)+ CαβEE (l; II), (131)

where the GG term is the gravitational lensing shear contribution, II is the intrinsic ellipticity contribution, and GI is the
cross-correlation. The GG term is the desired signal and is given by Eq. (81). The other terms are

CαβEE (l; II) =
1

R2


pα(DC1)pβ(DC1)

PEE
e (k = l/DA1)

D2
A1

dDC1 (132)

and

CαβEE (l;GI) =
1
R

 
Weff,α(DC1)pβ(DC1)+ Weff,β(DC1)pα(DC1)

 Peδ(k = l/DA1)

D2
A1

dDC1. (133)

There is also an II contribution to the B-mode power spectrum similar to Eq. (132). Since there is no B-mode gravitational
shear, there is no GG or GI contribution to the B-mode power spectrum.

Several generic features can be noted from these equations:

• The II contribution to the cross-spectrum is only nonzero if the two redshift distributions overlap, since it arises from
intrinsically aligned galaxies at the same redshift. Therefore, if low-scatter photo-zs are available, it can be eliminated.
This is one motivation for doing tomography instead of simply measuring the shear power spectrum on a magnitude-
limited sample of galaxies.

• The GI contribution is more troublesome. It arises from the lensing of themore distant slice by the samematter field that
controls the intrinsic ellipticity of the nearby slice. Inspection of the properties of the window function Weff shows that
Eq. (133) is nonzero for all redshift distributions, unless either Peδ(k) = 0 or the redshift distributions are δ-functions
at the same redshift, which would dramatically enhance II . Thus we are led to conclude that every tomographic power
spectrum can suffer intrinsic alignment contributions.

• B-mode ‘‘shear’’ can be generated by intrinsic alignments, and if nonzero CαβBB (l) is observed this is one possible expla-
nation (PSF model errors are another). However, it is possible for the intrinsic alignment contribution to the E-mode
to be much larger because (i) there is no theoretical reason from galaxy formation to expect PEE

e (k) ∼ PBB
e (k) – indeed,

we will see below that PEE
e (k) ≫ PBB

e (k) may be natural – and (ii) CαβEE (l) can also contain a GI term, which for broad
redshift distributions usually dominates over II . Therefore a nondetection of B-mode shear does not rule out significant
intrinsic alignment contamination.
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Beforewediscuss removal of intrinsic alignments, it is helpful to consider the physics underlying their power spectra. One
can distinguish two cases: early-type galaxies, which are triaxial and whose intrinsic ellipticity is presumably related to the
direction of the most recent merger or the direction of anisotropic collapse (depending on one’s idea of how these galaxies
are formed), and late-type galaxies, whose ellipticity is determined by the disk angular momentum (perhaps acquired via
tidal torquing during collapse, reshuffled by disk-halo interactions, and perturbed by minor mergers). The detailed physics
of these processes remains elusive, but some predictions can still be made by traditional galaxy biasing arguments. For
example, if one considers the formation of early-type galaxies in a particular region of the universe, one could argue that at
linear order in the large-scale density field a galaxy’s formation sequence can be sensitive only to the density and tidal field
coming from the linear modes, and to small-scale structure. Since only the tidal field has the correct symmetry properties
to be related to an ellipticity, it follows that the ellipticity should be proportional to the tidal field,

e+ =
C1

4πGρ̄a2
(∂21 − ∂22 )Φ, and e× =

C1

4πGρ̄a2
(2∂1∂2)Φ, (134)

where C1 controls the strength of alignment and ∂1 and ∂2 denote derivatives along two orthogonal axes on the sky. This
implies that the ellipticity traces the density field, and in particular

PEE
e (k) = C2

1 Pδ(k), PBB
e (k) = 0, and Peδ = C1Pδ(k). (135)

Eqs. (134), (135) are known as the linear alignment model (Catelan et al., 2001). Note that they predict only E-mode intrinsic
alignments, because the alignments are linearly sourced by a scalar field.58

Observations of LRGs in the SDSS have shown that the galaxy-ellipticity correlation59 wge(rp) has the same power-law
slope as the galaxy correlation function wg(rp) ∝ r−0.7 (Mandelbaum et al., 2006; Hirata et al., 2007), with an amplitude
that increases rapidly with LRG luminosity. This is a quantitative success of the linear model. However, on small scales it is
not clear how accurate Eq. (135) should be.

For late-type galaxies, it is less clear what to expect. The oldest and most widely discussed model is that disk galaxies
acquired their angular momentum from tidal fields acting on nonspherical protogalaxies, an effect that would make the
resulting intrinsic ellipticity quadratic in the tidal field: this is known as the quadratic alignment model (Pen et al., 2000). This
model produces both E and B-mode II signals, but to leading order it predicts Peδ(k) = 0 and hence gives no GI signal (Hirata
and Seljak, 2004). However, one should be cautious about this argument for several reasons,most importantly because there
has not yet been any quantitative observational confirmation of the scale and configuration dependence predicted by the
quadratic model, and additionally because perturbation theory arguments show that the non-linear evolution of the tidal
field can generate a linear type alignment (Hui and Zhang, 2008). What is clear from observations is that the alignments of
late-type galaxies on large scales, at least as measured bywge(rp), are consistent with zero and are certainly much less than
for LRGs (Hirata et al., 2007; Mandelbaum et al., 2011).

Detailed assessments of the intrinsic alignment contamination have beenmade on the basis of SDSS, 2SLAQ, andWiggleZ
observations of wge(rp) (Hirata et al., 2007; Mandelbaum et al., 2011; Joachimi et al., 2011). These studies show that for
surveys of modest depth (zmed ∼ 0.7) the GI contamination may be up to several percent of the expected cosmic shear
signal for late-type galaxies if it is near current upper limits, and it could be tens of percent for LRGs. As one probes to higher
source redshifts the level of contamination becomes increasingly uncertain, because there are not yet galaxy surveys at z ≥ 1
that are capable of probing intrinsic alignments at interesting levels. The II contamination for broad redshift distributions is
found to be much less than GI for linear alignment models.

Finally, we consider themethods used to remove intrinsic alignments. One starts with prevention: in the recent COSMOS
analysis, Schrabback et al. (2010) suppressed II by throwing out the auto-power spectra of each of their redshift slices with
itself, keeping only the cross-spectra. They also suppressed GI by not including LRGs in the foreground redshift slice, since
LRGs contribute themost to the contamination. However, it is not clear that sample selection alonewill provide sufficient GI
rejection for Stage III surveys and beyond. Two general approaches to GI rejection have been proposed, model-independent
and model-dependent.

The model-independent GI rejection method is to note that if we have narrow redshift bins, and denote the foreground
and background slices by zα and zβ respectively, then the GI signal depends only on intrinsic alignments at zα (i.e., in the
nearer bin). Then at fixed zα the GI signal is proportional to

CαβEE (l;GI) ∝ cotK DC (zα)− cotK DC (zβ), (136)

which becomes small if zβ − zα is small. This is a different redshift dependence than the GG signal, which is a linear function
of cotK DC (zβ) but remains finite as zβ → zα . Hence it could be projected out (Hirata and Seljak, 2004) — e.g., one could take
the αβ shear cross-spectrum at several background bins and extrapolate to zα . An alternative implementation of this idea is

58 If one interprets the model of Eq. (134) as applying to the unweighted ellipticity field, then converting to a galaxy-weighted field introduces a B-mode.
However it is much smaller than the E-mode signal and vanishes in the linear regime.
59 This has been measured as the line-of-sight integral of the correlation function, w(rp) where rp is the transverse separation, which contains the same
information as the power spectrum.
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nulling (Hirata and Seljak, 2004; Joachimi and Schneider, 2008, 2009), constructing a synthetic redshift slice by weighting
of the different zβ whose window function

Weff,syn[DC (zα)] =


β

wβW [DC (zα),DC (zβ)] = 0. (137)

Clearly some of the weights wβ must be negative. This class of techniques assumes nothing about the physics of intrinsic
alignments, but because of the extrapolations or negative weights it can amplify observational systematics, and to date it
has not been successfully implemented on real data.

Amodel-dependent alternative, less demanding in terms of observational systematics, is to construct the 3×3 symmetric
matrix of power spectra of the matter, galaxies, and intrinsic ellipticity,

P(k) =

 Pδ Pgδ Peδ
Pgδ Pg Peg
Peδ Peg PEE

e

 (k). (138)

This has six free functions ofwavenumber, ofwhich one (Pδ) can be predicted from cosmological parameters. However, since
the tidal field is determined by thematter distribution, if galaxy alignments are really determined by the tidal field then they
should not additionally care where the other galaxies are: the conditional probability distribution Prob(e|δ, g) = Prob(e|δ).
In this case, and in the limit of a Gaussian field, one should have the restriction60

Peδ(k) =
Pδ(k)
Pgδ(k)

Peg(k). (139)

This relation was assumed by the DETF in their WL parameter forecasts (Albrecht et al., 2006), and if valid it is very
useful because it relates the GI contamination (Peδ) to theory (Pδ), GGL (Pgδ), and galaxy-ellipticity correlations at the
same redshift (Peg ). Unfortunately, its accuracy is unclear in the non-linear regime, since for non-Gaussian density fields,
Prob(e|δ, g) = Prob(e|δ) no longer implies Eq. (139); an investigation of this in simulations should be a high priority.
Nevertheless, Eq. (139) may be usable if the GI correlation for late-type galaxies turns out to be far below current upper
bounds, in which case even a crude correction could reduce it to below statistical error bars. Further discussions of this
approach and an application to observational data may be found in Bernstein (2009), Joachimi and Bridle (2010) and Kirk
et al. (2010).

Intrinsic alignments also represent a contaminant to GGL if the ‘‘lens’’ and ‘‘source’’ redshift distributions overlap; some
of the ‘‘sources’’ may then be physically associated with the lens and show an alignment that is a result of galaxy formation
physics rather than lensing (Bernstein and Norberg, 2002; Hirata et al., 2004). However, in this case the availability of good
photo-zs solves the problem, since for GGL there are only II alignments, which can be eliminated by restricting cross-
correlations to non-overlapping redshift slices. Consistency checks between GGL and cosmic shear may provide a useful
route to diagnosing the impact of intrinsic alignments on the latter.

5.6.2. Theoretical uncertainties in the matter power spectrum*
An important systematic error in weak lensing is the prediction of the cosmic shear power spectrum, which – although

far more theoretically tractable than galaxy clustering – is not free of uncertainty. WL gets most of its information from
the non-linear regime, where the only way to accurately predict the power spectrum is using large N-body simulations. At
the present time, most WL constraints have used physically motivated fitting formulas calibrated to N-body simulations
(e.g., Peacock and Dodds, 1996; Smith et al., 2003), but these have limited accuracy because of the limited resolution and
box size of the simulations and the limited ranges of cosmological parameters that have been explored. The situation has
improveddramatically in recent years thanks toMoore’s lawand the fact that the ‘‘interesting’’ region of parameter space has
shrunk considerably. Much improved non-linear matter power spectrum calculations have been obtained from the ‘‘Coyote
Universe’’ simulations (Heitmann et al., 2009; Heitmann et al., 2010; Lawrence et al., 2010). Given this progress, and given
that the N-body problem is perfectly well-defined mathematically, we expect that the theoretical uncertainty in the power
spectrum for pure dark matter models will not be a limiting systematic for WL.

The situation is more complicated when one goes beyond pure dark matter. Baryons make up ∼17% of the matter in
the universe, and on small scales they do not trace the dark matter. Hydrodynamic simulations can follow them, but one
cannot hope to model the processes of cooling, star formation, metal enrichment and feedback from first principles. On
quasilinear scales, k ∼few×0.1h Mpc−1, the largest uncertainty appears to come from clusters, where redistribution of
the radial distribution of baryons affects the 1-halo contribution to the power spectrum. Observations of clusters – in
particularmeasurement of cluster concentrations –may help to constrain this effect (Rudd et al., 2008). It has been proposed
to either ‘‘self-calibrate’’ the cluster profile effect (Zentner et al., 2008) or incorporate information from cluster–galaxy
lensing (Mandelbaum et al., 2008), although this has not yet been necessary for present cosmic shear experiments.

60 This is a slightly more general relation than assuming that the galaxies are linearly biased with no stochasticity, in which case one could replace
Pδ(k)/Pgδ(k) → 1/b.
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A second uncertainty is associated with themissing baryon problem— the fact that most of the baryons that should be in
galaxy-sized halos (assuming a cosmic baryon:CDM ratio) are not observed in the stellar, Hi, andmolecular gas components.
If these baryons have been ejected from the host halo, e.g. via galactic winds or AGN feedback, then they could reduce the
matter power spectrum. These effects were discussed in an idealized ‘‘nightmare scenario’’ by Levine and Gnedin (2006);
more recently, the detailed hydrodynamic simulations of van Daalen et al. (2011) have shown a suppression of the matter
power spectrum by 1% at k = 0.3h/Mpc and 10% at k = 1h/Mpc. These effects are large compared to the statistical errors
of Stage IVWL experiments. Worrisomely, van Daalen et al. (2011) find that the predictions for the matter power spectrum
depend significantly on the treatment of star formation and AGN feedback in the simulations. In their simulations, AGN
feedback has the effect of reducing the baryon content of the halos, consistent with X-ray observations of intrahalo gas: the
matter power suppression quoted above is thus within the range of ‘‘reasonable’’ rather than ‘‘extreme/unrealistic’’ models.

Semboloni et al. (2011) show that the results of the simulations can be captured by a parameterized halo model for
the baryons, so one may be able to use this approach to marginalize over uncertainties, but at the price of reducing the
cosmological information derived from WL measurements on these scales. Moreover, their mitigation procedure involves
tuning the halo model to the van Daalen et al. (2011) simulations. Therefore one should worry that the removal of baryonic
physics-induced bias seen by Semboloni et al. (2011) might not be realized in practice, if the simulation captures the
qualitative features of AGN feedback but does not quantitatively reproduce the correct functional form. Zentner et al. (2013)
avoid this issue by fitting cosmic shear power spectra based on the van Daalen et al. (2011) simulations using a mitigation
procedure tuned to the Rudd et al. (2008) simulations. However they find that this procedure, while successful on simulated
Stage III (DES) survey data, is not adequate for the more ambitious task of Stage IV data analysis.

In summary, it is clear that better predictions for baryonic effects in thematter power spectrum, ancillary observations of
baryonic gas to constrain the range of outcomes realized in the real universe, and optimal methods for incorporating these
effects with minimal damage to cosmological constraints are critical areas for further investigation.

A final issue is the accuracy of the leading-order mapping from Pδ(k, z) to the shear power spectrum, Eq. (73). Next-
order perturbation theory arguments (Krause and Hirata, 2010) suggest that the correction is small, only a few σ for Stage
IV experiments. Ultimately, this correction should be computed with ray-tracing simulations that solve the full deflection
equation.

5.7. Systematic errors and their amelioration: summary

Summarizing results from our earlier discussion, the principal systematic errors in weak lensing measurements are:

• PSF correction and shape measurement biases (Sections 5.5.2–5.5.5): For the typical case of a PSF of a similar size to the
galaxy, the correction of the galaxy ellipticity for PSF effects is of order unity, and the desired accuracy is <10−3. This
requires both very accurate knowledge of the PSF and appropriate algorithms to correct for it.

• Redshift distribution uncertainties (Section 5.4.3): Using source galaxies at a higher redshift increases the WL power
spectrum, andhence there is a degeneracy between zsource and the inferred cosmological parameters. If the source redshift
distribution (or distributions, in the case of a tomographic analysis using photometric redshifts) are not well-calibrated,
there is a resulting error in the inferred cosmology.

• Intrinsic alignments (Section 5.6.1): The ellipticities of nearby galaxiesmay be correlatedwith each other due to formation
in a common environment. This ‘‘II effect’’ adds to the observed shear power spectrum and represents a systematic error.
There can also be cross-correlation of the intrinsic ellipticity of a nearby galaxy at z = z1 with the lensing signal on a
more distant galaxy at z = z2 > z1, since both depend on the tidal field at z = z1. This latter ‘‘GI effect’’ contaminates all
tomographic cross-power spectra and hence is more difficult to remove than II .

• Matter power spectrum uncertainties (Section 5.6.2): Predicting Pm(k, z) from a set of cosmological parameters is a
nontrivial task. This can nowbedone accurately for darkmatter only cosmologies (assuming that the darkmatter behaves
as simple CDM), but on small scales the influence of baryonic physics (cooling, feedback, etc.) is difficult to model.

These errors, and the steps to remove them, are not independent — for example, marginalizing out the intrinsic alignment
effects can amplify systematic errors in photometric redshifts (Bridle and King, 2007). The development of systematic
error budgets and requirements for future surveys thus requires a global analysis of all of the statistical and systematic
uncertainties and their possible degeneracies (Bernstein, 2009).

We have described numerous strategies for suppressingmost of these effects, but a few features stand out. First, exquisite
knowledge of the PSF must be achieved through some combination of good engineering (designing a stable telescope and
instrument and putting it in the best possible environment), good choice of observing strategy (more dithers and repeat
visits), and good algorithms (one needs to generate a homogeneous catalog with well-understood ellipticity errors and
selection effects). Second, precise photo-zs over the entire range covered by the survey are desirable for characterizing the
redshift distribution, and they are required if one is to even attempt a model-independent removal of intrinsic alignments —
something that has not yet successfully been done. To achieve these photo-z requirements, one wants optical and near-IR
photometry to distinguish Balmer/4000 Å breaks from Lyα breaks and spectroscopic samples that span the full range of
the WL samples. Cross-correlation against large redshift surveys can be an important tool in photo-z calibration (Newman,
2008).



D.H. Weinberg et al. / Physics Reports 530 (2013) 87–255 163

5.8. Advantages of a space mission

A space platform offers two critical advantages for weak lensing: (i) the availability of a small and stable PSF, and (ii) the
low sky brightness in the near-IR, which allows deeper observations. For this reason, weak lensing has been highlighted as
an important science objective for the Euclid and WFIRST space missions.

The small PSF enables the telescope to resolve many more galaxies (see Fig. 17). The space-based PSF size is normally
determined by the diffraction limit: for an ideal Airy disk with an unobstructed circular aperture (off-axis telescope), the
50% encircled energy radius EE50 is 0.535λ/D. This worsens for obstructed telescopes, reaching 1.25λ/D in the extreme
case of blocking 25% of the area of the telescope entrance. Nevertheless, for typical λ (of order 0.8 µm for a visible mission
and 1.5 µm for a near-IR mission) and reasonable telescope size (D ≥ 1.1 m) the EE50 radius is several times smaller
than the typical ∼0.3–0.4 arcsec from a good ground-based site. There are additional contributions to the PSF size – charge
diffusion, the pixel tophat, aberrations, and pointing jitter – but on a space weak lensing mission these would be designed
to be subdominant to diffraction.

A perhaps more important advantage is the stability of the PSF on a space mission, which allows for better characteriza-
tion. The dominant contribution to a ground-based PSF is from atmospheric turbulence, which varies rapidly as a function
of time and field position. This is eliminated in space. Moreover, contributions to the optical distortions from temperature
variations and gravity loading can be reduced or (in the latter case) eliminated, particularly at the L2 Lagrange point, in a
high Earth orbit during periods where shadow is avoided, and/or by using temperature-controlled optics. The three dom-
inant contributions to PSF ellipticity on a space mission are (i) astigmatism, which causes the ellipticity of the PSF to vary
with focus position; (ii) coma from misaligned optics, which at second order leads to ellipticity; and (iii) anisotropic point-
ing jitter. Of these, (i) and (ii) are functions of mirror positions, whose time and field position dependence are controlled
by a small number of parameters. The pointing jitter is the least stable – it may be different in every exposure – but it has
a controlled position dependence, no color dependence (at least with all-reflective optics), and can be monitored with the
same fine guidance sensors used to point the telescope. Therefore a spacemission offers the possibility of a PSFwhose entire
structure is determined by a small number of parameters that can be tracked as a function of time (Ma et al., 2008). This
means it provides the best possibility of providing accurate PSF knowledge at every point in every exposure. The diffraction
PSF has the unfortunate feature of having a size that is highly color-dependent (∝ λ/D), and in the presence of aberra-
tions the ellipticity is color-dependent as well. However, in contrast to ground-based observations, the color dependence is
controlled by the same wavefront error that determines the PSF morphology.

As already noted, optimal photo-z performance across the entire relevant range of redshifts can be obtained only with
continuous coverage from blueward of the 4000 Å break (at z = 0) through the near-IR. In particular the Balmer/4000 Å fea-
ture is always detected except at very high redshift (z > 3), which reduces the number of objects with no breaks identified
and provides cleaner separation of the Lyα vs. Balmer/4000 Å breaks. Collecting photometric data points in the bluer bands
(starting at the ∼3200 Å atmospheric cutoff) is quite reasonable from the ground, and in this area there is no major ad-
vantage to a space mission. However, as we move to the red the space mission begins to look much more attractive. From
the ground, the near-IR sky brightness (relevant for broadband imaging) is dominated by the decay of OH radicals, which
are produced in vibrationally excited states at ∼90 km altitude in the Earth’s upper atmosphere (Leinert et al., 1998). The
typical sky brightness rises from 18.5 mag AB arcsec−2 in the Z band through 15.4 mag AB arcsec−2 in the H band.61 In
space in the 1–2 µm region the dominant background is instead scattering of sunlight off of interplanetary dust particles
(the ‘‘zodiacal light’’). The typical brightness is ∼23 mag AB arcsec−2 near the ecliptic poles and 21.5 mag AB arcsec−2 in
the ecliptic plane (Leinert et al., 1998). Thus in the H band the sky brightness is a factor of 300–1000 lower in space, which
means that a space telescope with even∼1m2 collecting area would outperform the best ground-based telescopes in terms
of near-IR imaging survey speed. Note also that because of the altitude of the OH emitting layer, airplane or balloon based
platforms cannot access the low background available in space.

5.9. Prospects

The next several years promise to be very exciting for weak lensing as we enter the Stage III era. Two major wide-
field ground-based imagers are coming online in the 2012/13 timeframe: the Dark Energy Camera62 (DECam) at CTIO in
the Southern Hemisphere, and the Hyper Suprime Cam (HSC) on Subaru in the Northern Hemisphere (Miyazaki et al.,
2006). These will provide great leaps in étendue, roughly 35m2 deg2 for DECam and 70 m2 deg2 for HSC (vs. 8 m2 deg2
for CFHT/MegaCam). The Dark Energy Survey (DES; using DECam) plans to observe 5000 deg2 in the grizy bands over five
years to ∼24th magnitude (10σ r band AB, shallower in y). The HSC plans a somewhat deeper and narrower survey, also in
grizy (2000 deg2, 25thmagnitude 10σ ). These projects together will measure the shapes of roughly 300million galaxies and
provide accurate photometric redshifts out to z ∼ 1.3; this represents a 1 1

2 order of magnitude increase relative to current
data sets. We expect that the use of several revisits and shape measurements in multiple bands, as well as incorporating
the lessons from Stage II WL projects such as the CFHTLS and SDSS, will provide additional control over systematic errors in

61 See theWFCAMwebsite, http://casu.ast.cam.ac.uk/surveys-projects/wfcam, and beware of Vega to AB conversions, which are significant in the near-IR.
62 http://www.darkenergysurvey.org/.

http://casu.ast.cam.ac.uk/surveys-projects/wfcam
http://www.darkenergysurvey.org/
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shape measurement. With careful attention to the source redshift distribution as well, and the photo-z capability provided
by y-band imaging, the Stage III cosmic shear projects (DES and HSC) should reach the 1% level of precision on the amplitude
σ8, as well as providing high-S/N measurements of its increase as a function of cosmic time. If the stochasticity issue turns
out to be tractable, a similar level of precisionwill be reached by using galaxy–galaxy lensing to constrain the bias of galaxies
and infer σ8 indirectly from galaxy clustering.

The Stage III projects will also mark the completion of the research program of extrapolating the amplitude measured
from the CMB forward in time and comparing it to the value of σ8 measured via WL, and using the agreement of the ampli-
tudes to measure w(z) or test GR. There is a fundamental limitation to this type of comparison coming from reionization:
while Planck will measure the CMB power spectrum to very high accuracy, one needs the optical depth τ to convert this
into a normalization of the initial perturbations. This seems unlikely to be measured from the CMB E-mode to significantly
better than 0.01 due to cosmic variance, foregrounds, and modeling uncertainties (Holder et al., 2003; Mortonson and Hu,
2008; Colombo and Pierpaoli, 2009).63

The completion of the DES and HSC will not, however, mark the end of the road for cosmic shear. Because of the
reionization degeneracy, the next stepwill be tomake highly accuratemeasurements of the shape of the signal (dependence
on scale and redshift) rather than its amplitude. This is a scientificmatter of critical importance: if DES/HSC find a convincing
deviation from the expected amplitude of low-redshift structure, one does not know whether this reflects a breakdown of
GR at late times (a phenomenon thatmight be linked to cosmic acceleration) or something that happened to alter the growth
of structure between z ∼ 103 and z ∼a few (such as massive neutrinos, though early dark energy would also be a possible
explanation). What is needed next is the survey that measures the rate at which the growth of structure is suppressed
internally to the low-redshift data. In our Section 8 forecasts we describe deviations from the GR-predicted growth rate
using the parameter∆γ (see Eqs. (15) and (44)), though other choices are possible. Even the Stage III surveysmaymake only
preliminary measurements in this direction. Albrecht et al. (2009) estimated that DES could measure ∆γ to a 1σ accuracy
of only 0.2 using the evolution of the WL signal, and our fiducial Stage III forecast in Section 8.3 yields σ∆γ = 0.148 (see
Table 9). Clusters calibrated by stacked weak lensing might enable a significantly tighter constraint (Section 8.4, Fig. 47),
and redshift-space distortions could also enable good measurements of ∆γ (Section 7.2). It is not clear, however, that any
method will achieve percent-level measurements of the rate of low redshift structure growth in the 2010 decade. Reaching
this goal is one of the major drivers for Stage IV projects using WL and other probes of structure growth. It requires highly
accurate, low-systematics shape measurements, of galaxies across a wide range of redshifts, including z > 1 where the
angular radii of galaxies are small and the shape measurement challenges are immense.

Fortunately, the Stage IVWL experiments are already being planned, although their first light is not expected until≥2020.
There are several approaches. One is the Large Synoptic Survey Telescope (LSST), which would feature a giant-étendue
(290 m2 deg2) telescope dedicated to optical surveys of the Southern Hemisphere. Over a ten-year operating period, LSST
would acquire hundreds of images of every point on the sky, which should go a long way toward identifying and removing
any residual sources of PSF systematics. The incorporation of 6 bands (ugrizy)will likely lead to the best photometric redshifts
practical from the ground over such a wide area. LSST will survey the entire extragalactic sky available from the south,
perhaps 12,000–15,000 deg2. The usable density of source galaxies, particularly at high redshift, is not certain as it depends
on both advances in measuring galaxies small compared to the PSF and the quality of photometric redshifts in the notorious
1.3 < z < 2 range. However, by achieving high S/N on almost every resolved galaxy, LSST is likely to represent the ‘‘ultimate
experiment’’ for ground-based optical weak lensing.

An alternative approach is to exploit the small and stable PSF and availability of the near-IR bands from space, as planned
for ESA’s Euclidmission (scheduled launch in 2020) and theNASAWFIRST mission (launch date to be determined; see below).
Euclid will be a 1.2 m telescope with a 0.5 deg2 focal plane that will survey 15,000 deg2 in a parallel WL+BAO mode, with
shape measurements performed in a broad red band (0.55–0.92 µm). Euclidwill have only 3–4 observations of each galaxy,
but this is predicted to be acceptable given the much greater stability of Euclid’s PSF relative to anything possible on the
ground. At ∼30 galaxies per arcmin2, Euclid would measure shapes for ∼1.6 billion galaxies. Euclid will also obtain near-IR
photometry in three bands, which will be combined with ground-based optical photometry (from LSST where available)
for photometric redshifts; the IR imaging is underresolved and will not be used for shape measurements. WFIRST, in the
‘‘DRM1’’ configuration described by Green et al. (2012), would be a 1.3 m, unobstructed (i.e., off-axis secondary) infrared
space telescope capable of surveying 1400 deg2/yr in a combinedWL+BAOmode (4-band imaging and slitless spectroscopy
with resolution λ/∆λ ≈ 600). The baselineWL program has 5–8 exposures in each of three shapemeasurement filters (J, H,
and K), with an effective source density neff = 40 arcmin−2, and in a shorter wavelength filter (Y) that provides additional
information for photometric redshifts. (LSST or other ground-based data are again required to provide optical photometry.)
Multiple bands provide control of color-dependence of the PSF, and the degree of data redundancy is much higher than in
Euclid because of the larger number of exposures and the ability to correlate shape measurements in different bands — the
WL signal should be achromatic, but many systematics would not be. However, this greater redundancy, and the fact that
the telescope is shared with other science programs, comes at the expense of what will likely be a smaller survey. The Green
et al. (2012) design reference mission calls for 2.4 years of high-latitude imaging and spectroscopy (out of a 5-year mission

63 In themore distant future, 21 cmmeasurementsmay improve our understanding of reionization to the pointwhere this limitation is removed; however
such an advanced understanding is not anticipated in the immediate future.
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Fig. 19. (Left) The predicted cosmic shear power spectrum and statistical errors in each of 14 photo-z bins assuming aΛCDM cosmological model with the
parameters of Albrecht et al. (2009) and the survey parameters of our fiducial Stage IVWL program. (Right) Impact of systematic errors relative to statistical
errors. For three of the photo-z bins from the left panel, error bars show the ±1σ statistical errors (in bins of width∆ log l = 0.2 dex), with vertical offsets
between bins for clarity. Solid, dashed, and dotted curves show, respectively, the effect of amultiplicative shear calibration bias of 2×10−3

×
√
14 (orange),

a mean photo-z offset of 2 × 10−3
×

√
14 (green), or an additive shear bias of 3 × 10−4

×
√
14 (blue) per z-bin. (The

√
14 is inserted here since an actual

survey would combine all 14 bins.) The power in the additive shear bias was equally distributed in ln l for the purposes of this plot.

lifetime), which is sufficient to cover 3400 deg2.64 As mentioned in Section 1.3, the transfer of two 2.4-m on-axis space
telescopes from the U.S. National Reconnaissance Office (NRO) to NASA opens an alternative route to WFIRST, with initial
ideas described by Dressler et al. (2012).While this implementationmay not increase the survey area,65 the superior angular
resolution and light-gathering power of this hardwaremake it the only plausible option (at least in the optical-NIR bands) to
reach source galaxy densities of ∼70galaxies/arcmin2 over thousands of deg2. A detailed study of a 2.4-m implementation
ofWFIRST is ongoing, with a report planned for April 2013.

By the end of the 2020s, we should have a rich data set from all three of these projects (LSST, Euclid, and WFIRST ) — and
perhaps also from a large-scale radio interferometer such as the SKA. These surveys represent very different approaches
to the Stage IV WL problem and will provide for multiple cross-checks of final results and internal cross-correlations of
different data sets. The total number of galaxies with accurately measured shapes will probably reach ∼4 billion, with most
observed by at least two instruments and some with all three. Robust measurements of the suppression of the growth of
structure to σ∆γ ≈ 0.03 – a factor of several better than Stage III – should then be possible (see Table 8), as well as tests of
other possible deviations fromΛCDM that we have not yet imagined. But a great deal of work will be necessary before then
to ensure that the systematic errors are controlled at this level.

For our forecasts in Section 8 we adopt a fiducial Stage IV WL program that assumes an effective source density
neff = 23 arcmin−2 over 104 deg2, for a total of 8.3 × 108 shape measurements in 14 bins of photometric redshift (see
Section 8.1 for details). We incorporate (and marginalize over) a multiplicative shear calibration uncertainty of 2 × 10−3

and amean photo-z uncertainty of 2×10−3; these are aggregate values, and are larger by
√
14 in each photo-z bin. LSST and

Euclid both anticipate a larger number of shape measurements and thus smaller statistical errors than our fiducial program.
The baselineWFIRST DRM1 survey has a factor of two fewer shape measurements, but the mission’s technical requirement
for shape systematics is a factor of two better. Thus, our fiducial program is conservative relative to the stated goals of all
three experiments, though highly ambitious relative to the current state of the field.

For this fiducial Stage IV program, Fig. 19 shows the predicted shear power spectrum and 1σ statistical errors, in each of
the 14 photo-z bins. In addition to these auto-spectra, the data allow measurements of Nbin(Nbin − 1) cross-spectra among
the bins, providing additional statistical power and tests for intrinsic alignment and other systematics. In a given photo-
z bin, the errors in different l bins are independent. However, the errors from one photo-z bin to another are correlated
because the same foreground structure can lens galaxies in multiple background redshift shells. We compare the statistical
errors to the impact of cosmological parameter changes in Section 8.7. The aggregate statistical precision on the overall

64 An additional 0.45 years would be devoted to an imaging and spectroscopic survey for supernovae.
65 In wide-field ground-based surveys, an increase in telescope aperture, e.g. 2 m → 4 m, increases the étendue, resulting in a faster survey at the same
seeing-limited resolution. For space-based surveys, the natural choice when receiving a larger telescope is to maintain the same sampling of the PSF (and
hence the same f -ratio if the detector properties remain fixed), which results in each pixel subtending a smaller number of arcseconds. The étendue and
hence survey speed to reach the same extended-source sensitivity are unchanged if the pixel count is held fixed, but the angular resolution is improved as
∼λ/D. This is of course an enormous advantage for weak lensing.
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amplitude of the WL power spectrum, i.e., on a constant multiplicative factor applied to the auto- and cross-correlations in
all photo-z bins, is≈0.21%. The corresponding error on σ8, treated as a single parameter change, is about three times smaller
because the power spectrum scales as σ 3

8 in the regime where it is best measured. The right panel compares the statistical
errors in four representative photo-z bins to the effects of amultiplicative shear calibration bias of 2×10−3, a mean photo-z
bias of 2 × 10−3, or an additive shear bias of 3 × 10−4. We see that systematic errors of this magnitude would be smaller
than the statistical errors in an individual photo-z bin, but the overall impact would be larger than the aggregate statistical
errors. Thus, for our fiducial assumptions the Stage IV program is systematics limited rather than statistics limited, but not
by an enormous factor. Even though our assumptions for this fiducial program are arguably conservative, it would achieve
powerful constraints on the cosmic expansion history and the history of structure growth, as discussed in Section 8.

Is there a future for WL beyond Stage IV, both in terms of science motivation and technical capability? It seems unlikely
that there would be a follow-on experiment that consists of simply a super-size LSST, Euclid, or WFIRST, particularly given
that these experiments will comewithin a factor of a few of the cosmic variance limit at several tens of galaxies per arcmin2.
Rather the more distant future would have to involve new technology and a new science case not subject to the usual
limitations. An example might be to look for lensing by primordial gravitational waves, which is not practical using galaxies
as sources (Dodelson et al., 2003) but is at least in principle possible using highly-redshifted 21 cm radiation as the source,
even for tensor-to-scalar ratios as low as 10−9 (Book et al., 2012). But we have now entered the speculative realm of post-
2030 science and technology,where our ability to forecast the future is of limited reliability.We thus conclude our discussion
of weak lensing here.

6. Clusters of galaxies

6.1. General principles

Galaxy clusters have a long and storied history as cosmological probes. They provided the first line of evidence for the
existence of dark matter (Zwicky, 1933; Smith, 1936), and cluster mass-to-light ratio measurements suggested that the
matter density in the universe was sub-critical (Ωm < 1) as far back as the early 1970’s (see Gott et al., 1974, and references
therein). The evidence for low Ωm was substantially strengthened by baryon fraction measurements (White et al., 1993;
Evrard, 1997), and by the discovery of massive clusters at high (z ≈ 0.8) redshift (e.g., Henry, 1997; Eke et al., 1998;
Donahue et al., 1998). Today, clusters remain an important cosmological tool, capable of testing cosmology in a variety
of ways. Here we focus on cluster abundances as a tool for constraining the growth of structure in the matter distribution.
Tight geometrical constraints from BAO and supernovae in turn yield tight predictions for structure growth assuming GR to
be correct. Deviations from these predictions, revealed by weak lensing or by clusters, would constitute direct evidence
for modified gravity as the driver of accelerated expansion. The excellent review by Allen et al. (2011) discusses other
cosmological applications of clusters and examines recent cluster abundance results in detail (see also the earlier review
by Voit, 2005); we summarize recent work in Section 6.2 but devote most of our attention to methods for Stage III and Stage
IV cluster surveys. Other recent reviews in the field include Kravtsov and Borgani (2012), who review the physics of cluster
formation with emphasis on the insights gained from hydrodynamic cosmological simulations, and Kneib and Natarajan
(2011), who review strong and weak lensing by clusters.

The basic idea of cluster abundance studies is to compare the predicted space density of massive halos (Fig. 1) to the
observed space density of clusters, which can be identified via optical, X-ray, or CMB observables that should correlate with
halomass. In optical searches, the basic observable is the richness, the number of galaxies in a specified luminosity and color
range within a fiducial radius (typically taken to be the estimated virial radius of the halo). In X-ray searches, the luminosity
LX , temperature TX , and inferred gas mass Mgas all provide observable indicators of halo mass. In CMB searches, clusters
can be characterized by the central or integrated value of the flux decrement YSZ produced by the Sunyaev–Zel’dovich
(1970; hereafter SZ) effect: Compton up-scattering of CMB photons by hot electrons in the intraclustermedium. The product
YX = TXMgas defines an X-ray observable that should scale with YSZ, and numerical simulations predict that YX tracks halo
mass more closely than temperature or gas mass alone (Kravtsov et al., 2006).

The first applications of this approach were made by Peebles et al. (1989) and Evrard (1989), who used observed cluster
abundances to argue against anΩm = 1 CDMcosmologicalmodel (see also Kaiser, 1986b, 1991,who compared the observed
evolution of X-ray clusters to predictions of a self-similarmodel withΩm = 1). Halo abundance is sensitive to the amplitude
of the matter power-spectrum σ8 and the matter density Ωm. The mean matter content in a sphere of comoving radius
8h−1 Mpc is ≈ 2 × 1014 M⊙. Thus, cluster-mass halos form from the gravitational collapse of fluctuations on about this
scale, and their abundance naturally tracks σ8. Moreover, because the total mass of each collapsed volume scales linearly
with Ωm, the number of halos at a given mass can be raised either by raising σ8, so that fluctuations are larger, or by
raising Ωm, so that the mass associated with each perturbation is larger. The quantity most tightly constrained by cluster
abundances is a combination of the form σ8Ω

q
m, with q ≈ 0.4 (White et al., 1993). The degeneracy between σ8 andΩm can

be broken by measuring abundances at a variety of masses. This argument also holds at higher redshift, so one can think of
cluster abundances as primarily constraining σ8(z)Ω

q
m, modulated by the additional cosmological dependence of the volume

element dVc(z) ∝ D2
AH

−1dΩdz, and by any intrinsic dependence of cluster observables on the distance–redshift relations.
Note that, as elsewhere in this article,Ωm always refers to the z = 0 value unlessΩm(z) is written explicitly.
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Fig. 20. (a) Cumulative halo counts as a function of limiting mass for a 104 deg2 survey in a redshift slice z = 0.4± 0.05. The solid line shows the fiducial
model from Table 1. The dashed line corresponds to w = −0.8 with the amplitude of the primordial matter power spectrum held fixed. The dotted line
has w = −0.8, but holds σ8(z = 0.4) fixed. Residuals relative to the fiducial model are shown in the bottom panel. The small, nearly constant offset of
the dotted line is sourced by the dark energy dependence of the comoving volume element dVC . (b) The significance with which this hypothetical halo
sample could distinguish the fiducial model from the alternatives in panel (a) as a function of mass threshold, using the statistical error of Eq. (140). The
dot-dashed line shows an additional model in which σ8(z = 0) is held fixed. Even though the high mass end of the halo mass function depends most
strongly on cosmology, the statistical power of the cluster abundances is dominated by the lowmass end because of the much lower measurement errors.

We illustrate these ideas in Fig. 20. Panel (a) shows the expected halo abundance as a function of the limiting mass in a
redshift slice z = 0.35–0.45 subtending 104 deg2. Plots for other redshift slices are qualitatively similar. For this plot, and
throughout the rest of this section unless otherwise noted, halo mass refers to the mass enclosed within a sphere whose
mean interior overdensity is ∆ = 200 relative to the mean matter density of the universe. The solid line is the abundance
in our fiducial model (see Table 1), while the dashed line shows the corresponding halo abundance when settingw = −0.8
and holdingΩm and the primordial power spectrum amplitude As(k = 0.002Mpc−1) fixed. Unlike in Fig. 1, this choice does
not leave the CMB observables fixed, but it better illustrates the intrinsic sensitivity of cluster abundances. For w = −0.8,
dark energy becomes dynamically important earlier than for w = −1, suppressing growth and lowering σ8(z = 0.4) from
0.66 to 0.62. This sharply reduces the halo abundance, by ≈30% at a threshold of 1014M⊙ and by ≈60% at 1015M⊙. If we
raise As so as to hold σ8(z = 0.4) fixed, then the w = −1 and w = −0.8 models differ by a nearly constant factor of 1.1,
which is the ratio of the comoving volumes of the redshift slices in the two cases. This volume effect is clearly weaker than
the overall scaling of halo abundances with σ8.

While the mean halo abundance becomes more sensitive to σ8(z) at higher masses, the statistical precision with which
one canmeasure σ8(z) decreaseswith increasingmass because of the larger Poisson fluctuations for rarer clusters. This point
is illustrated in Fig. 20b, which shows the statistical significance at which a 104 deg2, z = 0.35–0.45 cluster survey would
distinguish the models shown in panel (a). For reference, we also show the case in which σ8 is held fixed at z = 0, which
reduces model differences because the growth and volume element effects act in opposite directions. We discuss statistical
errors in cluster abundances, including the role of sample variance, in Section 6.3.1. The key conclusion from Fig. 20b is that
lower mass clusters allow stronger model discrimination.

Cluster cosmology requires making an explicit link between the theoretically predicted population of halos as a function
of mass and an observed population of clusters. This problem is complicated by the fact that the halo population is usually
characterized using dark matter simulations, whereas clusters are identified using baryonically-sourced signatures such as
the presence of galaxy overdensities, extended X-ray emission, or SZ decrements (see Section 6.3.2). The lower mass limit
probed by cluster abundance experiments is partly set by the detection thresholds intrinsic to each method, but also by
the difficulty of characterizing the relation between low mass halos and poor clusters. Different researchers adopt varying
definitions of halos and of clusters. Within a reasonable range, such variation is acceptable, provided each study is self-
consistent and the halo–cluster relation is accurately characterized. In recent years, numerical studies have mostly shifted
from the friends-of-friends algorithm used in earlier work (e.g., Efstathiou et al., 1988) to spherical overdensity definitions
(e.g., Tinker et al., 2008), thus avoiding the tendency of the friends-of-friends method to occasionally link distinct mass
concentrations via narrow bridges (see More et al., 2011, and references therein for a more detailed discussion). Halo
boundaries are typically drawn at overdensities ∆ ≈ 100–500, where clusters are in approximate dynamical equilibrium
and where mass predictions are fairly robust to baryonic physics. The overdensity ∆ can be quoted relative to the mean
matter density of the universe at the cluster redshift or relative to the critical density at that redshift. In this section, we will
adopt∆ = 200 with respect to the mean density as our definition unless otherwise specified.

The principal challenge to precision cosmology with clusters is not cluster identification per se, but the accurate
calibration of the relation between cluster observables (e.g., richness, X-ray luminosity, SZ decrement) and halo masses.
Fig. 21 illustrates this point by flipping the x and y axes of panel (a) in Fig. 20, thus plotting themass threshold at fixed cluster
abundance for the different cosmological models. Changing fromw = −1 tow = −0.8 while holding As fixed changed the
predicted abundances by 30%–60%, but the corresponding change inmass threshold is only about 20%. For fixed σ8(z = 0.4),
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Fig. 21. Halo mass thresholds as a function of cumulative number counts, i.e. flipping the x and y axes of Fig. 20a. The x-axis shows the number of halos
predicted in a 104 deg2 survey in a redshift slice z = 0.4 ± 0.05. The lower panel shows the fractional change in mass threshold relative to the fiducial
cosmological model.

the 15% change in abundance corresponds to a 2.5%–6% change in mass threshold. These, then, are the levels of accuracy in
mass calibration that must be attained to distinguish between the two w = −0.8 models and our fiducial w = −1 model.
The issue of mass calibration will arise repeatedly in this section, especially in Sections 6.3.3 and 6.4.3.

In principle, cluster abundances are sensitive toσ8(z),Ωm, and the comoving volume element dVC , aswell as any inherent
sensitivity of the relation between cluster mass and cluster observables on the distance–redshift relations. To simplify our
discussion,wewill usually assume that a combination of other data sets (CMB, SN, BAO,WL, etc.)will determine bothΩm and
dVC (z) at higher precision than that achievable from cluster abundances. Consequently, we will focus on the sensitivity of
cluster abundances to σ8(z)while holdingΩm, dVC (z), and the angular and luminosity distances fixed. In practice, we expect
our assumption should be a good one as far as the comoving volume element and the distances are concerned. However,
the sensitivity attainable with clusters is high enough that holdingΩm fixed may be incorrect in detail. We will discuss this
point in Section 6.6 and again in Section 8.4.

Many cluster cosmology papers quote masses in h−1 M⊙ because observational mass estimates (and, to some extent,
theoretical predictions) scale inversely with h. However, at non-zero redshift many other parameters also come into play,
and h is itself one of the parameters constrained by dark energy experiments. Thus, we have elected to quote masses in
M⊙ rather than h−1 M⊙. In a similar vein, we will switch most of our subsequent discussion from σ8 to σ11,abs, the rms
fluctuation on a scale of R = 11 Mpc (equal to σ8 for h = 0.727). For some observables (e.g., the X-ray estimated gas mass
Mgas, the inferred cluster mass is sensitive to the angular diameter distance DA(z) and this dependence itself provides useful
cosmological constraints; this point is discussed by Allen et al. (2011) but we will not address it further here. Our primary
focus is the statistical precision with which cluster abundances constrain σ11,abs(z), and the level at which systematic
uncertainties must be controlled to achieve these statistical limits. In Section 6.6 we compare the precision potentially
attainable with clusters to forecasts (described in Section 8) from fiducial Stage III and Stage IV CMB+SN+BAO+WL
programs.

6.2. The current state of play

Most cluster cosmology studies of the past decade have been based on X-ray catalogs, with typical cluster samples
numbering in the several tens to few hundreds of clusters. The vast majority of these catalogs rely on ROSAT data – either
from the ROSAT All-Sky Survey (RASS; Voges et al., 1999) or from serendipitous detections in pointed observations –
though there are also samples selected based on XMM-Newton and Chandra imaging. Table 4 summarizes some of the main
X-ray catalogs that have been employed in these studies. The recently approved XXL survey will add ≈50 deg2 of imaging,
contributing ≈600 clusters out to z = 1 and above. The next big step forward for X-ray samples is the eROSITA mission,
which should identify ≈80,000 galaxy clusters at high confidence (see Section 6.5).

The largest existing cluster samples are optically selected, using either spectroscopic or photometric galaxy catalogs.
The former benefit from much finer spatial resolution along the line of sight. They tend to be shallow, with typical z . 0.2
(Merchán and Zandivarez, 2002; Kochanek et al., 2003; Miller et al., 2005; Merchán and Zandivarez, 2005; Berlind et al.,
2006; Yang et al., 2007; Li and Yee, 2008; Blackburne and Kochanek, 2012), though high redshift spectroscopic catalogs do
exist (Gerke et al., 2005; Coil et al., 2006). Photometric cluster catalogs hail back as far as the original Abell (1958) catalog,
which contained upwards of 2500 systems and served as the primary basis of cluster studies for decades. Though many
recent photometric catalogs have focused on narrow but deep survey data (z . 1, e.g., Gonzalez et al., 2001; Gladders
and Yee, 2005; Milkeraitis et al., 2010; Adami et al., 2010), the SDSS has led to the publication of several moderately deep
(z . 0.5) and wide catalogs, which can contain upwards of 50,000 clusters (e.g. Koester et al., 2007; Wen et al., 2009; Hao
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Table 4
X-ray cluster catalogs.

Catalog/Reference Type of survey No. of clusters Redshift limit

BCS (Ebeling et al., 2000) Wide/shallow 107 0.3
NORAS (Böhringer et al., 2000) Wide/shallow 378 0.3
HIFLUGCS (Reiprich and
Böhringer, 2002)

Wide/shallow 63 0.2

WARPS (Perlman et al., 2002) Narrow/deep 34 0.8
SHARC (Burke et al., 2003) Narrow/deep 48 0.7
160 deg2 (Mullis et al., 2003) Narrow/deep 201 0.7
REFLEX (Böhringer et al., 2004) Wide/shallow 447 0.3
400 deg2 (Burenin et al., 2007) Narrow/deep 287 0.8
MACS (Ebeling et al., 2010) Wide/shallow 34 0.6
MCXC (Piffaretti et al., 2011) Compilation 1783 0.8
XCS (Lloyd-Davies et al., 2011) Narrow/deep 1022/3669a 0.8

Note: All cluster catalogs included above are drawn from ROSAT data, except for XCS,
which is a serendipitous cluster search in XMM-Newton archival data (see Mehrtens et al.,
2012, for the first data release). Wide/shallow survey catalogs refer to cluster searches in
the ROSAT All-Sky Survey (RASS), whereas narrow/deep catalogs are drawn from pointed
ROSAT or XMM-Newton observations.MCXC is a compilation of various X-ray cluster catalogs.
The characteristic high redshift limit shown is not the redshift of the highest redshift cluster
in the sample, but rather a redshift that contains &90% of the galaxy clusters. The highest
cluster redshifts can be significantly higher than the redshift quoted, as expected for flux
limited surveys.

a 1022 is the number of galaxy clusterswith≥300 photons, allowing for TX estimates. 3669
is the number of 4σ cluster candidates.

et al., 2010; Szabo et al., 2011). Extensions that reach out to z ≈ 1 over 1000 deg2 or more from current or near future
photometric surveys – such as RCS-2, DES, Pan-STARRS, and HSC – will expand samples to the hundreds of thousands.

One limiting factor that affects these optical cluster finding experiments is that the 4000 Å break in the spectrum of early-
type galaxies shifts into the near-IR at z ≈ 1, making optical detection challenging above this redshift. This difficulty can be
overcomewith IR adaptations of optical cluster finding techniques. Today, there are two independent efforts aiming to detect
galaxy clusters using IR data: the IRAC ShallowCluster Survey (ISCS; Eisenhardt et al., 2008) and the Spitzer Adaptation of the
Red-Sequence Cluster Survey (SpARCS; Wilson et al., 2006). Both surveys have discovered and spectroscopically confirmed
candidate galaxy clusters out to redshift z . 1.5 (e.g., Stanford et al., 2005; Brodwin et al., 2006; Eisenhardt et al., 2008;
Muzzin et al., 2009; Wilson et al., 2009; Demarco et al., 2010), with some recent detections reaching z . 2 (Stanford et al.,
2012; Zeimann et al., 2012). Additionally, some of these systems have also been detected in X-rays and/or SZ (Brodwin et al.,
2011; Andreon and Moretti, 2011; Brodwin et al., 2012). These early results are encouraging and suggest that IR detection
of high redshift clusters can play an important role in the future of cluster cosmology.

While detections of the SZ effect in known galaxy clusters date back as early as 1976 (Gull and Northover, 1976), it is
only recently that instrumentation advances have made large scale SZ searches feasible. The first three successful cluster
SZ surveys – using the South Pole Telescope (SPT), the Atacama Cosmology Telescope (ACT), and the Planck satellite – are
all currently ongoing. All three projects have released SZ-selected cluster samples (Vanderlinde et al., 2010; Marriage et al.,
2011; Planck Collaboration et al., 2011a; Williamson et al., 2011; Reichardt et al., 2013). These samples tend to be of very
massive clusters (see Fig. 27) and, in the case of ACT and SPT, extend to z ≈ 2, with the upper limit set by the lack of massive
galaxy clusters above this redshift. For ACT and SPT, this redshift coverage is limited only by the abundance of such massive
objects at high redshift. Planck is limited in part by its relatively large beam, but it has the important benefit of being an all
sky survey, which results in a larger cluster yield overall. Based on the sensitivity estimates shown in Fig. 27, we anticipate
∼700 clusters in 2500 deg2 for SPT and ∼11,000 over the full sky for Planck. We emphasize, however, that these numbers
can easily shift by factors of ∼2–3 depending on the signal-to-noise cut adopted for cluster identification. In contrast to
optical and X-ray techniques, there is not likely to be a major leap forward in SZ capabilities in the next few years, so the
SPT, ACT, and Planck samples will probably remain the largest SZ cluster samples available for the next decade. That said,
the limiting masses of SZ cluster samples will go down as these and other facilities conduct deeper surveys focused on CMB
polarization (e.g., ACTPol and SPTPol).

Existing cluster cosmology constraints have come primarily from X-ray data (see, e.g., Henry, 2000; Reiprich and
Böhringer, 2002; Schuecker et al., 2003; Allen et al., 2003; Pierpaoli et al., 2003), reflecting the fact that X-ray observables can
be related to mass via simulations and/or analytic approximations and by hydrostatic modeling for well observed clusters.
All three of the most recent X-ray analyses yielded tight, consistent cosmological constraints, which can be summarized as
σ8(Ωm/0.25)0.45 = 0.80 ± 0.03 (Henry et al., 2009; Vikhlinin et al., 2009; Mantz et al., 2010). Cosmological analyses from
optical samples have typically been less constraining because of uncertain mass calibration (see, e.g., Bahcall et al., 2003;
Gladders et al., 2007; Wen et al., 2010). However, recent work that uses stacked weak lensing analysis for mass calibration
(Johnston et al., 2007; Mandelbaum et al., 2008; Sheldon et al., 2009) has allowed optical samples to achieve the same level
of precision as X-ray samples (Rozo et al., 2010), with comparable levels of systematic error. Constraints from SZ selected
samples are emerging (Vanderlinde et al., 2010; Sehgal et al., 2011; Reichardt et al., 2013), and while they are currently
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Fig. 22. Comparison of the 68% confidence regions derived from galaxy cluster abundances and WMAP CMB data by various groups. The first three error
ellipses – using quoted uncertainties fromMantz et al. (2010), Henry et al. (2009), and Vikhlinin et al. (2009) – all come fromX-ray selected cluster samples.
The Rozo et al. (2010) ellipse comes from an optically selected cluster samplewith stackedweak lensingmass calibration. The Tinker et al. (2012) constraint
uses the same optical clusters and mass calibration, but relies on galaxy clustering and mass-to-number ratios to derive cosmological constraints, making
it essentially an independent cross-check. The Benson et al. (2013) ellipse comes from the SPT selected cluster sample.

weak because of the relatively large uncertainty in the SZ-mass scaling relation, the extensive follow-up campaigns that
are currently underway will reduce this scaling uncertainty and bring these constraints to a level comparable to those from
optical and X-ray cluster catalogs (e.g. High et al., 2012; Hoekstra et al., 2012; Planck Collaboration, 2013; Rozo et al., 2012d).

Regardless of the wavelength of choice, current cluster abundance constraints are limited not by the number of clusters
but by uncertainty inmass calibration. Fig. 22 shows the cluster abundance constraints from several recent analyses. Because
the current X-ray and optical mass calibrations are fundamentally different (hydrostatic vs. weak lensing), the excellent
agreement illustrated in Fig. 22 provides a strong test of systematic uncertainties. However, the results from the Planck
Collaboration et al. (2011b) have sounded a cautionary note, as the optical mass estimates used to derive cosmological
parameters in Rozo et al. (2010) appear to be inconsistent with SZ data (see also Draper et al., 2012). Biesiadzinski et al.
(2012) have attributed this inconsistency tomiscentering, while Angulo et al. (2012) point out the importance of systematics
covariance. Rozo et al. (2012c,b,a) argue that the optical, X-ray, and SZ data can be reconciled by considering, in addition to
these effects, the systematics of X-ray temperature measurements indicated by the offsets among estimates from different
groups, and departures from hydrostatic equilibrium at the level predicted by hydrodynamic cosmological simulations
(e.g., Nagai et al., 2007). Regardless of how this issue is ultimately resolved, it is clear that further tightening cosmological
constraints will require a significant improvement in our ability to estimate cluster masses.

On this last count, we note that Fig. 22 also includes cosmological constraints from an analysis by Tinker et al. (2012) that
does not rely on cluster abundances. Tinker et al. (2012) use a halo occupation model (see Section 2.3) fit to SDSS galaxy
clustering,which yields a prediction for themass-to-number ratio of clusters66 as a function ofσ8 andΩm.While this analysis
uses the sameweak lensingmass calibration as Rozo et al. (2010), themethod is less sensitive to themass scale and is entirely
independent of abundance uncertainties, making it a largely independent measurement and a powerful systematics cross-
check. The same approach can be adapted to future, deeper photometric surveys. We also note that stacked weak lensing
measurements for clusters can be extended far beyond the virial radius (Sheldon et al., 2009), into the regime where they
measure the large scale cluster-mass cross-correlation function, and that these large scale measurements can also be used
to constrain cosmological parameters (Zu et al., 2013).

6.3. Observational considerations

6.3.1. Expected numbers and cosmological sensitivity
Fig. 23a shows the expected cluster counts in our fiducial cosmologicalmodel for a variety of limitingmasses, as a function

of the limiting redshift z of a 104 deg2 survey. (Note that these are lower limits on mass but upper limits on redshift.) Panel
(b) shows number counts in redshift bins of width ±0.05; e.g., at z = 0.15, we show the halo counts in the redshift bin
[0.1, 0.2]. We maintain this redshift binning convention throughout. Together, these two figures give a broad-brush sense
for the typical sample sizes and redshift distribution of galaxy clusters as a function of limiting mass and redshift.

Assuming halo masses can be adequately measured, the statistical error in cluster abundances is the sum in quadrature
of Poisson noise and sample variance (Hu and Kravtsov, 2003),

(∆N)2 = N + b̄2N2σ 2(V ). (140)

66 Analogous to mass-to-light ratio, but with galaxy number instead of integrated luminosity.
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Fig. 23. (a) Cumulative halo number counts above the indicated mass thresholds M as a function of the limiting survey redshift. We assume the fiducial
cosmological model from Table 1, and survey area of 104 deg2 . (b) Counts above the mass threshold in redshift bins z = zc ± 0.05. (c) Statistical error
in the number of clusters above the mass threshold from Eq. (140), again in redshift bins z = zc ± 0.05. (d) The mass accuracy required to ensure that
cosmological constraints are limited by the statistical precision in the number of galaxy clusters rather than by uncertainties in mass estimation.

Here, N is the mean number of halos in the volume of interest, b̄ is the mean bias of the halos, and σ 2(V ) is the variance of
the matter density field over the survey volume.67 Fig. 23c shows the fractional error ∆N/N for the fiducial model, again
for redshift bins z = zc ± 0.05 where zc is the central redshift of the bin. Sample variance becomes larger than Poisson
variance below a transition mass ∼4 × 1014 M⊙ at z = 0.1 and ∼1014 M⊙ at z = 1. However, the statistical error is never
more than a factor∼2 above the N−1/2 Poisson expectation (see Fig. 26), and total statistical errors should scale with survey
area roughly as (A/104 deg2)−1/2. For any mass threshold the statistical error first decreases with redshift, as the number
of clusters grows with the increasing comoving volume per∆z. This trend flattens when the clusters become exponentially
rare, at which point further increase in redshift leads to a precipitous drop in the number of clusters and a corresponding
rise in Poisson errors. These competing effects lead to the characteristic U-shape of the curves in Fig. 23c.

Fig. 23d converts these statistical abundance errors to equivalent errors in mass by dividing ∆N/N by the logarithmic
slope of the cumulative halo mass function, α = −d lnN/d lnM , which ranges between 2 and 5 depending on redshift and
mass. While observational samples are not thresholded exactly in mass, the sensitivity of cluster abundances to an overall
shift in the mean mass at fixed observable is well captured by this heuristic argument. In order for clusters to saturate the
statistical limit in the abundances, the uncertainty in mass calibration must be smaller than this ∆M/M . For a 104 deg2
survey and M ≥ 8 × 1014 M⊙, a mass accuracy of 3%–10% (depending on z) suffices. By M ≈ 2 × 1014 M⊙, however, the
accuracy requirement has sharpened to .1%. (This last number agrees well with the more detailed analysis of Cunha and
Evrard (2010) for a mass threshold of 1014.2 M⊙; see in particular the top panels in their Fig. 2.) Achieving such accuracy is
a tall order, and current studies are clearly limited by the systematic uncertainty in cluster masses rather than abundance
statistics. Note that the required accuracy scales roughly as (A/104 deg2)−1/2, and it applies to the overallmass scale (i.e., the
mean of the mass–observable relation) rather than the mass of any individual system.

Fig. 24 translates the errors on cluster abundance from Fig. 23 to errors on the matter power spectrum amplitude
σ11,abs(z), again for a 104 deg2 survey with z = zc ± 0.05 bins. For simplicity, we assume that Ωm, the comoving volume
element dVc(z), and the power spectrum shape are perfectly known from independent data (CMB+SN+BAO+WL), so
that σ11,abs(z) is the single cosmological parameter controlling the cluster abundance. As discussed in Section 6.1, if the
uncertainty inΩm is non-negligible, then it is the combination σ8(z)Ω

q
m that is constrained instead. Panel (a) shows the case

67 For example, in our fiducial cosmology at z = 0.6, the matter variance in a volume of ∆z = 0.1 and area 10,000 deg2 is σ(V ) ≈ 0.2%, and the mean
halo bias is ≈3.0 and ≈5.7 for mass thresholds of 1014M⊙ and 4 × 1014M⊙ , respectively.
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Fig. 24. (a) Statistical error on σ11,abs(z) as a function of redshift, in redshift bins z = zc ± 0.05, for different mass thresholds as labeled. We assume a
104 deg2 survey area, and the fiducial cosmological model. We also assume thatΩm , the shape of the matter power spectrum, and the comoving volume
element dVC are perfectly known from independent data (CMB+SN+BAO+WL). Panels (b)–(d) refer to specific mass thresholds as labeled. In each panel
the solid curves show the effect of different mass calibration uncertainties as labeled while the dotted curve assume the perfect mass calibration values
(i.e., number statistics limited) from panel (a). For reference, the uncertainty in σ11,abs(z) that we forecast for a fiducial CMB+SN+BAO+WL program is
∼1% for Stage IV data sets and ∼2%–3% for Stage III data sets (see Sections 6.6 and 8.4).

where mass calibration errors are negligible. The errors on σ11,abs(z) roughly track the abundance errors ∆N/N in Fig. 23,
but because the sensitivity of the abundance to σ11,abs(z) at fixedmass increaseswith increasing redshift, the best constraint
on σ11,abs(z) comes at a higher redshift than the one at which ∆N/N is minimized. The remaining panels show the impact
of 1%, 2%, 4%, and 8% mass calibration errors for three different threshold masses.

The basic features in Fig. 24 are simple to understand at a quantitative level, starting from the knowledge that cluster
abundances constrain the combination σ11,abs(z)Ω

q
m with q ≈ 0.4. Since the mass of a collapsed volume scales linearly with

Ωm, a shift of the mass scale by a constant factor is nearly degenerate with a change of Ωm by the same factor. Together
these scalings imply σ11,abs(z) ∝ Mq, where M is the mass scale at fixed abundance, making ∆ ln σ11,abs(z) ≈ q∆ lnM for
a survey limited by mass calibration uncertainty∆ lnM . For a survey limited by halo statistics, the corresponding effective
mass error is (∆ lnM)eff = α−1∆ lnN where α = −d lnN/d lnM ≈ 2–5 is the slope of the cumulative halo mass function,
so in this case∆ ln σ11,abs(z) ≈ qα−1∆ lnN . Combining the two limits we arrive at

∆ ln σ11,abs(z) ≈ q × max

∆ lnM, α−1∆ lnN


. (141)

The above expression fits the data in Fig. 24 with better than 30% accuracy (typically .15%).
Fig. 25 plots the value of the degeneracy exponent q as a function of limiting mass and redshift. In the Press and

Schechter (1974) theory of the halo mass function, the cumulative abundance is set by the probability that a point in a
Gaussian field of variance σ 2(M) exceeds the critical threshold δc ≈ 1.69 for spherical collapse (see Section 2.3), so that
N ∝


1 − erf(δc/

√
2σ(M))


. Putting in the σ(M, z) relation for a ΛCDM power spectrum yields a logarithmic derivative

d lnN/d ln σ ≡ ασ ≈ 5 − 9 depending on mass and redshift. Because cluster abundances are degenerate in Ωm/M , the
logarithmic derivative of cluster abundances relative toΩm is the same as the slopeα of themass function (butwith opposite
sign), so locally the cumulative mass function scales as

N(m) ∝

σ11,abs(z)

ασ
Ω−α

m =

σ11,abs(z)Ω−α/ασ

m

ασ
. (142)

We see that halo abundances are degenerate in σ11,abs(z)Ω
q
m with q = −α/ασ ≈ 3/7 ≈ 0.4. We plot the ratio α/ασ –

computed using the Tinker et al. (2008) mass function rather than the Press–Schechter mass function – in Fig. 25.
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Fig. 25. The degeneracy exponent q as a function of redshift for a series of threshold masses. The parameter q is the exponent in σ11,abs(z)Ω
q
m that holds

the abundance of galaxy clusters above the quoted threshold mass at the appropriate redshift bin fixed for small, oppositely directed changes in σ11,abs(z)
andΩm .

Fig. 26. Left: Logarithmic derivative α = −d lnN/d lnM of the cumulative halo counts, as a function of redshift, for five mass thresholds as labeled. Right:
The ratio of the total (Poisson+ sample variance) error in the halo counts∆ lnN to the Poisson errorN−1/2 . Solid lines assume a survey area of 10,000 deg2 ,
while dashed lines correspond to 100 deg2 . In conjunction with Fig. 25 and Eq. (141), these figures allow one to quickly estimate how well σ11,abs(z) can
be constrained at each redshift by a galaxy cluster sample with N clusters.

A cluster abundance analysis becomes limited by mass scale uncertainty rather than halo abundance statistics when
∆ lnM > α−1∆ lnN . If we approximate the error as Poisson, ∆ lnN = N−1/2, then an experiment is limited by mass
uncertainty if the sample size is N ≥ (α∆ lnM)−2. Current systematic uncertainties in mass calibration are ≈10%, which
for α ≈ 3 corresponds to N ≈ 10. Thus, cluster abundance studies are limited by uncertainty in the overall mass scale even
for samples with as few as ≈10–20 galaxy clusters. For cluster samples with N ≈ 103 (104), the accuracy required in mass
estimation for an experiment to be dominated by halo statistics is ≈1% (0.3%). So that one may apply the rule-of-thumb
estimates derived in this section, Fig. 26 plots themass-function slope α and the ratio of the total error∆ lnN to the Poisson
uncertainty N−1/2. Note that abundance errors including sample variance almost never exceed twice the Poisson error and
are often much closer. Using Figs. 25 and 26 along with Eq. (141), one can quickly estimate how well an experiment with
given number of galaxy clusters N can constrain σ11,abs(z).

If Ωm and dVc(z) are not perfectly known, then cluster abundances will constrain a combination of cosmological pa-
rameters rather than the matter fluctuation amplitude alone. Predicted abundances are proportional to dVc(z), so for an
experiment dominated by uncertainty in the mass scale, uncertainty in the volume element will affect the interpretation if
∆ ln dVc & α∆ lnM , the effective abundance uncertainty. SN and BAO surveys should typically yield uncertainties below this
limit, sowe expect regarding dVc(z) as known to be an adequate approximation for our purposes, though itmay fail for suffi-
ciently powerful cluster surveys. Since a pure shift inΩm is equivalent to a shift inmass scale, uncertainties inΩm are relevant
if∆ lnΩm & ∆ lnM , wherewe have again assumed the experiment in question is dominated by themass error∆ lnM . If the
uncertainty inΩm is larger than this critical scale, then clusters will effectively constrain σ11,abs(z)Ω

q
m rather than σ11,abs(z)

alone. Eq. (141) will still hold, but one must replace ∆ ln σ11,abs(z) by ∆ ln

σ11,abs(z)Ω

q
m

. Current fractional uncertainties
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in Ωm from CMB and other observables are ∼10%, comparable to mass calibration systematics. Future studies will reduce
Ωm uncertainties, but they may remain significant compared to improved mass calibration errors in cluster surveys.

We have focused our discussion here on cumulative cluster abundances – i.e., space densities of clusters above a mass
threshold – while observational analyses usually examine the differential distribution as a function of observable mass-
proxies. Differential distributions are useful for breaking degeneracies (e.g., among σ11,abs,Ωm, and dVc), and for constraining
‘‘nuisance parameters’’ such as the scatter of the observable–mass relation. However, for single-parameter constraints on
σ11,abs(z), we expect that our analysis of the cumulative abundance uncertainties provides an accurate guide, as it makes
use of the single number best determined by the data for any given mass threshold and redshift range. We anticipate that
observational analyses will continue to concentrate mainly on differential distributions, but cumulative distributions are
more amenable to the kind of rule-of-thumb estimates that we try to develop throughout this section, so they provide a
more intuitive way of understanding the cosmological information content of cluster surveys.

6.3.2. Cluster finding
Each of the three main methods for finding galaxy clusters – optical, X-ray, and SZ – has its own virtues and deficiencies.

The principal advantage of optical surveys is sheer statistics, reflecting the lowmass threshold for optical detection; clusters
with masses as low as 5 × 1013 M⊙ are capable of hosting significant galaxy overdensities. Near-future surveys (RCS-2,
DES, HSC, Pan-STARRS) should find ≈105 systems in areas of 103–104 deg2 out to z ≈ 1. On a longer time scale (≈10
years), surveys with LSST should increase the available cluster samples by another factor of 5–10, due both to larger area
(≈20,000 deg2) and to deeper imaging, which should allow cluster detection out to z ≈ 1.5. Finally, cluster searches in
the IR are capable of finding galaxy clusters out to z ≈ 2, but large survey areas to this depth will only be achievable with
the advent of Euclid and/or WFIRST. With the stacked weak lensing mass calibration that we advocate in Section 6.3.3, the
calibration accuracy scales with cluster number as N−1/2, so enormous samples are statistically advantageous even if mass
uncertainties dominate the error budget.

The main drawback for optical cluster detection is projection effects, i.e., chance alignments of multiple low mass halos
along the line of sight that are misidentified as a single massive galaxy cluster. While this systematic has been drastically
suppressed in modern surveys with multi-band photometry and photometric redshift estimators, one still expects 5%–20%
of photometrically selected clusters to suffer from serious projection effects (Cohn et al., 2007; Rozo et al., 2011a). The
importance of projection effects increases with decreasing mass, so we expect it is projection effects rather than survey
depths that will ultimately set the detection mass threshold for optical cluster finding in future surveys.

Unlike optical studies, X-ray cluster searches are nearly free from projection effects. This robustness to the presence
of structures along the line of sight reflects the fact that X-ray emission scales as density-squared, which enhances the
relative contrast of a cluster in the sky, and it is the principal reason that X-rays are considered the cleanest method for
selecting galaxy clusters. The main difficulty for X-ray selection is a technological one, specifically, the need for space-
based observatories. A dramatic leap forward in capabilities will happen with the launch of eROSITA, which should detect
≈105 galaxy clusters over the full sky out to z = 1 and beyond, ensuring that X-rays will continue to play a critical role
in the development of cosmologically relevant cluster samples over the coming decade. On a longer time scale, further
improvements would require X-ray observatories that reach lower flux limits with higher angular resolution, both of which
are needed to detect large numbers of systems at z & 1.

The primary advantage of SZ searches is that they do not suffer from cosmological dimming. The SZ signature arises
from up-scattering of CMB photons by the hot intra-cluster plasma, and because the number of up-scattered photons
does not depend on the distance to the cluster the signal is roughly redshift independent. In practice, the SZ signal is not
exactly redshift independent because of residual sensitivity to the relative size of the cluster and the beam of the telescope.
Unfortunately, achieving sufficient sensitivity to detect low mass clusters in SZ is technologically very challenging. For
instance, the current SPT, ACT, and Planck surveys are expected to be complete at all redshifts above mass thresholds of
7 × 1014 M⊙, 1015 M⊙, and 2 × 1015 M⊙ respectively (Vanderlinde et al., 2010; Marriage et al., 2011; Planck Collaboration
et al., 2011a); while these limits will go down, they will not reach thresholds comparable to those of X-ray or optical
cluster selection. Consequently, while these experiments are currently the best avenue to probe the z ≈ 1 massive
cluster population, on a 3–5 year time scale the focus of cluster detection is likely to shift toward optical and X-ray. To
our knowledge, there are no current plans to develop a new generation of SZ survey instruments that would dramatically
improve upon the capabilities of current experiments for cluster detection, at least compared to the differences in optical
(e.g., DES vs. SDSS) and X-ray (eROSITA vs ROSAT ). However, both SPTpol and ACTpol should lead to significantly lower mass
thresholds for SZ cluster detection than the current SPT and ACT cluster samples.

Fig. 27 showcases the difference of the cluster populations from the various selection methods, where we have limited
ourselves to wide surveys (1000 deg2 or higher) and have shown only a handful of representative selection functions. The
top row shows the selection functions for existing or ongoing surveys, while the bottom-row shows the selection for future
surveys. The left panels shows the limiting mass as a function of redshift for each of the surveys considered, while the right
panels shows the number above the limiting mass in a redshift bin of width ∆z = 0.1, accounting for survey area. We
emphasize that in practice cluster samples never have a sharp mass threshold; the curves shown in Fig. 27 are only roughly
indicative of the mass and redshift ranges probed. The number of clusters detected depends in detail on the selection cuts
applied, and small changes in threshold translate to larger changes in abundance, so factor-of-two deviations from the
projections in Fig. 27 would not be particularly surprising.
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Fig. 27. Selection function for several representative cluster samples, as labeled. The top panels show surveys that are completed or currently ongoing.
The bottom panels show future surveys. Left panels show the limiting mass as a function of redshift, while right panels show the number of galaxy clusters
above the limiting mass in redshift bins of width ∆z = 0.1. The yellow region in the left panels corresponds to the area in parameter space where one
expects fewer than one galaxy cluster above the mass and redshift under consideration. For the abundance plot, we consider the appropriate area for each
of the surveys: 30,000 deg2 for the eROSITA and Planck cluster samples, 10,000 deg2 for the REFLEX sample, 20,000 deg2 for LSST, 10,000 deg2 for SDSS,
5000 deg2 for DES, 1000 deg2 for RCS-2, 2500 deg2 for SPT, 600 deg2 for SPTpol, and 4000 deg2 for ACTPol. The current ACT survey (not plotted) is similar to
SPT, with a somewhat highermass threshold and a 1000 deg2 survey area. Different line types are used only to aid visual discrimination. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

For the optical detection threshold we have assumed that projection effects limit useful cluster catalogs to a minimum
richness λ = 15 in the algorithm of Rykoff et al. (2012), which counts galaxies of luminosity L ≥ 0.2L∗. To account for
mass–richness scatter, we choose an effective mass threshold that yields approximately the same space density as this
richness threshold. The sharp upturn occurs when 0.2L∗ matches the magnitude limit of the survey. In SZ, we see that
the SPT mass threshold (kindly provided by the SPT collaboration, and normalized to a total cluster yield of ≈700 clusters
at full depth) is only mildly sensitive to redshift. The gentle decrease in limiting mass with increasing z reflects the fact
more distant clusters subtend smaller angles that better match the SPT beam size, and that clusters are hotter at fixed mass
with increasing redshift. For Planck, conversely, the decreasing angular size of clusters reduces sensitivity at higher redshift
because the beam itself is large. The curve shown is a rough estimate of the Planck Early SZ sample (Planck Collaboration
et al., 2011a), though the final selection will go considerably lower in mass, because of both deeper data and lower S/N
cuts. The SPTpol curve is similar to SPT, but it reaches lower masses over a smaller area, while the ACTpol curve reaches
similar noise levels to SPT (≈20 µK, Niemack et al., 2010) over a larger area. (ACTpol also plans a separate survey, deeper
and narrower than SPTpol.) Turning to X-rays, the REFLEX, XXL, and eROSITA curves all show the increase of mass threshold
with redshift characteristic of flux-limited surveys. The XXL selection is that of Valageas et al. (2011) scaled to match the
observed density of C1 clusters in the XMM-LSS field (Pacaud et al., 2007), while the eROSITA threshold represents a flux
limit ≈4 × 10−14 erg s−1, corresponding to ≈50 photon counts (Pillepich et al., 2012). The mass limit is higher by a factor
of ≈3 for clusters reaching 300 photon counts.

Current wide X-ray samples are largely limited to massive systems at moderate redshifts, but narrow/deep samples
reaching z ≈ 1 and above do exist. By comparison, the SDSS reaches lower mass over large areas of the sky, but it only
extends to z ≈ 0.5. RCS-2 reaches z ≈ 1, but over a smaller (though still quite significant) area. The Planck SZ survey
is largely limited to massive, moderate redshift systems, while the SPT SZ survey has the best current sensitivity to high
redshift clusters. In the near future, DES will extend the range of optical identification to z ≈ 1 over a large area, but
eROSITA should ultimately produce a larger sample. While DES has a lower mass threshold over the range 0.3 < z < 1, the
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larger (all-sky) area of eROSITA leads to a larger cluster total, and eROSITA should continue to detect clusters at z > 1 where
the DES sensitivity declines rapidly. On a longer time scale, LSST will push the optical selection limit to z ≈ 1.5, increasing
the number of z > 1 galaxy clusters by one to two orders of magnitude.

Another proposed method for detecting galaxy clusters is to search for peaks in the weak lensing shear field. However,
while massive halos produce local shear peaks, shear peak statistics are known to suffer from severe projection effects:
many peaks arise from the superposition of multiple halos along the line of sight. Consequently, shear peak selection is
not a particularly effective method for selecting clusters of galaxies. That said, the shear peak abundance is an observable
that can be predicted from numerical simulations in much the same way as the halo mass function, and this approach may
well yield useful cosmological constraints (e.g., Marian et al., 2009; Dietrich and Hartlap, 2010). For the remainder of this
review, however, we focus on abundances of clusters identified by optical, X-ray, or SZmethods.We emphasize that stacked
weak lensing mass calibration of clusters identified by other methods is not equivalent to shear peak statistics, since cluster
methods use the additional information afforded by baryonic density peaks to drastically reduce the impact of projection
effects on cluster selection.

6.3.3. Calibrating the observable–mass relation
The biggest challenge for cluster cosmology is characterizing the observable–mass relation P(X |M, z), whereX is a cluster

observable that is correlated with mass (e.g., richness, YSZ , LX ) and P(X |M, z) is the probability that a halo of mass M at
redshift z is detected as a cluster with observable X . This relation is usually described by parameters that specify the mean
relation, the rms scatter, and perhaps a measure of skewness or kurtosis, all of which can evolve with redshift. There are
three general approaches to determining these parameters: simulations, direct calibration, and statistical calibration.

In the simulation approach, one relies on numerical simulations to calibrate the observable–mass relation (e.g. Vander-
linde et al., 2010; Sehgal et al., 2011). The main difficulty that simulation methods face is our incomplete understanding
of baryonic physics, particularly galaxy formation feedback processes. These difficulties can be minimized by defining new
X-ray observables that are expected to be robust to these details, and through careful exploration of the sensitivity of the
observable–mass relation to the physics that goes into the simulations (e.g., Nagai et al., 2007; Rudd and Nagai, 2009; Stanek
et al., 2010; Fabjan et al., 2011; Battaglia et al., 2012). The simulations themselves are steadily improving thanks to increased
computer power, more sophisticated algorithms, and the availability of better data to test the input physics. Despite these
trends, we think it unlikely that simulations will achieve the ∼0.5%–2% level of accuracy required for cluster abundance
experiments to become statistics dominated in the next ten years.

The second approach to calibrating the observable–mass relation is the direct method, in which a small subset of galaxy
clusters have X-ray hydrostatic mass estimates and/or weak lensing mass estimates that are taken to represent ‘‘true’’
masses. The observable–mass relation is directly calibrated on this small subset of galaxy clusters, then applied to the general
cluster population (Vikhlinin et al., 2009; Mantz et al., 2010). Unfortunately, hydrostatic mass estimates are themselves
problematic because non-thermal pressure support (bulk motions, magnetic fields, cosmic rays) is expected to bias them
at the ≈10%–20% level (Lau et al., 2009; Meneghetti et al., 2010), and it is not clear that these biases can be predicted at
the required level of accuracy. We therefore suspect that hydrostatic estimates will play a steadily decreasing role in future
cluster abundance experiments.Weak lensingmass estimates of individual clusters can in principle be unbiased in themean,
but they are typically available only for themostmassive galaxy clusters in a given sample because of limited signal-to-noise
ratio. In addition, even if the WL shape noise is small, halo orientation and large scale structure introduce irreducible noise
in themass estimates of individual clusters at the 20%–30% level (Becker and Kravtsov, 2011). Nonetheless, ambitious efforts
to achieve accurate weak lensing masses for substantial samples (≈50) of X-ray or SZ-selected clusters are likely to play a
key role in improving cluster cosmological constraints over the next few years (Hoekstra et al., 2012; von der Linden et al.,
2012).

The final approach to calibrating the observable–mass relation is statistical: instead of relying on precise mass estimates
of a subsample of galaxy clusters, the relation is calibrated using additional observables for the full sample that correlate
withmass. One such statisticalmethod uses the spatial clustering of the clusters themselves, as characterized by the variance
of counts-in-cells (Lima and Hu, 2004) or by the cluster correlation function or power spectrum (Schuecker et al., 2003; Ma-
jumdar andMohr, 2004; Hütsi and Lahav, 2008). Because the bias of halo clustering depends onmass (Fig. 1), the amplitude
and scale-dependence of clustering provides information about the mass–observable relation. Operationally, one parame-
terizes this relation, then uses standard likelihood methods to jointly fit for both cosmology and the P(X |M, z) parameters
(Hu and Cohn, 2006; Holder, 2006). These types of analyses are often referred to as ‘‘self-calibration’’ because they do not
require ‘‘direct’’ mass calibration data. However, we think the descriptor ‘‘statistical mass calibration’’ is more accurate.

The other statistical method we consider is stacked weak lensing, wherein one measures the mean tangential shear of
background galaxies around galaxy clusters in a bin of fixed observable. In otherwords, the stackedweak lensing signal is the
cluster-shear correlation function, which can be inverted to yield the mean 3-d mass profile of clusters in the bin (Johnston
et al., 2007). Because this measurement allows one to stack many clusters, one can easily obtain high signal-to-noise
measurements even for lowmass clusters and large angular distances (Mandelbaum et al., 2008; Sheldon et al., 2009). Since
the underlying halo population is randomly oriented relative to the line of sight, stackedweak lensingmass calibration does
not suffer fromorientation biases so long as the cluster identification itself does not preferentially select halos oriented along
a particular direction or alignedwith line-of-sight structure. However, orientation biases in the cluster selectionmethodwill
probably exist to some degree, and they must be calibrated carefully on simulations. Finally, because this method relies on
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Fig. 28. Mass uncertainty from stackedweak lensing calibration as a function of redshift, assuming onlyWL shape noise (dashed red curves) and including
sample variance due to intrinsic scatter between WL mass and halo mass (solid curves). For Stage III data (left) we assume σe = 0.4 and n̄g = 10
galaxies/arcmin2 , while for Stage IV (right)we assumeσe = 0.3 and n̄g = 30 galaxies/arcmin2 . For both caseswe assume a 104 deg2 survey, and the redshift
bin width is z = zc ± 0.05. Each curve corresponds to a different mass threshold as labeled. The blue dotted line shows the mass error corresponding to a
statistics-limited cluster survey with a threshold mass of 1014 M⊙ , as per Fig. 23. The intersection between the blue dotted line and the lowest solid black
line marks the redshift at which a cluster abundance experiment with a threshold mass of 1014 M⊙ transitions from being dominated by the statistical
error in cluster abundance (at low redshift) to the error in the weak lensing mass calibration (at high redshift).

stacking all galaxy clusters, it only provides information about the mean of the mass–richness relation, so additional data
are required to provide tight constraints on the scatter.68

Fig. 28 shows the error in mass calibration that can be achieved using stacked weak lensing for both ‘‘Stage III’’ (left
panel) and ‘‘Stage IV’’ (right panel) observations, calculated via the methodology described by Rozo et al. (2011b). Briefly,
we assume a source redshift distribution appropriate for DES-like survey depth, and we sum over all annuli within the
radius 2R200, which is a rough approximation for the location of the one-to-two halo transition of the matter correlation
function using the Hayashi and White (2008) model. (Other studies, e.g. Tavio et al. (2008), also find that one-halo regime
of the mass profile extends well beyond R200.) For our Stage III estimates we assume an intrinsic shape noise σe = 0.4 and
source galaxy surface density n̄g = 10 arcmin−2, while for Stage IV we assume σe = 0.3 and n̄g = 30 arcmin−2. Note that
the corresponding tangential shear error is σγ ≈ σe/

√
2. These values correspond roughly to expectations for DES data

and Euclid/WFIRST data, respectively; the lower σe for the latter reflects higher image quality, though the partition of this
improvement betweenσe and n̄g is somewhat arbitrary. LSST falls between these two cases but closer to Stage IV.We assume
that clusters have NFWmass profiles (Navarro et al., 1996), and we include the decrease in background source density with
increasing cluster redshift. In all cases, the redshift distribution is set to

F(z) ∝ z2 exp

−(z/z∗)2


(143)

with z∗ = 0.5. This is appropriate for DES and underestimates the redshift depth for LSST, which will result in a slight
overestimate of the statistical uncertainties for Stage IV experiments, particularly at the highest redshift bins.

In each panel of Fig. 28, dashed red curves show the error from shape noise alone, while solid curves include the intrinsic
scatter between noiselessWLmass estimates and true three-dimensional halomasses, a consequence of non-sphericalmass
distributions, which we add in quadrature to the shape noise assuming an intrinsic scatter per cluster of σwl = 0.3 (Becker
and Kravtsov, 2011). The two curves separate when the number of sources is high enough to measure individual clusters
with S/N∼3. We assume the stacked weak lensing signal uses all halos within a redshift bin z = zc ±0.05 and above a given
mass threshold as labeled. The forecastmass errors aremarginalized over concentration. The improvement in precisionwith
decreasing mass is driven by the rapid increase in the number of halos as the mass threshold decreases. For mass thresholds
1−2×1014 M⊙, calibration at the 1%–2% level is achievable in principle with Stage III data and at the sub-percent level with
Stage IV data. These are errors per∆z = ±0.05 bin, so if one assumes a smooth, parameterized evolution of P(X |M, z) itmay
be possible to constrain the overall normalization more tightly. Conversely, some forms ofWL systematics (e.g., uncertainty
in the shear calibration or source redshift distribution) could introduce mass calibration errors correlated across redshift
bins. The results in Fig. 28 are broadly consistent with those from the more detailed treatment by Oguri and Takada (2011).

Comparing Figs. 23d and 28, we see that Stage IV weak lensing data can in principle calibrate the mean relation well
enough that a 104 deg2 cluster survey would be limited by the statistical uncertainty in abundance for z . 0.5, thoughmass

68 The distinction between statistical calibration via stacked weak lensing and direct calibration using weak lensing mass measurements is not a sharp
one, and both methods share the virtue that the relation between mass and weak lensing signal is governed by well understood gravitational physics. By
‘‘stacked weak lensing’’ we mean to emphasize the case where (a) the WL measurements come from a large area imaging survey that overlaps the cluster
catalog (andmay have been used to create it) rather than from cluster-by-cluster follow-up observations, and (b) the S/N of the mass measurement for any
individual cluster may be ≤ 1, though the S/N for the ensemble is high.
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calibration errorwould dominate at higher redshift. (The abundance error andweak lensing calibration error both scalewith
area as A−1/2.) The statistics limit for M = 1014M⊙ from Fig. 23d is shown in Fig. 28 as the blue dotted line. Stage III weak
lensing data fall short of this goal by a factor ∼3, but they can still achieve powerful constraints on σ11,abs(z) (see Fig. 30).

The general trends in Fig. 28 can be understood using simple arguments. For a singular isothermal sphere (SIS) of velocity
dispersion σV ∝ M1/3, the tangential shear is γ (θ) = θE/2θ , where θ is the angular distance to the cluster center, and θE is
the Einstein radius. The Einstein radius is related to the velocity dispersion via (Fort and Mellier, 1994)

θE = 4π
σv

c

2 Dls

Ds
≈ 0.07 arcmin

 σV

550 km s−1

2 Dls/Ds

0.5


, (144)

where Ds is the distance to the source, Dls is the distance to the source as seen from the lens, and we have scaled to a
typical value of their ratio. We have also scaled Eq. (144) to the (1-dimensional) velocity dispersion of a 2× 1014M⊙ cluster
at z = 0.5. Each source galaxy gives a low S/N estimate of γ and hence of θE = 2θγ . The variance of this estimate is
Var(θ̂E) = 2θ2σ 2

e , where σe =
√
2σγ is the WL shape noise. The number of source galaxies in a logarithmic angular

interval dln θ is 2π n̄gθ
2d ln θ , so each such interval contributes equally to the S/N on θE , from θmin where the weak lensing

approximation fails to θmax, the angular extent of the cluster. The variance of the estimate for an individual cluster is thus

Var(θ̂E) =
2θ2σ 2

e

2π n̄gθ2 ln (θmax/θmin)
, (145)

and the variance forN clusters is smaller byN . As representative valueswe take θE = 0.07 arcmin, θmin = 5θE = 0.35 arcmin
(so γmax = 0.1), and θmax = 6.5 arcmin, the angle subtended by a radius R = 2R200 at z = 0.5 (for M = 2 × 1014M⊙),
yielding ln(θmax/θmin) ≈ 3. Since θE ∝ σ 2

V ∝ M2/3, ∆ lnM = 1.5∆ ln θE , with ∆ ln θE = θ−1
E [Var(θ̂E)]1/2. Putting these

results together yields a total shape noise error at z = 0.5 of

∆ lnM ≈ 1.5N−1/2


σ 2
e

π n̄gθ
2
E ln(θmax/θmin)

1/2
(146)

≈ 6 × 10−3


N
4000

−1/2  σe
0.3

 M
2 × 1014 M⊙

−2/3  n̄g

30 arcmin−2

−1/2 Dls/Ds

0.5

−1

. (147)

This error estimate is 25% smaller than the value plotted in Fig. 28 (which shows∆ lnM ≈ 0.008 at z = 0.5 from shape noise
alone), in part because the surface density of sources behind the clusters is lower than n̄g , and in part because marginalizing
over the NFW concentration parameter further increases the mass error. Including the dependence of N on mass threshold,
Eq. (146) implies

∆ lnMshape ∝ θ−1
E N−1/2

∝ M−2/3+α/2, (148)

where α is themass function slope shown in Fig. 26. For α ≥ 4/3, which is always satisfied forM ≥ 1014 M⊙, the increase in
abundance at lower masses outweighs the lower S/N per cluster, yielding higher precision at lower mass threshold as seen
in Fig. 28. To obtain the total noise, one simply adds the intrinsic weak-lensing noise σwlN−1/2 in quadrature to the shape
noise.

Multi-wavelength studies of galaxy clusters also allow for statistical mass calibration from cross-correlation studies. Just
as the clustering of clusters is a mass-dependent observable, so too are the abundance functions of different observables.
Consequently, overlapping surveys allow for the possibility of measuring the abundance of galaxy clusters as a function
of two observables X1 and X2. While an overall shift in the normalization of the multi-variate observable–mass relation
P(X1, X2|M) is still degenerate with cosmology, the addition of the clustering signal – which depends on cluster masses
directly – allows one to jointly calibrate P(X1, X2|M) while still improving the cosmological constraints relative to those
derived from a single observable (Cunha, 2009). The improvement is driven by the fact that using two cluster observables
simultaneously allows one to better constrain the scatter of the observable–mass relation (see also Stanek et al., 2010). Given
the large overlap between many of the currently ongoing or near future cluster surveys (e.g., DES fully overlaps with SPT),
we expect this type of analysis to become increasingly important in the coming decade.

It remains to be seen whether statistical calibration of the mean observable–mass relation via clustering can compete
with stacked weak lensing calibration, but we suspect that the answer is no based on the following approximate argument.
If the cluster bias factor is measured with uncertainty ∆ ln b, then the corresponding mass scale uncertainty is ∆ lnM ≈

η−1∆ ln b, where η ≡ d ln b/d lnM ≈ 0.4–0.5 is the logarithmic slope of the bias–mass relation for cluster mass halos. We
have computed∆ ln b for an optimally weighted measurement of cluster pairs in a wide radial bin, 20 Mpc < R < 100 Mpc
(comoving), considering only Poisson pair count errors, not sample variance errors. For our usual ∆z = 0.1 redshift bin
over 104 deg2, centered at z = 0.5, we find that the corresponding ∆ lnM rises from 6% for a 1014M⊙ threshold to ∼50%
for a 4 × 1014M⊙ threshold, much worse than our estimated errors for Stage III stacked weak lensing calibration shown in
Fig. 28. Cross-correlation with a much denser galaxy sample might evade this argument by allowing higher precision bias
measurements, but sample variance will set a floor to these errors, and the bias of the cross-correlation sample must also
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be known. Our expectation is that clustering may well help constrain the scatter given mass constraints fromweak lensing,
but that it will prove insufficiently powerful to pin down the mass scale of clusters on its own.

In practice, the distinction between simulation, direct, and statistical mass calibration is somewhat artificial. One can
use simulation and direct mass calibration to place priors on the observable–mass relations, then use statistical methods
to arrive at the final constraint. High quality observations of individual clusters can provide important information about
the scatter of the observable–mass relation, a quantity that is only indirectly constrained via statistical calibration methods.
Conversely, we expect that only statistical methods, and particularly stacked weak lensing, are likely to achieve the ≈1%
mass scale accuracy demanded by Stage IV experiments. To the extent that this is true, optical imaging of galaxy clusters will
be a necessary component of all future cluster surveys, not just for redshifts, but also for clustermass calibration. Conversely,
imaging surveys conducted for WL studies of cosmic acceleration will automatically enable cluster studies.

With spectroscopic follow-up data or an overlapping galaxy redshift survey, one can also try to calibrate cluster observ-
able–mass relations using virial mass estimators (Heisler et al., 1985), ‘‘hydrostatic’’ estimators for the galaxy population
(Carlberg et al., 1997), or ‘‘velocity caustics’’ that mark the boundary between galaxies bound to the cluster potential and
galaxies above the escape velocity (Regös and Geller, 1989; Diaferio, 1999; Rines et al., 2003). The key systematic issue
for this approach is the possible influence of galaxy formation physics on the velocity field and velocity dispersion profile,
though Diaferio (1999) argues that these effects should be small for velocity caustics. These approaches can again be ap-
plied in either a ‘‘direct’’ mode for individual clusters or a ‘‘statistical’’ mode using velocity distributions measured for large
samples. Studies to date have not established the robustness of these methods at the few-percent level needed for future
progress, but with the large spectroscopic surveys underway or planned for dark energymeasurements the approachmerits
further investigation (e.g., White et al., 2010; Saro et al., 2012). Zu and Weinberg (2012) show that the mean radial infall
profile for clusters can be extracted from measurements of the redshift-space cluster–galaxy cross-correlation function,
which may provide a practical route to implementation. Even if the calibration precision from redshift-space distortions is
lower than that from stacked weak lensing, comparison of the two enables tests of modified gravity models that predict
differences between the potentials affecting lensing and non-relativistic motions (see Section 7.7).

6.4. Systematic uncertainties and strategies for amelioration

If X is a cluster observable correlated with mass, and P(X |M, z) the mass–observable relation discussed in Section 6.3.3,
then the expected number of clusters in a volume V at redshift z above a threshold Xmin is

N(Xmin, z) =


∞

Xmin

dX
dN
dX

=


∞

Xmin

dX


∞

0
dM V (z)

dn(z)
dM

P(X |M, z), (149)

where dn(z)/dM is the halomass function at redshift z. FromEq. (149)we can identify several sources of potential systematic
uncertainties: errors in cluster redshifts, incompleteness and contamination that produce extended non-Gaussian tails of
P(X |M, z), the form and calibration of the ‘‘core’’ of P(X |M, z), and the theoretical prediction of dn/dM itself. We discuss
each of these categories in turn.

6.4.1. Redshift uncertainties
Eq. (149) implicitly assumes that all clusters are assigned the correct redshifts. As cluster samples grow to the tens

and even hundreds of thousands, obtaining spectroscopic redshifts for all systems becomes impractical, and photometric
redshifts are essential. Fortunately, clusters contain many galaxies with uniform (red-sequence) colors, allowing precise
and accurate photo-z’s. Lima and Hu (2007) estimated the level at which the bias and scatter of photometric redshift errors
must be controlled in a Stage III dark energy experiment so as to not degrade cosmological information, finding that the
rms scatter must be held to σz ≤ 0.03 and that any bias in the mean photo-z must be held below ∆z = 0.003. Current
cluster photometric redshift estimates have a dispersion of ≈0.01 (e.g. Koester et al., 2007), so controlling the scatter at the
0.03 level is not particularly problematic. The bias on the mean is more challenging, but current catalogs do achieve close
to the necessary accuracy. For instance, the bias of the SDSS maxBCG catalog, measured by comparing cluster photo-z’s
to spectroscopic redshifts, is ≈0.004 (Koester et al., 2007). We expect these successes will still hold as we push to higher
redshifts, so cluster photometric redshift errors are unlikely to be a significant source of systematic uncertainty in abundance
studies, at least for samples below z ≈ 1. Above this redshift, the 4000 Å break feature in the spectrum of early-type galaxies
red-shifts into the IR, and the photometric redshift accuracywill becomemore difficult to control at the required level unless
near IR data are available. X-ray and SZ cluster samples require deepmulti-bandoptical imaging and/or spectroscopic follow-
up to achieve these errors. In particular, while the use of iron lines in X-ray spectroscopy has proven to a reliable indicator of
cluster redshift (e.g. Yu et al., 2011), the accuracy achieved by these methods is only of order≈0.03, with a not-insignificant
outlier fraction, and even then this requires a significant number of photon counts. Nevertheless, for high redshift systems
without IR data this information is often the only indicator of a cluster’s redshift, and it can therefore play a critical role.

6.4.2. Contamination and incompleteness: the tails of P(X |M, z)
Eq. (149) assumes a one-to-one match between halos and observable clusters. In practice, any observed cluster catalog

suffers some degree of contamination, the presence of systemswhose true halomass is far below the value suggested by the
observable X . Cluster catalogs are also affected by incompleteness, halos whose corresponding observable X is anomalously
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low so that they are assigned masses far below their true masses, or perhaps fail to make it into the catalog at all. Thus, we
can think of contamination and incompleteness as characterizing the extended non-Gaussian tails of P(X |M, z).

Significant levels of contamination and incompleteness can be tolerated provided that they are well calibrated. A
contamination fraction C increases the estimated cluster abundance by a factor (1 + C) relative to the true value, while
an incompleteness fraction I reduces the estimated abundance by a factor (1 − I). To prevent them becoming the limiting
factor in cluster abundance measurements, the product (1 + C)(1 − I)must be determined to a fractional accuracy that is
smaller than the uncertainty in the cluster space density, roughly N−1/2 if limited by cluster statistics or α∆ lnM if limited
by mass calibration uncertainty.

Contamination can also impact mass calibration (Cohn et al., 2007; Erickson et al., 2011). In the simplest case, if M̄ is the
mean mass of a sample of clusters selected by some range of observable and contaminating clusters have mass M ≪ M̄ ,
they dilute the sample and reduce themeanmass inferred from calibration by a factor (1+C). Incompleteness, on the other
hand, should not affect the estimated mean mass of a galaxy cluster sample, provided that the reason a cluster of given X
fails to be detected is not correlated with its halo mass. Keeping the impact of contamination uncertainty sub-dominant
requires that the contamination level be known to ∆C ≈ ∆ ln(1 + C) ≤ ∆ lnM . This is a stiffer requirement than that on
the product (1 − I)(1 + C), by a factor of α ≈ 3, so it will be more difficult to achieve in practice.

Different cluster finding techniques are sensitive to different sources of contamination and incompleteness. In X-rays,
the principal contaminants are X-ray point sources (AGNs), which can be effectively removed from cluster catalogs by
demanding that galaxy clusters be detected as spatially extended emission. With this cut, the fraction of galaxy clusters
where AGNs have a significant impact on the cluster emission is .5% (Burenin et al., 2007; Mantz et al., 2010). The few
percent contamination level of today’s X-ray cluster surveys is not an important systematic relative to mass calibration
uncertainty. However, the demandswill be stiffer for eROSITA, sowhether AGNcontaminationwill continue to be a negligible
systematic in the future remains to be seen. Incompleteness (in the sense of clusters that reside in non-Gaussian tails) is a
source of possible concern, since eROSITA will probe significantly lower cluster masses than current X-ray surveys, and the
regularity of the intracluster medium could break down at lower halo masses because of greater importance of radiative
cooling or galaxy and AGN feedback. However, Chandra studies of group-scale systems show that the scaling relations of
galaxy clusters extend down to M ≈ 4 × 1013 M⊙ (Sun et al., 2009), so eROSITA should be able to use the vast majority of
all X-ray selected groups and clusters for cosmological investigations. As usual, the largest open question is accuracy of the
mass calibration.

Because SZ clusters work in the low S/N limit, with typical detections being≈5σ , SZ cluster samples typically can contain
a few false detections — sources that do not correspond to massive galaxy clusters but rather reflect the stochastic nature of
the CMB and/or instrumental noise. However both of these sources of stochasticity can be very well characterized, so we do
not expect them to be a limiting systematic: their impact on P(X |M, z) is calculable. Radio emission by point sources and/or
dusty star forming galaxies can systematically reduce the SZ signal of clusters, but these effects are expected to fall below
the 10% level (e.g., Vanderlinde et al., 2010). Further study of the ongoing SZ surveys will better illuminate the impact that
such sources can have on cosmological constraints fromSZ cluster samples. Contamination by intrinsic CMB fluctuations and
point sources are bothmitigated bymulti-frequency observations, since the SZ effect has a distinct spectral signature.While
contamination and incompleteness of SZ samples remains an area of active research, we think these effects are unlikely to
compete with mass calibration as a limiting uncertainty.

For optical cluster searches the primary source of contamination is projection effects — two ormore small halos lining up
to produce the apparent galaxy overdensity of a larger halo. These projections can arise from truly random superpositions
or from galaxies or groups that lie in the same filamentary structure but not within the virial radius of a common halo. Even
with galaxy spectroscopic redshifts, projection effects in the optical can produce contamination levels of 5%–20% depending
on the richness threshold (Cohn et al., 2007; Rozo et al., 2011a); in a direct comparison of optical and X-ray catalogs, Andreon
andMoretti (2011) conclude that the contamination of the former is 10% or less. The principal reason that projection effects
are more important in optical catalogs than in X-ray or SZ catalogs is that optical catalogs tend to reach significantly lower
mass thresholds at high redshift, which results in higher surface densities of clusters and therefore stronger projection
effects. In fact, projection effectsmaywell set the lowermass threshold at which cosmological analyses with optical clusters
are possible. We anticipate that incompleteness and contamination can be adequately modeled through the use of realistic
mock catalogs constructed using numerical simulations, provided they are constructed to match the clustering data of the
survey under consideration. These mock catalogs can be analyzed using the same algorithms applied to the observational
data, allowing one to quantitatively characterize the impact of projection effects. Many of the most recent optical analysis
draw on such detailed mock catalogs, but greater accuracy will be needed for next generation surveys.

The impact of contamination on weak lensing mass calibration is somewhat subtle, and probably weaker than the naive
expectation of depressing the estimated mass by (1+ C) through dilution. When superposed galaxy groups masquerade as
a single more massive cluster, their projected mass distributions are also superposed, and the lensing signal from this blend
may be close to the signal that would come from a cluster of the combined richness. The net impact must again be evaluated
with detailed mock catalogs.

6.4.3. Calibrating the core of P(X |M, z)
In addition to characterizing extended tails of the mass–observable relation, one must calibrate the ‘‘core’’ of P(X |M, z),

where scatter arises from physical variations in cluster properties at fixed halo mass, from observational noise, and from
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low level contamination that produces small random fluctuations in the observable. These effects are typically assumed to
produce a log-normal form of P(X |M, z), i.e., Gaussian scatter in ln X at fixed M . The calibration task is then to determine
themean relation ⟨ln X |M, z⟩ and the variance Var(ln X |M, z), and to characterize any deviations from log-normal form that
are large enough to affect the predicted abundance. As the notation indicates, the relation can evolve with redshift, and the
scatter and non-Gaussianity may depend on halo mass at fixed redshift.

We consider each of the relevant terms in turn, starting with the mean observable–mass relation. We have already
expressed our view that statistical calibrationmethods, and stackedweak lensing in particular, are themost promising route
to meeting the stringent demands of next-generation cluster surveys. Cunha et al. (2009) and Oguri and Hamana (2011)
show that this approach allows the mass and redshift dependence of ⟨ln X |M, z⟩ and Var(ln X |M, z) to be parameterized in
an extremely flexible way while retaining enough information to yield strong cosmological constraints.

If the mean mass–observable relation is calibrated using stacked weak lensing, then the systematic effects discussed
for WL in Section 5.7 are also sources of uncertainty for cluster studies. In particular, errors in the source galaxy redshift
distribution and/or shear calibration will shift the inferred cluster mass scale. For these systematics to be insignificant,
the rule of thumb is that the uncertainty in the mean inverse critical surface density


Σ−1

crit


of the source galaxies and

the error in the shear calibration must be smaller than the mass errors plotted in Fig. 28, divided by 1.5. The 1.5 factor
comes in because an error in
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crit


or shear calibration uniformly biases the recovered cluster density profile and therefore

biases the estimate of R200. A bias b in the mass at a fixed aperture becomes roughly a bias b1.5 in the estimated virial
mass. Typically, a systematic error ∆z̄ in the mean redshift of sources produces a corresponding error ∼∆z̄/2 in
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
.

Recent work suggests that controlling photometric redshifts at the level required for weak lensing mass calibration of
galaxy clusters is possible (Sheldon et al., 2012). Importantly, because cluster weak lensing depends on the mean tangential
shear around cluster centers, some forms of cosmic shear systematics are automatically averaged away and therefore not
relevant for weak lensing mass calibration of galaxy clusters. For instance, errors that are coherent on scales larger than
cluster diameters (typically a few arcmin) but incoherent on still larger scales will be averaged out in a stacked lensing
measurement. Moreover, because the weak lensing signal about galaxy clusters is stronger than cosmic shear, uncertainties
that appear for very low shear values (e.g., additive biases) are less important. All in all, the demands on weak lensing
systematics for stacked weak lensing calibration of galaxy clusters are likely to be lower than those for cosmic shear.

There are some systematics specific to stacked cluster lensing, the most significant of which is cluster mis-centering. If
the observationally determined center of a cluster does not match the location of the center of the dark matter halo that
one would select in simulations, then the observed mean tangential shear about the assigned center will differ from the
theoretical expectation. Clustermis-centering should not be problematic in X-ray experimentswith high angular resolution,
as gas in hydrostatic equilibrium traces the underlying gravitational potential. While a few exceptions will arise, such as
the famed Bullet Cluster (Clowe et al., 2006), the frequency of these systems is low. For similar reasons, centroiding of
SZ systems is expected to be fairly robust. The mis-centering problem is most difficult in the optical, where the center is
typically chosen to be a specific galaxy but the choice of galaxy is not necessarily obvious; X-ray studies of SDSS maxBCG
clusters suggest that the mis-centered fraction is about 30% (Andreon and Moretti, 2011). Mis-centering is currently one
of the dominant systematics in stacked cluster lensing, introducing uncertainties at the ≈5%–10% level (Johnston et al.,
2007). There are ongoing efforts aimed at improving cluster centering (George et al., 2012). Oguri and Takada (2011)
find that marginalizing over parameters that describe mis-centering does not significantly dilute the cosmological power
of cluster abundance studies, so it may be that future analyses will simply treat mis-centering via an additional set of
nuisance parameters. Alternative weak lensing estimators can be constructed to avoid mis-centering biases in the inner
regions of clusters (Mandelbaum et al., 2010). Other potential biases that affect stacked cluster lensing are modulation
of the source population by lensing magnification, non-linear shear corrections, and source density modulation due to
obscuration by cluster members (see Rozo et al., 2011b; Hartlap et al., 2011). These effects can also have impact on cosmic
shear experiments.

Turning to scatter, we can show that the magnitude of the variance Var(ln X |M, z) is degenerate with the mass scale
through a simple argument. Suppose the observable of interest is a mass estimator X = Mobs, where the subscript indicates
the observationally estimated cluster mass. The observed abundance is

dn
d lnMobs

=


d lnM

dn
d lnM

P(Mobs|M, z). (150)

For a power-law mass function dn/d lnM = AM−α
= A exp(−α lnM) and log-normal scatter of variance σ 2

= ⟨(lnMobs −

lnM)2⟩, one can readily compute the observed abundance by completing the square, finding

dn
d lnMobs

= A exp


−α lnMobs −
1
2
α2σ 2


. (151)

From Eq. (151) it is evident that a shift in mass ∆ lnM is degenerate with a shift in the variance ∆σ 2
= 2α−1∆ lnM .

(For a more rigorous argument that arrives at the same conclusion, see Lima and Hu, 2005.) Thus, if the mass scale is
controlled with an accuracy∆ lnM , then the scatter must be controlled with an accuracy∆σ 2

= 2α−1∆ lnM . If we further
set ∆σ 2

= 2σ∆σ , we arrive at ∆σ = α−1σ−1∆ lnM . The fractional accuracy with which σ must be known to avoid
competing with ∆ lnM scales as σ−2, so the requirement is much less demanding if the scatter is smaller to begin with.



182 D.H. Weinberg et al. / Physics Reports 530 (2013) 87–255

Fig. 29. Relative change in cluster abundances at z = 0.6 as a function of mass due to a 2% bias in themass (∆ lnM = 0.02), raising the log-normal scatter
σ from 0.2 to 0.25, or introducing skewness γ = 1 in P(X |M, z) (solid, dashed, and dot-dashed curves, respectively). The statistical error in number counts
for A = 104 deg2 is shown by the dotted line. The sensitivity of ∆ lnN to systematic errors in the mass, scatter, or skewness can be estimated using the
rule-of-thumb approximations in Eqs. (154)–(156).

As an illustrative example, we set α = 3 and σ = 0.2, which is roughly appropriate for SZ and likely slightly optimistic
for optical. We find that the uncertainty due to errors in the scatter becomes comparable to that from errors in the mass
when ∆σ ≈ 1.7∆ lnM . For Stage III experiments with weak lensing calibration, yielding ∆ lnM ≈ 2%, the scatter needs
to be known at the ∆σ ≈ 0.04 level, a value in agreement with the more rigorous estimate by Rozo et al. (2011b) and
likely to be achievable in the near future (see, e.g., Rykoff et al., 2012). If Stage IV experiments reach 0.5% precision, the
corresponding uncertainty in the scatter must be below 0.01 (absolute, not fractional), which is difficult to achieve from an
ab initio calculation but may be possible with statistical calibration methods.

Finally, wemust consider the possibility that, in addition to extended tails reflecting contamination and incompleteness,
the core of P(X |M, z) deviates from log-normal form. This problem was considered by Shaw et al. (2008), whose discussion
we paraphrase here. An observable–mass relation can be approximated by

P(ln X |M) = G(x)−
γ

6
d3G
dx3

+
κ

24
d4G
dx4

+ · · · (152)

known as the Edgeworth expansion. Here G is a Gaussian of zero mean and unit standard deviation, x = (ln X − ⟨ln X⟩)/
[Var(ln X |M, z)]1/2, γ is the skewness of the distribution, and κ is the kurtosis. For a power-law mass function dn/d lnM ∝

M−α , it is straightforward to check that the resulting cluster abundance is
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, (153)

where (dn/dX)0 is the abundance for a purely log-normal distribution. (Note that this α is also the logarithmic slope of the
cumulative halo mass function d lnN/d lnM that appears in our earlier discussion.)

Setting α = 3 and assuming 10% scatter for X-ray masses, a 3% correction to the abundance – equivalent to a 1%
correction in the mass – requires extreme non-Gaussianity with γ ≈ 7 or κ ≈ 90. Numerical simulations, on the other
hand, predict distributions of X-ray observables that are close to log-normal (see, e.g., Stanek et al., 2010, Fig. 8; Fabjan
et al., 2011, Fig. 3). We therefore do not expect X-ray studies to be sensitive to departures from a log-normal P(X |M, z). For
[Var(ln X |M, z)]1/2 = 0.2, typical for SZ and perhaps achievable for optical, a 3% abundance change arises from γ ≈ 0.8
or κ ≈ 6, still quite large deviations from Gaussianity. For [Var(ln X |M, z)]1/2 = 0.4 these numbers drop to 0.1 and 0.35,
respectively, so with this level of scatter a moderate degree of non-Gaussianity can have noticeable impact on the predicted
abundances. For example, a Poisson distribution for a cluster with ⟨N⟩ = 10 galaxies corresponds to a skewness γ ≈ 0.3.
This discussion demonstrates the value of finding improved optical richness estimators that have lower scatter relative to
mass (Rozo et al., 2009; Rykoff et al., 2012).

Fig. 29 shows the impact that various elements of P(X |M, z) can have on the recovered cluster counts. For illustrative
purposes, we assume that X is an observed mass and show the change in the observed mass function due to changes in
P(Mobs|M, z). For our reference model, we assume Mobs is unbiased and has log-normal scatter σ = 0.2, and we compute
the cumulative cluster counts above Mobs for our fiducial cosmology at z = 0.6 in a redshift bin of width∆z = 0.1. Results
at other redshifts are qualitatively similar.

Solid, dashed, and dot-dashed curves show the change in the cumulative number counts ∆ lnN if Mobs is biased by 2%
(∆ lnM = 0.02), if the scatter is increased from σ = 0.2 to σ = 0.25, or if the skewness is increased from γ = 0 to γ = 1
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using the Edgeworth expansion. For reference, we also show the statistical error on the cluster counts for A = 104 deg2 as
a dotted line. The details of P(X |M, z) affect the recovered cluster counts, and the impact is larger at higher masses than
at lower masses. Moreover, the relative impact of skewness to scatter and of scatter to bias is mass dependent, with lower
masses being more robust to uncertainties in the scatter and skewness. This is as expected: the shallower the slope of the
mass function, the less important the details of P(X |M, z). The systematic offsets in Fig. 29 are well approximated (to ≈10%
and 30% for scatter and skewness respectively) by the rule-of-thumb calculations we have described above, specifically

∆ lnNpredicted = α∆ lnM, (154)

∆ lnNpredicted = α2σ∆σ , (155)

∆ lnNpredicted =
1
6
α3σ 3∆γ . (156)

Given the values of ∆ lnN and α expected for a survey (Fig. 26; typical values ∆ lnN ≈ N−1/2 and α ≈ 3), one can use
Eqs. (154)–(156) to infer the uncertainties ∆ lnM , ∆σ , and ∆γ required to keep a cosmological analysis limited by
abundance statistics.

6.4.4. Theoretical systematics
Predicting observed cluster counts via Eq. (149) requires knowledge of thehalomass function dn/dM for any cosmological

model under consideration. If the fractional uncertainty in dn/dM exceeds the observational error in cluster counts∆ lnN ,
or if the equivalent mass scale uncertainty exceeds the mass calibration error ∆ lnM , then cosmological constraints will
be limited by theoretical uncertainty rather than by observational errors. The study of Tinker et al. (2008) finds agreement
in dn/dM at the .5% level among multiple simulations by different groups for a ΛCDM cosmological model with WMAP3
parameters. This is roughly the level required for large area surveys of M > 4 × 1014M⊙ clusters in∆z = 0.1 bins, though
higher accuracy is needed for lower mass thresholds (for detailed discussion see Cunha and Evrard, 2010; Wu et al., 2010).
The formula (39) describes Tinker et al.’s z = 0 results accurately, but at redshifts z = 0.5–2.5 they find deviations of
∼10%–30% from this ‘‘universal’’ prescription.While these deviations are themselves numerically calibrated, their existence
suggests that the mass function may depend on the dark energy model even when expressed in terms of the σ(M) relation
as in Eq. (39). In addition, consistency in halo definitions is clearly critical. For instance, Bhattacharya et al. (2011) find that
mass functions in their suite of wCDM simulations – which are calculated using friends-of-friends halo finders – deviate by
up to 10% from a fitting formula calibrated on theirΛCDM simulation suite. It seems likely that Stage III and certainly Stage
IV experiments will need to move to emulator based methods with comprehensive N-body libraries (e.g., Lawrence et al.,
2010) rather than simple fitting formulas.

While further N-body work is needed to interpret future surveys, dark matter evolution is straightforward in principle,
and the problem should yield to sufficient applications of computational force. Baryonic evolution is potentially a thornier
issue. Some X-ray studies suggest a depletion of baryonic mass (stars + hot gas) relative to the universal Ωb/Ωm ratio by
20%–30%within the∆ = 500ρc radius,with systematically larger depletion in lessmassive clusters (e.g., Giodini et al., 2009).
For Ωb/Ωm = 0.17, a 20% deviation in baryonic mass is a 3.4% deviation in total mass, and thus comparable to or larger
than the statistical mass calibration errors achievable with stacked weak lensing (Fig. 28), as well as the precision required
to achieve the statistical limits of large cluster surveys (Fig. 23d). Hydrodynamic simulations can explain baryon depletions
comparable to those observed (Young et al., 2011), but themagnitude and even the sign of the baryonic effects depend on the
star formation and feedback physics (e.g., Stanek et al., 2009; Cui et al., 2012). Furthermore, because the baryons influence
the dark matter profile, they can have substantial impact (∼15%) on the total mass within a high overdensity threshold
(e.g., the∆ = 500ρcrit threshold frequently adopted in X-ray analyses; see Stanek et al., 2009). In all of these simulations the
corrections are smaller at larger radii, so defining halo boundaries at lower overdensity (such as the∆ = 200ρ̄ convention
used here) is beneficial in this respect.

It may be possible to calibrate baryonic effects well enough with simulations and detailed observations of selected sys-
tems to remove them as a source of systematic uncertainty, but this problemwill require concerted effort, particularly when
Stage IV experiments get underway. By the same token, if stacked weak lensing is the primary mass calibration tool, then
onemust also develop robust theoretical models for predicting the weak gravitational lensing signal, which in turn requires
that the halo-mass correlation function be characterized at the same level as∆ lnM . Current analytical models are accurate
only at the ≈10%–20% level (Hayashi and White, 2008), so this is another area that requires further theoretical study.

A final caveat related to the halo mass function is that primordial non-Gaussianity could alter its form (e.g., Weinberg
and Cole, 1992; Dalal et al., 2008; Grossi et al., 2009; Loverde and Smith, 2011; D’amico et al., 2011) and thereby change
the cluster abundances predicted for a given dark energy model (e.g., Cunha et al., 2010; Pillepich et al., 2012). Of course,
evidence for non-Gaussian initial conditions would be exciting in its own right, with important implications for early-
universe physics. However, it appears that the levels of non-Gaussianity that would have significant impact on cluster
abundances are already ruled out by other constraints, unless one allows the magnitude of the non-Gaussianity to be scale-
dependent (e.g., Hoyle et al., 2011; Paranjape et al., 2011). Given the strong theoretical prior for Gaussian initial conditions
and the multiple observational probes that could detect and characterize primordial non-Gaussianity if it exists, we think it
unlikely that non-Gaussianity will limit the power of cluster abundances as a probe of dark energy and modified gravity.
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6.5. Space vs. ground

As discussed in Section 6.2, X-ray observations, possible only from space, have played a central role in nearly all cluster
cosmological studies to date. The ROSAT All-Sky Survey has been the basis for many of the cluster samples used in these
studies (Table 4). Pointed observationswith a variety of telescopes, especiallyXMM-Newton and Chandra, have been the basis
of mass calibration for X-ray observables and the source of most empirical knowledge about the physics of the intracluster
gas. Ongoing XMM-Newton surveys will expand the dynamic range and size of X-ray catalogs over the next few years. The
most important advance will come with the eROSITA mission (Merloni et al., 2012), which should produce the definitive
all-sky survey of massive (M & 4× 1014M⊙) clusters out to z ≈ 1, with an extended tail of higher redshift clusters reaching
z ≈ 2. Follow-up X-ray studies at higher angular resolution will help better assess point-source contamination and will
improve the mass calibration of the eROSITA catalog. For comparable numbers of clusters, X-ray catalogs offer significant
advantages over SZ or optical catalogs because of the low scatter expected between X-ray observables and halo mass, which
reduces sensitivity to uncertainties in the width and form of the observable–mass relation (Section 6.4.3).

For SZ searches, ground-based telescopes have higher sensitivity than space observatories because of their larger
collecting area and higher angular resolution. The larger beam size of the Planck observatory (≈5 arcmin) relative to SPT and
ACT (≈1 arcmin) reduces its ability to detect high redshift systems. Nonetheless, the all-sky nature of Planck observations is
an important asset, and the Planck catalog of high mass clusters will be useful both for direct cosmological constraints and
for cross-correlation studies with clusters identified at other wavelengths. Thus, we view the Planck, SPT, and ACT surveys
as highly complementary. Any future CMB space mission designed to probe inflation physics and primordial gravity waves
would also produce a much more sensitive all-sky SZ cluster catalog, provided it achieved high angular resolution.

Turning to optical searches, space observatories provide little advantage for cluster detection at z . 1, since cluster
detection does not gain much from the improved image resolution achievable from space. However, as discussed in
Section 6.3.2, space-based near-IR imaging is highly desirable for extending (rest-frame) optical cluster catalogs to z ≈ 2.
In the near future, such searches will rely on Spitzer data, as in the case of ISCS (Eisenhardt et al., 2008), SpARCS (Wilson
et al., 2006), and the recently approved 100 deg2 Spitzer— SPT Deep Field. Additional IR data is or will soon be available from
surveys like VHS, UKIDSS, and WISE, which may allow for high redshift cluster finding (Gettings et al., 2012). The VIKING
survey, covering ≈ 1500 deg2, should be sufficiently deep to allow for robust cluster detection at z > 1. In the longer term,
IR imaging from Euclid and/or WFIRST could make a key contribution to high redshift cluster surveys. High redshift cluster
detection should also be feasible with extremely deep optical imaging from the ground, like that planned for LSST, which
should reach z ≈ 1.5.

In the long run, however, themost important contribution of space observations to cluster cosmologywill come viaweak
lensing mass calibration rather than cluster finding. The statistical error of WL mass calibration scales as n̄−1/2

g , where n̄g

is the source surface density. As can be seen from Fig. 28, a surface density n̄g ≈ 30 arcmin−2 is required to reduce mass
calibration error below the statistical abundance error, and even then only for z . 0.5. This source density is expected
for an optical space mission like Euclid, but it is probably higher than can be achieved by ground-based observations, even
with the depth and image quality of LSST. The cluster counting error and mass calibration error both scale with survey
area as A−1/2, so the area effect cancels out if the cluster and WL surveys overlap completely. If the cluster survey covers a
larger area (e.g., the all-sky eROSITA catalog), then theWL source density required to saturate the halo statistics limit is even
higher. Reaching the calibration accuracy allowed by the source galaxy statistics also requires excellent control of shape
measurement systematics, generally expected to be lower from a space-based platform, and photo-z systematics, which
probably require space-based IR imaging to achieve the stringent demands implied by Fig. 28. More generally, if the error
in WL mass calibration sets the ultimate limit of cluster measurements of fluctuation growth, as we have speculated it will,
then the achievable error on σ11,abs(z) scales as n̄

−1/2
g , or as (∆γ )−1

sys if the WL measurements are themselves limited by a
shear measurement systematic (∆γ )sys.

6.6. Prospects

We expect cluster abundance studies to undergo substantial and steady improvements over the next decade and beyond.
In the near term (. 3 years), we anticipate advances in X-ray, SZ, and optical cluster studies. The XMM Cluster Survey (XCS)
and XMM XXL Survey will yield much larger X-ray cluster samples at z & 0.3. Planck will produce the definitive all-sky
SZ catalog of massive clusters out to z . 0.7, while SPT and ACT will probe z & 0.7 cluster populations over thousands of
square degrees for the first time. In the optical, continuing studies with the SDSS will lead to improved cluster finders and
richness estimators, as well as improved weak lensing calibration thanks to better centering and better source photometric
redshifts. On a comparable time scale, the RCS-2 survey will obtain g , r , and z imaging to a nominal depth of r ≈ 24.8
(roughly 2 magnitudes deeper than SDSS) over 1000 deg2, yielding the first large area optical cluster catalog extending to
z ≈ 1. Relative to the results shown in Fig. 22, these X-ray, SZ, and optical studies will improve the low redshift σ8–Ωm
constraint and extend it, at somewhat lower precision, to z ≈ 0.5 − 1. At the same time, improved calibration and cross-
checks among surveys will test for and reduce remaining sources of systematic error.

In the medium term (≈3–8 years), several new optical surveys will cover thousands of deg2 with greater depth than
SDSS and larger area and/or more photometric bands than RCS-2. These include the Kilo-Degree Survey (KIDS, 1500 deg2
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Fig. 30. Error on σ11,abs(z) achievable bymeasuring cluster abundances in a redshift bin z = zc ±0.05 in a 104 deg2 , assumingmass calibration via stacked
weak lensing with Stage III or Stage IV source densities. We assume that all geometric cosmological parameters – most significantly the comoving volume
element and the matter density parameterΩm – are held fixed, being effectively constrained by a joint CMB+SN+BAO+WL experiment. Also shown for
comparison are the forecast constraints on σ11,abs(z) derived from such a joint analysis using our fiducial Stage III and Stage IV surveys, assuming aw0–wa
parameterization of dark energy and allowing deviations from GR parameterized by G9 and∆γ (see Section 8.4 for details).

in ugriz), DES (5000 deg2 in grizY ), PS1 (15,000 deg2 in grizY ), and the Hyper-Suprime Camera survey (HSC, 1500 deg2 in
grizY ). These surveys should significantly improve the cosmological constraints relative to RCS-2, thanks to higher cluster
numbers, lower statistical errors in weak lensing mass calibration, and better control of photometric redshift uncertainties.
The VIKING survey will cover 1500 deg2 at near-IR wavelengths (ZYJHKs) at sufficient depth to allow cluster identification
and accurate photometric redshifts at z = 1–2. In addition, all of these surveys will overlap with Planck, and often with
either the ACT or SPT surveys, which can further enhance the utility of both sets of catalogs. DES in particular is designed to
cover the entire footprint of the SPT SZ survey.

With launch expected 2013–2014, eROSITAwill produce the ultimate all-sky catalog of massive clusters (see Section 6.5).
The optical imaging surveys will allow weak lensing calibration of the eROSITA mass–observable relations, with multiple
independent surveys affording larger overlap area and thus more precise calibration. This combination of X-ray selection
and optical WL calibration offers bright prospects for the coming decade of cluster cosmology. Optical surveys will further
extend this leverage by probing cluster abundances to masses below those probed by eROSITA.

On a longer timescale, LSST plans to image 20,000 deg2 of high-latitude sky in six bands (ugrizY ), with each single pass
comparable in depth to the medium-term surveys described above and co-added data reaching 2.5–3 magnitudes deeper.
The increased depth of LSST should allow one to cleanly select galaxy clusters out to z ≈ 1.5. While the greater dynamic
range of the cluster catalogs will be an asset in itself, LSST’s most important contribution to cluster cosmology will be in the
form of improved WL mass calibration, both for eROSITA and for LSST’s own clusters. Euclid could provide even better WL
calibration over a similar sky area, while WFIRST should achieve a high WL source density but over a smaller survey area.
The IR sensitivity of Euclid and/or WFIRST should also enable cluster searches at z ≈ 2 and beyond.

We have argued throughout this section thatmass calibrationwill be the likely limiting factor in cluster studies of cosmic
acceleration, and that stacked weak lensing is the most promising avenue to achieve accurate mass calibration. Fig. 30
combines information from Figs. 24 and 28, showing the fractional error on σ11,abs(z) in∆z = 0.1 bins that can be achieved
with a 104 deg2 cluster survey, using the WL mass calibration errors we have forecast for Stage III (left panel) or Stage IV
(right panel) source densities. With Stage III lensing calibration, errors on σ11,abs(z) are below 1% at z ≈ 0.5 for cluster mass
thresholds of 1 − 2 × 1014M⊙, and ∼1.5% for a mass threshold of 4 × 1014M⊙. With Stage IV lensing calibration, the peak
sensitivity is better than 0.5% for the lower mass thresholds and better than 1% for the 4 × 1014M⊙ threshold.

The additional red and blue curves in Fig. 30 show the forecast constraints on σ11,abs(z) for a fiducial Stage III (blue) or
Stage IV (red) program combining SN, BAO,WL, and CMBdata as discussed in Section 8. These forecasts assume aw0–wa dark
energymodel and allow departures fromGR-predicted growth described by an overall multiplicative offset G9 and a growth
index deviation ∆γ (see Section 2.2). The fiducial programs are defined in Section 8.1. If WL systematics are controlled at
the level assumed in these fiducial programs then they should be negligible for cluster mass calibration relative to statistical
errors, so we have not included them in computing∆ lnM .

From Fig. 30 we see that a 104 deg2 cluster survey with Stage III WL calibration data can easily exceed the σ11,abs(z)
precision expected from the Stage III CMB+SN+BAO+WL program, by as much as a factor of ≈3 for a threshold of 1014M⊙.
Similarly, cluster constraints with Stage IV WL calibration improve on the fiducial Stage IV σ11,abs(z) precision without
clusters by a factor of ≈2. The visual impression that clusters can outperform the fiducial program only at z ≈ 0.4–0.8 but
perform worse at high and low redshifts is artificial, since the CMB+SN+BAO+WL curves assume a smooth growth model
while the cluster constraints in Fig. 30 are those that can be achieved from galaxy clusters within each individual redshift



186 D.H. Weinberg et al. / Physics Reports 530 (2013) 87–255

bin. For Fig. 30 we have assumed that errors onΩm and dVc(z) are negligible. While the assumption for dVc(z) should prove
reasonably accurate, the forecast CMB+SN+BAO+WL errors onΩm (4% and 1% for Stage III and Stage IV, respectively) are
larger than our assumed WL mass calibration errors for M . 2 × 1014M⊙ (see Fig. 28). In practice, therefore, the fractional
errors in Fig. 30 would apply not to σ11,abs(z) but to the parameter combination σ11,abs(z)Ω

q
m, with q ≈ 0.4. We return to

these points in Section 8.4 below, where we discuss the improvements in constraints on the dark energy equation of state
and on G9 and∆γ achievable with clusters.

If some alternative mass calibration method proves better than stacked weak lensing, then the situation could be even
better than Fig. 30 suggests. Thiswould be especially true for Stage III, where theWL source density is the clear limiting factor
on the overall error. For our assumed Stage IV source density, the uncertainty from WL mass calibration is already close to
the statistical uncertainty in cluster counts at z . 0.6. Conversely, the situationwould beworse than Fig. 30 suggests if some
other systematic uncertainty – e.g., contamination, miscentering, theory, or WL photo-z calibration – makes it impossible
to achieve the statistical limits of the WL mass calibration.

In summary, our analysis indicates that cluster abundanceswithmasses calibrated by stackedweak lensing could provide
strong tests of cosmic acceleration models, beyond those afforded by the 2-point WL statistics described in Section 5.
However, achieving this potential requires that mass calibration uncertainties be controlled at the 1%–3% level for Stage
III and at the 0.5%–1.5% level for Stage IV. We see no obvious show stoppers, but the challenge is a demanding one.

7. Alternative methods

In Sections 3–6, we have reviewed in detail the four observational methods that have been most widely discussed, and
applied, as probes for the origin of cosmic acceleration.We now reviewmore briefly some of the other techniques for testing
cosmic accelerationmodels. In some cases, surveys conducted for SN, BAO, orWL studieswill automatically provide the data
needed for these alternative methods. For example, redshift-space distortions (Section 7.2) and the Alcock–Paczynski effect
(Section 7.3) can be measured in galaxy redshift surveys designed for BAO measurements, and synoptic surveys designed
for Type Ia supernovae will discover other transients that might provide alternative distance indicators (Section 7.4). Just as
cluster investigations will increase the cosmological return from WL surveys, these methods will increase the return from
BAO or SN surveys. The potential gains are large, but they are uncertain because the level of theoretical or observational
systematics for these methods has not yet been comprehensively explored. In Section 8.5 we will examine how precisely
our fiducial Stage III or Stage IV CMB+SN+BAO+WL programs predict the observables of these methods, setting targets for
the precision and accuracy they should achieve to make major contributions to cosmic acceleration studies.

Some of the other methods described below require completely different types of observations or experiments, falling
outside of the ‘‘survey mode’’ that characterizes the methods we have discussed so far. Compared to the combined
SN+BAO+WL+CL approach, these methods may yield more limited information or be sensitive only to certain classes of
accelerationmodels, but they can provide high-precision tests of the standardΛCDMmodel, and they could yield surprising
results that would give strong guidance to the physical origin of acceleration.

7.1. Measurement of the Hubble constant at z ≈ 0

As emphasized by Hu (2005), a precise measurement of the Hubble constant, when combined with CMB data, allows
a powerful test of dark energy models and tightened constraints on cosmological parameters. In effect, the CMB and H0
provide the longest achievable lever arm for measuring the evolution of the cosmic energy density, from z ≈ 1100 to z = 0.
The sensitivity of H0 to dark energy is illustrated in Fig. 2, which shows that a change∆w = ±0.1 alters the predicted value
of H0 by 5% in Ωk = 0 models that are normalized to produce the same CMB anisotropies. More generally, a low redshift
determination of the Hubble constant combined with Planck-level CMB data constrainsw with an uncertainty that is twice
the fractional uncertainty in H0, assuming constant w and flatness. The challenge for future H0 studies is to achieve the
percent-level statistical and systematic uncertainties needed to remain competitivewith other cosmic accelerationmethods.
Freedman andMadore (2010) review recent progress inH0 determinations and prospects for future improvements; the past
five years have seen substantial advances in both statistical precision and reduction of systematic uncertainties.

One of the defining goals of the Hubble Space Telescope was to measure H0 to an accuracy of 10%. The H0 Key Project
achieved this goal, with a final estimate H0 = 72 ± 8 km s−1 Mpc−1 (Freedman et al., 2001), where the error bar
was intended to encompass both statistical and systematic contributions. This estimate used Cepheid-based distances to
relatively nearby (D < 25 Mpc) galaxies observed with WFPC2 to calibrate a variety of secondary distance indicators —
Type Ia supernovae, Type II supernovae, the Tully–Fisher relation of disk galaxies, and the fundamental plane and surface-
brightness fluctuations of early-type galaxies. These secondary indicators were in turn applied to galaxies ‘‘in the Hubble
flow’’, meaning galaxies at large enough distance (D ≈ 40–400 Mpc) that their peculiar velocities vpec did not contribute
significant uncertainty when computing H0 = v/d. The Cepheid period–luminosity (P–L) relation was calibrated to an
adopted distance modulus of 18.50 ± 0.10 mag for the Large Magellanic Cloud (LMC). The uncertainty in adjusting the
LMC optical P–L relation to the higher characteristic metallicities of calibrator galaxies was an important contributor to the
final error budget; Freedman et al. (2001) adopted a ±0.2 mag/dex uncertainty in the metallicity dependence, implying a
∼0.07mag systematic uncertainty in the correction (3.5% in distance). Another important systematic was the uncertainty in
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differentialmeasurements of Cepheid fluxes and colors over awide dynamic range along the distance ladder. The uncertainty
of the LMC distance itself was also a significant fraction of the error budget.

A number of subsequent developments have allowed substantial improvements in themeasurement ofH0 (see Riess et al.,
2009, 2011; Freedman andMadore, 2010; Freedmanet al., 2012). The recent determination ofH0 = 73.8±2.4 kms−1 Mpc−1

by Riess et al. (2011) yields a 1σ uncertainty of only 3.3%, including all identified sources of systematic uncertainty and
calibration error. One important change in this analysis is a shift to Cepheid calibration based on the maser distances to
NGC 4258 (Herrnstein et al., 1999; Humphreys et al., 2008, in press) and on parallaxes to Galactic Cepheids measured with
Hipparcos (van Leeuwen et al., 2007) and with the HST fine-guidance sensors (Benedict et al., 2007). These calibrations
circumvent the statistical and systematic uncertainties in the LMC distance, and they directly calibrate the P–L relation in
the metallicity range typical of calibrator galaxies, albeit with a sample of only ∼10 stars reaching an error-on-the-mean
of 2.8% in the case of Milky Way parallaxes. A second improvement is more than doubling the sample of ‘‘ideal’’ Type Ia
SNe – with modern photometry, low-reddening, typical properties, and caught before maximum – from the two available
to Freedman et al. (2001) to eight. Of all secondary distance indicators, Type Ia supernovae have the smallest statistical errors,
and probably the smallest systematic errors, and they can be tied to large samples of supernovae observed at distances
that are clearly in the Hubble flow. Riess et al. (2009, 2011) use Type Ia supernovae exclusively in their H0 estimates.
Third, Cepheid observations at near-IR wavelengths (1.6µm) have reduced uncertainties associated with extinction and the
dependence of Cepheid luminosity on metallicity (Riess et al., 2012). Finally, relative calibration uncertainties of Cepheid
photometry obtained with different instruments and photometric systems along the distance ladder have been mitigated
by the use of a single instrument, HST ’s WFC3, for a large fraction of the data.

Extending the trend toward longer wavelength calibration, Freedman et al. (2011) and Scowcroft et al. (2011) argue
that 3.6 µm measurements – possible with Spitzer and eventually with JWST – minimize systematic uncertainties in the
Cepheid distance scale because of low reddening and weak metallicity dependence. Monson et al. (2012) calibrate the
3.6 µm P–L zero-point against Galactic Cepheid samples, including the Benedict et al. (2007) parallax sample, and thereby
infer the distance modulus to the LMC as a test of the optical Cepheid P–L relation and its metallicity correction. Freedman
et al. (2012) use these Milky Way parallaxes to calibrate the optical Cepheid P–L relation and then recalibrate the Key
Project data set to infer H0; this determination still relies on optical, WFPC2 Cepheid data (and the associated metallicity
corrections and flux and color zero-point uncertainties), and the Key Project SN Ia calibrator sample includes several SNe
with photographic photometry or high extinction. Sorce et al. (2012) use the Tully and Fisher (1977) relation in the Spitzer
3.6 µm band, normalized to the Monson et al. (2012) LMC distance, to recalibrate the SN Ia absolute magnitude scale and
thereby infer H0. Suyu et al. (2012a) infer H0 from gravitational lens time delays for two well constrained systems, an
approach that sidesteps the traditional distance ladder entirely (see Section 7.10 for further discussion). These four recent
H0 determinations (Riess et al., 2011; Freedman et al., 2012; Sorce et al., 2012; Suyu et al., 2012a) agree with each other to
better than 2%. While the data used for the first three are only partly independent, this level of consistency is nonetheless
an encouraging indicator of the maturity of the field. With the precision of H0 measurements already at a level that allows
critical tests of dark energy models in combination with CMB, BAO, and SN data (see, e.g., Anderson et al., 2012), a key
challenge for the field is convergence on error budgets that neither underrepresent the power of the data nor understate
systematic uncertainties.

Over the next decade, it should be possible to reduce the uncertainty in direct measurement of H0 to approach the
one-percent level. One crucial step will be the 1% to 5% parallax calibration of hundreds of long-period Galactic Cepheids
within 5 kpc by the Gaia mission, setting the fundamental calibration of the multi-wavelength P–L relation and, to some
degree, its metallicity dependence on a solid geometrical base with distance precision easily better than 1%. NewMilkyWay
parallax measurements using the spatial scanning capability of HST may achieve this precision even sooner. Discovery of
additional galaxies with maser distances (like NGC 4258) may also improve the Cepheid calibration or, if they are in the
Hubble flow, may provide a direct determination of the Hubble constant (see Reid et al., 2013 for a recent measurement of
UGC 3789 and Greenhill et al., 2009 for additional candidates). The other key step will be the Cepheid calibration of more
Type Ia supernovae, which occur at a rate of one per 2–3 years in the range D < 35 Mpc accessible to HST with WFC3.
JWST could increase this range to D < 60 Mpc, quadrupling the rate of usable supernovae. Ultimately a sample of 20 to 30
calibrations of the SN Ia luminosity is needed to reduce the sample size contribution to uncertainty in H0 below 1%. With
firmer P–L calibration and a larger Type Ia sample, the remaining uncertainty in H0 is likely to be dominated by systematic
uncertainty in the linearity of the photometric systems observing nearby and distant Cepheids. This may be minimized
by the careful construction of ‘‘flux ladders’’, analogous to distance ladders but used to compare the measurements of
disparate flux levels. Additional contributions to the determination of H0 with few percent precision could come from
‘‘golden’’ lensing systems, infrared Tully–Fisher distances, surface brightness fluctuation measurements further into the
Hubble flow, Sunyaev–Zel’dovich effect measurements, and local volume measurements of BAO.

We discuss the potential contribution of H0 measurements to dark energy constraints in Sections 8.3 and 8.5 below.
Already, the combination of the 3% measurement of Riess et al. (2011) with CMB data alone yields w = −1.08 ± 0.10,
assuming a flat universe with constantw. The limitation of H0 is, of course, that it is a single number at a single redshift, so
while it can test any well specified dark energymodel, it provides little guidance on how to interpret deviations frommodel
predictions. However, precisionH0 measurements can significantly increase the constraining power of othermeasurements:
for our fiducial Stage IV program described in Section 8, assuming a w0–wa model for dark energy, a 1% H0 measurement
would raise the DETF Figure ofMerit by 40%. A directmeasurement ofH0 also has the potential to reveal departures from the
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smooth evolution of dark energy enforced by thew0–wa parameterization. In essence, the dark energy model transfers the
absolute distance calibration frommoderate redshift BAOmeasurements down to z = 0, but unusual low redshift evolution
of dark energy can break this link, shiftingH0 away from its expected value. A precise determination ofH0, coupled to aw(z)
parameterization that allows low-redshift variation, could reveal recent evolution of dark energy and definitively answer
the basic question, ‘‘Is the universe still accelerating?’’

7.2. Redshift-space distortions

As discussed in Section 2.3, peculiar velocities make large scale galaxy clustering anisotropic in redshift space (Kaiser,
1987). In linear theory, the relation between the real-spacematter power spectrum P(k) and the redshift-space galaxy power
spectrum Pg(k, µ) at redshift z follows Eq. (43): Pg(k, µ) = [bg(z)+µ2f (z)]2P(k),where bg(z) is the galaxy bias factor, f (z)
is the logarithmic growth rate of fluctuations, andµ is the cosine of the angle between thewavevector k and the line of sight.
The strength of the anisotropy is governed by distortion parameterβ = f (z)/bg(z), which has beenmeasured for a variety of
galaxy redshift samples (e.g., Cole et al., 1995; Peacock et al., 2001; Hawkins et al., 2003; Okumura et al., 2008). By modeling
the full redshift-space galaxy power spectrum one can extract the parameter combination f (z)σ8(z), the product of the
matter clustering amplitude and the growth rate (see Percival andWhite, 2009, who provide a clear review of the physics of
redshift-space distortions and recent theoretical developments). Like any galaxy clustering measurement, statistical errors
for redshift-space distortion (RSD) come from the combination of sample variance – determined by the finite number of
structures present in the survey volume – and shot noise in themeasurement of these structures (see Section 4.4.1). Optimal
weighting of galaxies based on their host halo masses can reduce the effects of shot noise below the naive expectation from
Poisson statistics (Seljak et al., 2009; Cai and Bernstein, 2012; Hamaus et al., 2012). However, sample variance has a large
impact on RSD measurements because filaments and walls extend for many tens of Mpc with specific orientations, so even
in real space onewould find isotropic clustering only after averaging overmany such structures. Mcdonald and Seljak (2009)
show that one can partly beat the limits imposed by sample variance by analyzingmultiple galaxy populations with distinct
bias factors in the same volume, which allows one to extract information from the bg-dependence of the amplitude δg(k, µ)
of each individual mode, rather than just the variance of the modes. Bernstein and Cai (2011) provide a nicely pedagogical
discussion of this idea.

Anisotropy of clustering in galaxy redshift surveys thus offers an alternative to weak lensing and cluster abundances as
a tool for measuring the growth of structure. While WL and clusters constrain the amplitude of matter clustering and yield
growth rate constraints from measurements at multiple redshifts, redshift-space distortions directly measure the rate at
which structure is growing at the redshift of observation; the coherent flows responsible for RSD are the same flows that
are driving the growth of fluctuations (Eq. (42)). Recent observational analyses include the measurement of Guzzo et al.
(2008) from the VIMOS-VLT Deep Survey (VVDS), f (z) = 0.91 ± 0.36 at z ≈ 0.8, the measurement of Samushia et al.
(2012) from SDSS DR7, obtaining ∼10% constraints on f (z)σ8(z) at z = 0.25 and z = 0.37, the measurement of Blake et al.
(2011a) from the WiggleZ survey, obtaining ∼10% constraints in each of four redshift bins from z = 0.1 to z = 0.9, the
measurement of Reid et al. (2012) from BOSS, obtaining a∼8% constraint at z = 0.57, and the local measurement of Beutler
et al. (2012) from the 6dFGS, obtaining a∼13% constraint at z = 0.067. All of thesemeasurements assumeΛCDM geometry
when inferring f (z)σ8(z), and their derived growth parameters are consistent withΛCDM predictions.

Redshift-space distortions can be measured with much higher precision from future redshift surveys designed for BAO
studies. These measurements can improve constraints on dark energy models assuming GR to be correct, and they can
be used to constrain (or reveal) departures from GR by testing consistency of the growth and expansion histories. The
key challenge in modeling RSD is accounting for non-linear effects, including non-linear or scale-dependent bias between
galaxies and matter, at the level of accuracy demanded by the measurement precision. The linear theory formula (43) is an
inadequate approximation even on scales of 50h−1 Mpc ormore (Cole et al., 1994; Hatton and Cole, 1998; Scoccimarro, 2004)
because of a variety of non-linear effects, including the ‘‘finger-of-God’’ (FoG) distortions in collapsing and virialized regions,
which are opposite in sign from the linear theory distortions. Their effects are commonly modeled by adding an incoherent
small scale velocity dispersion to the linear theory distortions, but thismodel is physically incomplete, and it typically leaves
5%–10% systematic errors in β estimates (Hatton and Cole, 1998). Higher order perturbation theory can be used to refine the
large scale predictions (Scoccimarro, 2004), but this does not capture the small scale dispersion effects,which are themselves
significantly different for galaxies vs. darkmatter. Tinker et al. (2006) and Tinker (2007) advocate an approach based on halo
occupation modeling, which has the virtue of adopting an explicit, self-consistent physical description that can encompass
linear, quasi-linear, and fully non-linear scales. However, the model is complicated, and it is presently implemented using
numerically calibrated fitting formulas that may not generalize to all cosmologies. Following similar lines, Reid and White
(2011) present a simpler andmore fully analytic scheme for computing redshift-space clustering of halos, which may prove
sufficiently accurate for the large scales probed by future surveys. Hikage et al. (2011) suggest using galaxy–galaxy lensing to
estimate the radial distribution of tracer galaxies in their darkmatter halos and combiningwith the virial theorem to predict
the FoG profile. Other recent discussions of analytic or numerically calibrated models of non-linear RSD, from different
perspectives, include Taruya et al. (2010), Jennings et al. (2011), Seljak and Mcdonald (2011), Jennings (2012) and Okumura
et al. (2012); this is a highly active area of current research.

Linear theory RSD depends only on the growth parameters f (z)σ8(z), but testing non-GR models such as f (R) gravity
with RSD may require full numerical simulations to capture non-linear effects in these models (e.g., Jennings et al., 2012a;
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Li et al., 2013). While analytic models are convenient when fitting data to extract parameter values and errors, there is no
problemof principle in using brute-force numerics to compute RSDpredictions, for eitherGRormodified gravitymodels. The
fundamental question is the limit on the accuracy of predictions that will be imposed by uncertainties in galaxy formation
physics, such as the relative velocity dispersions of galaxies and darkmatterwithin halos. These limits are poorly understood
at present.

Since the number of Fourier modes in a 3-dimensional volume increases as k3, the precision of clustering measurement
is generally higher on smaller scales, at least until one hits the shot noise limits of the tracer population. Forecasts of
cosmological constraints from RSD remain uncertain because it is not clear how small a scale and how high a precision
one can go to before being limited by theoretical modeling systematics. The impact of theoretical systematics is often
characterized implicitly in terms of a maximum wavenumber kmax used in the modeling. As one goes to larger kmax the
non-linear effects are larger, and the demands on modeling them accurately become more stringent because the statistical
precision is higher. One can think of kmax as representing the crossover scale where theoretical uncertainties become
comparable to the statistical uncertainty, a scale that depends on the survey volume as well as the modeling accuracy itself.
Most forecasts (including ours below) assume that modeling is perfect up to kmax but uses no information from higher k. In
practice, analyses may continue to high k but marginalize over systematic uncertainties, leading to an ‘‘effective’’ value of
kmax that determines the strength of the RSD constraints.

Plausible assumptions suggest promising prospects for future RSD experiments. For example, assuming a maximum k
equal to 0.075hMpc−1 at z = 0 and tracking the non-linear scale knl at higher redshifts,White et al. (2009) predict 1σ errors
on f (z)σ8(z) of a few percent per∆z = 0.1 redshift bin out to z = 0.6 from the SDSS-III BOSS survey, and for a space-based
survey that achieves a high galaxy density69 out to z = 2 they predict errors per ∆z = 0.1 that drop from ∼1% at z = 0.8
to ∼0.2% at z = 1.9. These forecasts incorporate the Mcdonald and Seljak (2009) method for beating sample variance.
Reid and White (2011) examine BOSS RSD forecasts in more detail, considering the impact of modeling uncertainties. They
forecast a 1σ error on f (z)σ8(z) at z = 0.55 of 1.5% using correlation function measurements down to a comoving scale
smin = 10h−1 Mpc, rising to 3% if the minimum scale is smin = 30h−1 Mpc. (The corresponding wavenumber scale is
kmax ≈ 1.15π/smin.) These forecasts assume marginalization over a nuisance parameter σv characterizing the small scale
velocity dispersion. They improve by a factor of ∼1.5 if σv is assumed to be known perfectly, demonstrating the potential
gains from a method (like that of Tinker, 2007) that can use smaller scale measurements to pin down the impact of velocity
dispersions. More generally, small scale clustering may be useful to pin down the nuisance parameters of large scale RSD
models and therefore improve the precision of the cosmological parameter measurements (Tinker et al., 2006).

At the percent level there is another potential systematic error in RSD if the selection function has an orientation
dependence (e.g., due to fiber aperture or self-extinction by dust in the target galaxy) and galaxies are aligned by
the large-scale tidal field. This exactly mimics RSD, even in the linear regime (Hirata, 2009), but fortunately the effect
seems to be negligible for present surveys. Orientation-dependent selection is predicted to be a larger effect for high-z
Lyα emitters (Zheng et al., 2011), since there the radiation can resonantly scatter in the IGM and must make its way out
through the large-scale velocity flows surrounding the galaxy; at very high redshift (z = 5.7) simulations predict an order
unity effect. The implications for Lyα emitters at more modest redshift will become clear with the HETDEX survey.

In Section 8.5.3 we show that our fiducial Stage IV program (CMB+SN+BAO+WL) constrains σ8(z)f (z) to a 1σ precision
of 2% at z = 0.5 and 1% at z & 1 if we assume a w0–wa dark energy model with G9 and ∆γ as parameters to describe
departures from GR. Thus, RSD measurements with this level of precision or better can significantly improve the figure-
of-merit for dark energy constraints and sharpen tests of GR, even in a combined program that includes powerful weak
lensing constraints. Much weaker RSD measurements could still make a significant contribution to Stage III constraints.
Forecasts of the contribution of redshift-space distortions to constraints from specific Stage IV experiments (a BigBOSS-like
ground-based survey and a Euclid- orWFIRST -like space-based survey) are presented by Stril et al. (2010),Wang et al. (2010)
and Wang et al. (2013).

To provide guidance for our forecast discussions in Section 8, we have used the publicly available code of White et al.
(2009) to predict errors on f (z)σ8(z) for different assumptions about survey parameters andmodeling limitations. The solid
curves in Fig. 31 show predicted fractional errors per ∆z = 0.1 redshift bin assuming a survey with fsky = 0.25 and a
sampling density that yields nP(k = 0.2h Mpc−1) = 2, the same assumptions that we make for our fiducial Stage IV
BAO program (see Section 8.1). In contrast to BAO forecasts, which depend only on the combination nP , RSD forecasts also
depend separately on the bias evolution bg(z) becausemore strongly biased tracers exhibit weaker anisotropy (lowerβ) and
therefore provide less leverage on f (z)σ8(z). Here we have assumed strongly biased tracers (such as luminous red galaxies)
at z < 0.9 and weaker bias (appropriate to emission line galaxies) at z > 0.9; specifically, we adopt bg(z)σ8(z) = 1.3 at
z < 0.9 (motivated by Reid et al., 2012) and bg(z)σ8(z) = 0.6 at z > 0.9, corresponding to bg = 1.5 at z = 1.5 (see Orsi
et al., 2010 and Geach et al., 2012). This change in assumed bias factor produces the sharp drop in the forecast error at
z = 0.9. Maintaining nP = 2 would, of course, require a corresponding jump in galaxy density for z > 0.9. Upper and
lower curves correspond to kmax = 0.1h Mpc−1 and 0.2h Mpc−1, respectively. In either case, the forecast error drops with

69 We caution that the space densities assumed byWhite et al. (2009) are much higher than those that Euclid orWFIRST is likely to achieve, so these RSD
precision forecasts may prove overoptimistic. Recent forecasts in the specific context of Euclid and WFIRST appear in Majerotto et al. (2012) and Green
et al. (2012), respectively.



190 D.H. Weinberg et al. / Physics Reports 530 (2013) 87–255

Fig. 31. Forecast errors on f (z)σ8(z) per ∆z = 0.1 redshift bin from an RSD survey with fsky = 0.25, computed with the code of White et al. (2009). For
simplicity, we assume linear theory up to kmax = 0.1h Mpc−1 (upper) or kmax = 0.2h Mpc−1 (lower) and no information from smaller scales. Solid and
dashed curves show sampling densities nP = 2 and nP = 1, respectively, and dot-dashed curves show a case where nP drops from 2 to 0.5 at z = 1.2.
The sharp drop at z = 0.9 reflects an assumed change in bias factors from a high value (appropriate to absorption-line galaxies) at low z to a lower value
(appropriate to emission-line galaxies) at high z.

increasing redshift out to z = 0.9 because of the larger comoving volume per ∆z = 0.1 bin, then stays roughly constant
from z = 0.9–2.

For kmax = 0.2h Mpc−1 and nP = 2, the error per bin is about 0.8% from z = 0.9–2. Lowering the sampling density
from nP = 2 to nP = 1 degrades the fractional error by about 12.5%, equivalent to a 25% reduction in fsky. The dot-dashed
curve shows the case in which we assume nP = 2 for z < 1.2 and nP = 0.5 for z > 1.2, where emission line galaxy
redshifts become increasingly difficult to obtain from the ground and the dominant samples may eventually come from
slitless spectroscopic surveys with Euclid and WFIRST. In this case, the high redshift error increases by ∼40%. Reducing nP
has less impact for kmax = 0.1hMpc−1 because structure at this larger scale is more fully sampled, leaving sample variance
as the dominant source of measurement uncertainty.

Fig. 31 highlights the critical role of modeling uncertainty in determining the ultimate cosmological return from RSD
measurements. If we assume kmax = 0.1h Mpc−1 instead of kmax = 0.2h Mpc−1, then the errors for nP = 2 are larger
by a factor ∼2.5, only slightly less than the factor (0.2/0.1)3/2 = 2.83 suggested by a pure mode counting argument. In
both cases we have assumed that kmax is constant with redshift in comoving coordinates, in contrast to White et al. (2009)
who assume that it scales with knl, and this difference largely accounts for the substantially larger errors that we forecast at
high redshift. It is not clear which assumption is more appropriate, since it is not clear whether the scale at which modeling
uncertainties dominate will be set by non-linearity in the matter clustering, which tracks knl, or by non-linearity in the
biased galaxy clustering, which stays roughly constant in comoving coordinates because of compensation between bg(z)
and σ8(z). While our kmax = 0.2hMpc−1, nP = 2 case yields 0.8% errors per bin at z > 0.9, the actual demand on modeling
accuracy is tighter by

√
Nbin ∼ 3.3 because a systematic modeling error would be likely to affect all bins coherently.

Our forecasts here include only P(k) modeling, not the additional gains that are potentially available by applying
the Mcdonald and Seljak (2009) method to tracer populations with different bias factors in the same volume. High redshift
surveys may not yield galaxy samples with a wide range of bias, but at z < 1 this approach could reduce errors significantly
relative to those presented here.

For the calculations in Fig. 31, we have set the small scale velocity dispersion σv = 0, i.e., we have assumed pure linear
theory up to k = kmax. Setting σv = 300 km s−1 produces only mild degradation of the errors, much smaller than the
difference between nP = 1 and nP = 2. However, marginalizing over σv , or more generally over parameters that describe
non-linear effects, could degrade precision significantly unless smaller scale data can be used to constrain these parameters.
Conversely, modeling to higher kmax can yield substantially tighter errors. In experiments with σv fixed to 300 km s−1, we
find that the k3/2max scaling holds at the factor-of-two level up to kmax ∼ 1h Mpc−1, so the potential gains are large. This
analysis thus confirms the key point of this section: RSD analyses of the same redshift surveys conducted for BAO could
provide powerful constraints on dark energy and stringent tests of GR growth predictions, but exploiting this potential will
require development of theoretical modeling methods that are accurate at the sub-percent level in the moderately non-
linear regime.
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Fig. 32. Evolution of the parameter combinationH(z)DA(z) constrained by the Alcock–Paczynski test, for the same suite of CMB-normalizedmodels shown
in Fig. 2.

7.3. The Alcock–Paczynski test

The translation from angular and redshift separations to comoving separations depends on DA(z) and H(z), respectively.
Therefore, even if peculiar velocities are negligible, clustering in redshift spacewill appear anisotropic if one adopts an incor-
rect cosmological model — specifically, one with an incorrect value of the product H(z)DA(z). Alcock and Paczynski (1979;
hereafter AP) proposed an idealized cosmological test using this idea, based on a hypothetical population of intrinsically
spherical galaxy clusters. The AP test can be implemented in practice by using the amplitude of quasar or galaxy cluster-
ing to identify equivalent scales in the angular and redshift dimensions (Ballinger et al., 1996; Matsubara and Suto, 1996;
Popowski et al., 1998; Matsubara and Szalay, 2001) or by using anisotropy of clustering in the Lyα forest (Hui et al., 1999;
Mcdonald andMiralda-Escudé, 1999). APmeasurements provide a cosmological test in their own right, and they allow high-
redshift distancemeasurements to be translated into constraints onH(z), which is a more direct measure of energy density.
Recently Blake et al. (2011c) have measured the AP parameter H(z)DA(z) from galaxy clustering in the WiggleZ survey, ob-
taining 10%–15% precision in each of four redshift bins out to z = 0.8, and Reid et al. (2012) have obtained ∼6% precision
at z = 0.55 from BOSS galaxies, improving to ∼3.5% if they assume that the growth rate (and hence the peculiar velocity
distortion) has the value predicted byΛCDM. Both results are consistent with flat-Λ geometry for WMAP7 values ofΩm.

Fig. 32 shows the evolution of c−1H(z)DA(z) for the same set of CMB-normalized models shown earlier in Figs. 2–4. At
low redshift, the model dependence resembles that of H(z)/ch (lower left panel of Fig. 2), but deviations are reduced in
amplitude because of partial cancellation between H(z) and DA(z) ∝

 z
0 dz ′H−1(z ′). At high redshift Ωk = ±0.01 has a

larger impact than 1 + w = ±0.1. Note that negative space curvature (positive Ωk) tends to increase DA, but because the
CMB normalization lowers Ωm (see Table 1) and thus H(z)/H0, the net effect is to decrease H(z)DA(z). In Section 8.5.2 we
show that our fiducial Stage IV programpredictsH(z)DA(z)with an accuracy of∼0.15%–0.3%, assuming aw0–wa dark energy
model. AP measurements at this level could significantly improve dark energy constraints. For Stage III, the predictions are
considerably weaker, ∼0.5%–0.9%.

Like redshift-space distortionmeasurements, the AP test is automatically enabled by redshift surveys conducted for BAO.
In practice the two effects must be modeled together (see, e.g., Matsubara, 2004), and the principal systematic uncertainty
for APmeasurements is the uncertainty inmodeling non-linear redshift-space distortions. At present, it is difficult to forecast
the likely precision of future AP measurements because there have been no rigorous tests of the accuracy of redshift-space
distortion corrections at the level of precision reachable by such surveys. If one assumes that redshift-space distortions can
bemodeled adequately up to k ∼ knl then the potential gain fromAPmeasurements is impressively large. For example,Wang
et al. (2010) find that using the full galaxy power spectrum in a space-based emission-line redshift survey increases the
forecast value of the DETF FoM by a factor of ∼3 relative to the BAO measurement alone; this gain is not broken down into
separate contributions, but we suspect that a large portion comes from AP.70 In the context of HETDEX, Shoji et al. (2009)
show that the AP test substantially improves the expected cosmological constraints relative to BAO analysis alone, even
after marginalizing over linear RSD and a small-scale velocity dispersion parameter. The appendix to that paper presents
analytic formalism for incorporating AP and RSD constraints into Fisher matrix analyses.

70 Since RSD and AP both depend on modeling the broadband P(k, µ), it is difficult even in principle to separate the two types of constraints in an
observational analysis.
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Halo occupation methods (see Section 2.3) provide a useful way of approaching peculiar velocity uncertainties in AP
measurements. Observations and theory imply that galaxies reside in halos, and on average the velocity of galaxies in a halo
should equal the halo’s center-of-mass velocity because galaxies and dark matter feel the same large scale acceleration.
However, the dispersion of satellite galaxy velocities in a halo could differ from the dispersion of dark matter particle
velocities by a factor of order unity, and central galaxies could have a dispersion of velocities relative to the halo center-
of-mass (van den Bosch et al., 2005; Tinker et al., 2006). To be convincing, an AP measurement must show that it is robust
(relative to its statistical errors) to plausible variations in the halo occupation distribution and to plausible variations in the
velocity dispersion of satellite and central galaxies. Alternatively, the AP errors can be marginalized over uncertainties in
these multiple galaxy bias parameters, drawing on constraints from the observed redshift-space clustering.

BAO measurements from spectroscopic surveys in some sense already encompass the AP effect, since they use the
location of the BAO scale as a function of angular and redshift separations to separately constrain DA(z) and H(z). The
presence of a feature at a particular scale makes the separation of the AP effect from peculiar velocity RSD much more
straightforward (see Fig. 6 of Reid et al., 2012). However, the addition of a high-precision AP measurement from smaller
scales could significantly improve the BAO cosmology constraints. BAOmeasurements typically constrain DA(z) better than
H(z) because there are two angular dimensions and only one line-of-sight dimension. However, at high redshift H(z) is
more sensitive to dark energy than DA(z), since H(z) responds directly to uφ(z) through the Friedmann equation (3) while
DA(z) is an integral of H0/H(z ′) over all z ′ < z. An AP measurement would allow the BAO measurement of DA(z) to be
‘‘transferred’’ to H(z), thus yielding a better measure of the dark energy contribution. Blake et al. (2011c) have recently
implemented a similar idea by using their AP measurements in the WiggleZ survey to convert SN luminosity distances into
H(z) determinations.

The AP test can be implemented with measures other than the power spectrum or correlation function. One option
is to use the angular distribution of small scale pairs of quasars or galaxies (Phillipps, 1994; Marinoni and Buzzi, 2010),
though peculiar velocities still affect this measure, in a redshift- and cosmology-dependent way (Jennings et al., 2012b).
A promising recent suggestion is to use the average shape of voids in the galaxy distribution; individual voids are ellip-
soidal, but in the absence of peculiar velocities the mean shape should be spherical (Ryden, 1995; Lavaux and Wandelt,
2010). Typical voids are of moderate scale (R ∼ 10h−1 Mpc) and have a large filling factor f , so the achievable precision
in a large redshift survey is high if the sampling density is sufficient to allow accurate void definition. A naive estimate
for the error on the mean ellipticity of voids with rms ellipticity ϵrms in a survey volume V is σϵ̄ ∼ ϵrms(fV/ 4

3πR
3)−1/2

≈

6×10−4(ϵrms/0.3)(fV/1 h−3 Gpc3)−1/2(R/10h−1 Mpc)−3/2, if the galaxy density is high enough tomake the shot noise con-
tribution to the ellipticity scatter negligible on scale R. Peculiar velocities have a small, though not negligible, impact on void
sizes and shapes (Little et al., 1991; Ryden andMelott, 1996; Lavaux andWandelt, 2012), so one canhope that the uncertainty
in this impact will be small, but this hope has yet to be tested. Assuming statistical errors only, Lavaux and Wandelt (2012)
estimate that a void-based AP constraint from a Euclid-like redshift survey would provide several times better dark energy
constraints than the BAO measurement from the same data set, mainly because the scale of voids is so much smaller than
the BAO scale. Sutter et al. (2012) have recently applied the AP test to a void catalog constructed from the SDSS DR7 redshift
surveys, though with this sample the statistical errors are too large to yield a significant detection of the predicted effect.

7.4. Alternative distance indicators

In Sections 3 and 4 we have discussed the two most well established methods for measuring the cosmological distance
scale beyond the local Hubble flow: Type Ia supernovae and BAO. These two methods set a high bar for any alternative
distance indicators. Type Ia supernovae are highly luminous, making them relatively easy to discover and measure at large
distances. Once corrected for light curve duration, local Type Ia’s have adispersion of 0.1–0.15mag inpeak luminosity despite
sampling stellar populations with a wide range of age and metallicity, and extreme outliers are apparently rare (Li et al.,
2011). Thus far, surveys are roughly succeeding in achieving the

√
N error reduction from large samples, though progress

on systematic uncertainties will be required to continue these gains. The BAO standard ruler is based on well understood
physics, and it yields distances in absolute units. ‘‘Evolutionary’’ corrections (from non-linear clustering and galaxy bias) are
small and calculable from theory.

Core collapse supernovae exhibit much greater diversity than Type Ia supernovae, which is not surprising given the
greater diversity of their progenitors. However, Type IIP supernovae, characterized by a long ‘‘plateau’’ in the light curve
after peak, show a correlation between expansion velocity (measured via spectral lines) and the bolometric luminosity of
the plateau phase, making them potentially useful as standardized candles with ∼0.2 mag luminosity scatter (Hamuy and
Pinto, 2002; see Maguire et al., 2010 for a recent discussion). Unfortunately, as distance indicators Type IIP supernovae
appear to be at least slightly inferior to Type Ia supernovae on every score: they are less luminous, the scatter is larger, the
fraction of outliers may be larger, and they arise in star-forming environments that are prone to dust extinction. With the
existence of cosmic acceleration now well established by multiple methods, we are skeptical that Type IIP supernovae can
make a significant contribution to refinement of dark energy constraints.

The door for alternative distance indicators is more open beyond z = 1, the effective limit of most current SN and
BAO surveys. Gamma-ray bursts (GRBs) are highly luminous, so they can be detected to much higher redshifts than optical
supernovae; the current record holder is at z ≈ 8.2 (Tanvir et al., 2009; Salvaterra et al., 2009). GRBs are extremely diverse
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and highly beamed, but they exhibit correlations (Amati, 2006; Ghirlanda et al., 2006) between equivalent isotropic energy
and spectral properties (such as the energy of peak intensity) or variability. These correlations can be used to construct
distance–redshift diagrams for those systems with redshift measured via spectroscopy of afterglow emission or of host
galaxies (e.g., Schaefer, 2007; see Demianski and Piedipalumbo, 2011 for a recent review and discussion). While GRBs reach
to otherwise inaccessible redshifts, we are again skeptical that they can contribute to our understanding of dark energy
because of statistical limitations and susceptibility to systematics. It has taken detailed observations of many hundreds of
Type Ia supernovae, local and distant, to understand their systematics and statistics. The number of GRBswith spectroscopic
redshifts is∼100, and the spectroscopic samplemaybe a biased subset of the full GRBpopulation because of the requirement
of a bright optical afterglow or identified host galaxy.

Quasars are another tool for reaching high redshifts, drawing on empirical correlations between line equivalent widths
and luminosity (Baldwin, 1977) or between luminosity and the broad line region radius RBLR (Bentz et al., 2009). For
example,Watson et al. (2011) have recently proposed reverberationmapping (whichmeasures RBLR) of large quasar samples
to constrain dark energymodels. The high redshift quasar population is systematically different (in black holemass and host
galaxy environment) from lower redshift calibrators. Quasar spectral properties appear remarkably stable over a wide span
of redshift (Steffen et al., 2006), and the dependence of RBLR on luminosity is driven primarily by photoionization physics.
However, in the event of a ‘‘surprising’’ result from quasar distance indicators, one would have to be prepared to argue that
subtle (e.g., 10% or smaller) changes with redshift were a consequence of cosmology rather than evolution. Of course, quasar
distance indicators also face the same challenges of photometric calibration, k-corrections, and dust extinction that affect
supernova studies.

Radio galaxies have been employed as a standard (or at least standardizable) ruler for distance–redshift studies, drawing
on empirically tested theoretical models that connect the source size to its radio properties (Daly, 1994; Daly and Guerra,
2002). Analysis of 30 radio galaxies out to z = 1.8 gives results consistent with those from Type Ia supernovae (Daly et al.,
2009). The number of radio galaxies to which this technique can be applied is limited, and the model assumptions used to
translate observables into distance estimates are fairly complex (see Daly et al., 2009, Section 2.1). We therefore expect that
both statistical and systematic limitations will prevent this method from becoming competitive with supernovae and BAO.

In Section 8.5.4we show forecast distance errors for our fiducial Stage III and Stage IV experimental programs, presenting
a target for alternativemethods. If one assumes aw0–wa model then the constraints are very tight, with errors below∼0.25%
at Stage IV and ∼0.5% at Stage III. However, with a general w(z) model the constraints become much weaker outside the
redshift range directly measured by Type Ia SNe or BAO. In particular, our Stage IV forecasts presume large BAO surveys at
z > 1, and if these do not come to fruition there is much more room for alternative indicators at high redshift.

7.5. Standard sirens

Gravitational wave astronomy opens an entirely different route to distance measurement, with an indicator that is
grounded in fundamental physics (Schutz, 1986). The basic concept is illustrated by considering a nearly Newtonian binary
system of two black holes with total massM and reducedmassµ, in a nearly circular orbit at separation a. The gravitational
wave luminosity of such a source is

LGW =
32G4µ2M3

5c5a5
. (157)

If one can measure the angular velocity of the orbit71 ω =

GM/a3, its rate of change due to inspiral as the binary

loses energy ω̇/ω = 96G3µM2/5c5a4, and the orbital velocity v =
√
GM/a (using relativistic corrections to the emitted

waveform), one has enough information to solve for a, M , and µ. One can therefore calculate LGW from the measured
observables and compare to the measured energy flux to infer distance. In practice, one would need to solve for other
dimensionless parameters such as the eccentricity and the orientation of the orbit, black hole spins, and source position on
the sky. The solution is not trivial (!), but gravitationalwaveforms from relativistic binaries encode this information in higher
harmonics and modulation of the signal due to precession (Arun et al., 2007). Because of the analogy between gravitational
wave observations and acoustic wave detection, this approach is often referred to as the ‘‘standard siren’’ method.

There are several practical obstacles to gravitational wave cosmology. First, of course, gravitational waves from an
extragalactic source must be detected. The most promising near-term possibility is nearby (z ≪ 1) neutron star binaries,
which should be detected by the ground-based Advanced LIGO detector (to start observations in ∼2014) and upgraded
VIRGO detector, and which could be used to measure H0. The space-based gravitational wave detector LISA (possible launch
in the 2020 decade) is designed to allow high S/N measurements of the mergers of massive black holes at the centers
of galaxies at z ∼ O(1), which would enable a full Hubble diagram DL(z) to be constructed. A second complication is
that gravitational wave observations yield a distance but do not give an independent source redshift. One thus needs an
identification of the host galaxy, and given the angular positioning accuracy of gravitational wave observations this will
generally require identification of an electromagnetic transient that accompanies the gravitational wave burst. Possibilities

71 The observed frequency of the gravitational wave is 2ω because the source is a quadrupole, producing two crests and two troughs per orbit.
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include GRBs resulting from neutron star mergers (Dalal et al., 2006) and the optical, X-ray, or radio signatures of the
response of an accretion disk to amassive black holemerger (Milosavljevic and Phinney, 2005; Lippai et al., 2008). However,
both the event rates and the characteristics of the electromagnetic signatures are poorly understood at present. One can also
make identifications statistically using large scale structure (Macleod and Hogan, 2008). A third complication, important for
the high S/N observations expected from LISA, is that weak lensing magnification becomes a dominant source of noise at
z & 1, inducing a scatter in distance of several percent per observed source (Markovic, 1993; Holz and Linder, 2005; Jonsson
et al., 2007). By taking advantage of the non-Gaussian shape of the lensing scatter, one can reduce the error on the mean by
a factor ∼2–3 below the naive σ/

√
N expectation (Hirata et al., 2010; Shang and Haiman, 2011), so samples of a few dozen

well observed sources could yield sub-percent distance scale errors.
Nissanke et al. (2010) forecast constraints on H0 from next-generation ground-based gravitational wave detectors,

including Monte Carlo simulations of parameter recovery from neutron star–neutron star and neutron star–black hole
mergers. They find that H0 can be constrained to 5% for 15 NS–NS mergers with GRB counterparts and a network of three
gravitational wave detectors. While the event rate is highly uncertain, tens of events per year are quite possible and could
lead to percent-level constraints on H0 a decade or so from now. Taylor and Gair (2012) discuss the prospects for a network
of ‘‘third generation’’ ground-based interferometers, which could detect ∼105 double neutron star binaries.

It remains to be seenwhether standard sirens can competewith other distance indicators in the LIGO/VIRGO and LISA era.
Looking further ahead, Cutler and Holz (2009) show that an interferometer mission designed to search for gravitational
waves from the inflation epoch in the 0.03–3 Hz range, such as the Big Bang Observer (BBO, Phinney et al., 2004) or the
JapaneseDecigomission (Kawamura et al., 2008), would detect hundreds of thousands of compact star binaries out to z ∼ 5.
The arc-second level resolution would be sufficient to identify the host galaxies for most binaries even at high z, enabling
redshift determinations through follow-up observations. With the S/N expected for BBO, the error in luminosity distance for
most of these standard sirens would be dominated by weak lensing magnification, and the

√
N available for beating down

this scatter would be enormous. Indeed, Cutler and Holz (2009) argue that the dispersion of distance estimates as a function
of separation could itself be used to probe structure growth via the strength of the WL effect. For the BBO case, Cutler and
Holz (2009) forecast errors of ∼0.1%, 0.01, and 0.1 on H0,w0, andwa when combining with a Planck CMB prior, assuming a
flat universe. Because the distance indicator is rooted in fundamental physics, there are no obvious systematic limitations
to this method provided the calibration of the gravitational wave measurements themselves is adequate.

7.6. The Lyα forest as a probe of structure growth

The Lyα forest is an efficient tool for mapping structure at z ≈ 2–4 because each quasar spectrum provides many
independent samples of the density field along its line of sight. (At lower redshifts Lyα absorptionmoves to UVwavelengths
unobservable from the ground, and at higher redshifts the forest becomes too opaque to trace structure effectively.) The
relation between Lyα absorption and matter density is non-linear and to some degree stochastic. However, the physics of
this relation is straightforward and fairly well understood, in contrast to themore complicated processes that govern galaxy
formation. We have previously discussed the Lyα forest as a method of measuring BAO at z > 2, which requires only that
the forest provide a linearly biased tracer of the matter distribution on ∼150 Mpc scales. However, by drawing on a more
detailed theoretical description of the forest, one can use Lyα flux statistics to infer the amplitude of matter fluctuations and
thus measure structure growth at redshifts inaccessible to weak lensing or clusters.

The Lyα forest is described to surprisingly good accuracy by the Fluctuating Gunn–Peterson Approximation (FGPA,Wein-
berg et al., 1998; see also Gunn and Peterson, 1965; Rauch et al., 1997; Croft et al., 1998), which relates the transmitted flux
F = exp(−τLyα) to the dark matter overdensity ρ/ρ̄, with the latter smoothed on approximately the Jeans scale of the dif-
fuse intergalactic medium (IGM) where gas pressure supports the gas against gravity (Schaye, 2001). Most gas in the low
density IGM follows a power-law relation between temperature and density, T = T0(ρ/ρ̄)α with α . 0.6, which arises
from the competition between photo-ionization heating and adiabatic cooling (Katz et al., 1996; Hui and Gnedin, 1997). The
Lyα optical depth is proportional to the hydrogen recombination rate, which scales as ρ2T−0.7 in the relevant temperature
range near 104 K. This line of argument leads to the relation

F = exp(−τLyα) ≈ exp

−A(ρ/ρ̄)2−0.7α . (158)

The constant A depends on a combination of parameters that are individually uncertain (see Croft et al., 1998; Peeples et al.,
2010), and the value of α depends on the IGM reionization history, so in practice these parameters must be inferred empiri-
cally from the Lyα forest observables. However, even aftermarginalizing over these parameters there is enough information
in the clustering statistics of the flux F to constrain the shape and amplitude of the matter power spectrum (e.g., Croft et al.,
2002; Viel et al., 2004; Mcdonald et al., 2006). Lyα forest surveys conducted for BAO allow high precision measurements of
flux correlations on smaller scales, so they have the statistical power to achieve tight constraints on matter clustering.

There are numerous physical complications not captured by Eq. (158). On small scales, absorption is smoothed along the
line of sight by thermal motions of atoms. Peculiar velocities add scatter to the relation between flux and density, though
this effect is mitigated if one uses the redshift-space ρ/ρ̄ in Eq. (158). Gas does not perfectly trace dark matter, so (ρ/ρ̄)gas
is not identical to (ρ/ρ̄)DM. Shock heating and radiative cooling push some gas off of the temperature–density relation. All
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of these effects can be calibrated using hydrodynamic cosmological simulations, and since the physical conditions are not
highly non-linear and the effects are moderate to begin with, uncertainties in the effects are not a major source of concern.

A more serious obstacle to accurate predictions is the possibility that inhomogeneous IGM heating – especially heating
associated with helium reionization, which is thought to occur at z ≈ 3 – produces spatially coherent fluctuations in the
temperature–density relation that appear as extra power in Lyα forest clustering, or makes the relation more complicated
than the power law that is usually assumed (Mcquinn et al., 2011; Meiksin and Tittley, 2012). Fluctuations in the ionizing
background radiation can also produce extra structure in the forest, though this effect should be small on comoving scales
below ∼100 Mpc (Mcquinn et al., 2011). On the observational side, the primary complication is the need to estimate the
unabsorbed continuum of the quasar, relative to which the absorption is measured. (In our notation, F is the ratio of the
observed flux to that of the unabsorbed continuum.) For statistical analysis of a large sample, the continuum does not have
to be accurate on a quasar-by-quasar basis, and there are strategies (such as measuring fluctuations relative to a running
mean) for mitigating any bias caused by continuum errors (see, e.g., Slosar et al., 2011). Nonetheless, residual uncertainties
from continuum determination can be significant compared to the precision of measurements.

A discrepancy between clustering growth inferred from the Lyα forest and cosmological models favored by other data
would face a stiff burden of proof, to demonstrate that the Lyα forest results were not biased by the theoretical and
observational systematics discussed above. However, complementary clustering statistics and different physical scales
have distinct responses to systematics and to changes in the matter clustering amplitude, so it may be possible to build
a convincing case. For example, the bispectrum (Mandelbaum et al., 2003; Viel et al., 2004) and flux probability distribution
(e.g., Lidz et al., 2006) provide alternative ways to break the degeneracy between mean absorption and power spectrum
amplitude and to test whether a given model of IGM physics is really an adequate description of the forest. Lyα forest tests
will assume special importance if other measures indicate discrepancies at lower redshifts with the growth predicted by
GR combined with simple dark energy models. Growth measurements at z ∼ 3 from the Lyα forest could then play a
critical role in distinguishing betweenmodified gravity explanations andmodels with unusual dark energy history. Because
it probes high redshifts and moderate overdensities, the Lyα forest can also constrain the primordial power spectrum on
small scales that are inaccessible to other methods. The resulting lever arm may be powerful for detecting or constraining
the scale-dependent growth expected in some modified gravity models, as discussed further in the next section.

7.7. Other tests of modified gravity

We have concentrated our discussion of modified gravity on tests for consistency between measured matter fluctuation
amplitudes and growth rates – from weak lensing, clusters, and redshift-space distortions – with the predictions of dark
energy models that assume GR. However, ‘‘not General Relativity’’ is a broad category, and there are many other potentially
observable signatures of modified gravity models. For an extensive review of modified gravity theories and observational
tests, we refer the reader to Jain and Khoury (2010). We follow their notation and discussion in our brief summary here.

In Newtonian gauge, the spacetime metric with scalar perturbations can be written in the form

ds2 = −(1 + 2Ψ )dt2 + (1 − 2Φ)a2(t)dl2, (159)

which is general to any metric theory of gravity. If the dominant components of the stress–energy tensor have negligible
anisotropic stress, then the Einstein equation of GR predicts that Ψ = Φ , i.e., the same gravitational potential governs the
time–time and space–space components of the metric. We have made this assumption implicitly in the WL discussion of
Section 5. Anisotropic stress should be negligible in the matter-dominated era, and most proposed forms of dark energy
(e.g., scalar fields) also have negligible anisotropic stress. Therefore, one generic form of modified gravity test is to check
for the GR-predicted consistency between Ψ and Φ . For example, if the Ricci curvature scalar R in the GR spacetime action
S ∝


d4x

√
−gR is replaced by a function f (R), then Ψ and Φ are generically unequal. In the forecasts of Section 8 we

focus on GR-deviations described by the G9 and ∆γ parameters that characterize structure growth (Section 2.2), but an
alternative approach parametrizes the ratios of Ψ and Φ to their GR-predicted values (see Koivisto and Mota, 2006; Bean
and Tangmatitham, 2010; Daniel and Linder, 2010, and references therein). The G9 and ∆γ formulation is well matched
to observables that can be measured by large surveys, but the potentials formulation is arguably closer to the physics of
modified gravity.

The main approach to testing the consistency of Ψ and Φ exploits the fact that the gravitational accelerations of non-
relativistic particles are determined entirely byΨ but the paths of photons depend onΨ +Φ . Thus, an inequality ofΨ andΦ
should show up observationally as amismatch betweenmass distributions estimated from stellar or gas dynamics andmass
distributions estimated from gravitational lensing. (In typical modified gravity scenarios, it is then the lensingmeasurement
that characterizes the true mass distribution.) The approximate agreement between X-ray and weak lensing cluster masses
already rules out large disagreements between Ψ and Φ . A systematic statistical approach to this test, employing the
techniques discussed in Section 6, could probably sharpen it to the few percent level, limited by the theoretical uncertainty
in converting X-ray observations to absolute masses. To reach high precision on cosmological scales, the most promising
route is to test for consistency between growth measurements from redshift-space distortions, which respond to the non-
relativistic potential Ψ , and growth measurements from weak lensing. Implementing an approach suggested by Zhang
et al. (2007) and Reyes et al. (2010) present a form of this test that draws on redshift-space distortion measurements of
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SDSS luminous red galaxies by Tegmark et al. (2006) and galaxy–galaxy lensing measurements of the same population. The
precision of the test in Reyes et al. (2010) is only ∼30%, limited mainly by the redshift-space distortion measurement, but
this is already enough to rule out some otherwise viable models. In the long term, this approach could well be pushed to the
sub-percent level, with the limiting factors being the modeling uncertainty in redshift-space distortions and systematics in
weak lensing calibration. Similar tests on the ∼kpc scales of elliptical galaxies have been carried out by Bolton et al. (2006)
and Schwab et al. (2010).

Some modified gravity models allow Ψ and Φ to depend on scale and/or time, yielding an ‘‘effective’’ gravitational
constant GNewton −→ GNewton(k, t) (where k denotes Fourier wavenumber). Scale-dependent gravitational growth will alter
the shape of the matter power spectrum relative to that predicted by GR for the same matter and radiation content. Precise
measurements of the galaxy power spectrum shape can constrain or detect such scale-dependent growth. Uncertainties
in the scale-dependence of galaxy bias may be the limiting factor in this test, though departures from expectations could
also arise from non-standard radiation or matter content or an unusual inflationary power spectrum, and these effects may
be difficult to disentangle from scale-dependent growth. The lever arm for determining the power spectrum shape can be
extended by using the Lyα forest or, in the long term, redshifted 21 cm maps to make small-scale measurements. Time-
dependent GNewton would alter the history of structure growth, leading to non-GR values of G9 or ∆γ , but it could also be
revealed by quite different classes of tests. For example, the consistency of big bang nucleosynthesis with the baryon density
inferred from the CMB requiresGNewton at t ≈ 1 s to equal the present day value towithin∼10% (Yang et al., 1979; Steigman,
2010). Variation of GNewton over the last 12 Gyr would also influence stellar evolution, and it is therefore constrained by the
Hertzsprung–Russell diagram of star clusters (degl’Innocenti et al., 1996) and by helioseismology (Guenther et al., 1998).

Departures from GR are very tightly constrained by high-precision tests in the solar system, and many modified gravity
models require a screening mechanism that forces them toward GR in the solar system and Milky Way environment.72
Screening may be triggered by a deep gravitational potential, in which case the strength of gravity could be significantly
different in other cosmological environments. For a generic class of theories, the value of GNewton would be higher by
4/3 in unscreened environments, allowing order unity effects (see, for example, the discussion of f (R) gravity by Chiba
(2003) and DGP gravity by Lue (2006)). Chang and Hui (2011) suggest tests with evolved stars, which could be screened in
the dense core and unscreened in the diffuse envelope; the stars should be located in isolated dwarf galaxies so that the
gravitational potential of the galaxy, group, or supercluster environment does not trigger screening on its own. Hui et al.
(2009) and Jain and Vanderplas (2011) propose testing for differential acceleration of screened and unscreened objects in
low density environments (e.g., stars vs. gas, or dwarf galaxies vs. giant galaxies), in effect looking formacroscopic and order
unity violations of the equivalence principle. Jain (2011) provides a systematic, high-level review of these ideas and their
implications for survey experiments, emphasizing the value of including dwarf galaxies at low redshifts within large survey
programs.

Evidence formodified gravity could emerge from some very different direction, such as high precision laboratory or solar
system tests, tests in binary pulsar systems, or gravity wave experiments. In many of these areas, technological advances
allow potentially dramatic improvements of measurement precision — for example, the proposed STEP satellite could
sharpen the test of the equivalence principle by five orders-of-magnitude (Overduin et al., 2009). Modified gravity or a
dark energy field that couples to non-gravitational forces could also lead to time-variation of fundamental ‘‘constants’’ such
as the fine-structure constant α. Unfortunately, there are no ‘‘generic’’ predictions for the level of deviations in these tests,
so searches of this sort necessarily remain fishing expeditions. However, the existence of cosmic acceleration suggests that
there may be interesting fish to catch.

7.8. The integrated Sachs–Wolfe effect

On large angular scales, a major contribution to CMB anisotropies comes from gravitational redshifts and blueshifts
of photon energies (Sachs and Wolfe, 1967). In a universe with Ωtot = Ωm = 1, potential fluctuations δΦ ∼ G δM/R
stay constant because (in linear perturbation theory) δM and R both grow in proportion to a(t). In this case, a photon’s
gravitational energy shift depends only on the difference between the potential at its location in the last scattering surface
and its potential at earth. However, once curvature or dark energy becomes important, δM grows slower than a(t), potential
wells decay, and photon energies gain a contribution from an integral of the potential time derivative (Ψ̇ +Φ̇ in the notation
of Section 7.7) known as the Integrated Sachs–Wolfe (ISW) effect. Inmore detail, one should distinguish the early ISW effect,
associatedwith the transition from radiation tomatter domination, from the late ISWeffect, associatedwith the transition to
dark energy domination. The ISW effect depends on the history of dark energy, which determines the rate at which potential
wells decay. It can also test whether anisotropy is consistent with the GR prediction — in particular whether the Ψ and Φ
potentials are equal as expected.

As an observational probe, the ISW effect has two major shortcomings. First, it is significant only on large angular scales,
where cosmic variance severely and unavoidably limits measurement precision. (On scales much smaller than the horizon,
potential wells do not decay significantly in the time it takes a photon to cross them.) Second, even on these large scales

72 To give one example, the Shapiro delay of radio waves passing near the Sun, measured to agree with GR to five decimal places (Bertotti et al., 2003), is
reduced in theories of gravity that contain scalar fields, but the effect could be suppressed by scalar self-interaction in dense environments.
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the ISW contribution is small compared to primary CMB anisotropies. The second shortcoming can be partly addressed by
measuring the cross-correlation between the CMB and tracers of the foreground matter distribution, which separates the
ISW effect from anisotropies present at the last scattering surface. The initial searches, yielding upper limits on ΩΛ, were
carried out by cross-correlating COBE CMBmaps with the X-ray background (mostly from AGN, which trace the distribution
of their host galaxies) as measured by HEAO (Boughn et al., 1998; Boughn and Crittenden, 2004). The WMAP era, combined
with the availability of large optical galaxy samples with well-characterized redshift distributions, led to renewed interest
in ISW and to the first marginal-significance detections (Fosalba et al., 2003; Scranton et al., 2003; Afshordi et al., 2004;
Boughn and Crittenden, 2004; Fosalba and Gaztañaga, 2004; Nolta et al., 2004)

Realizing the cosmological potential of the ISWeffect requires cross-correlating the CMBwith large scale structure tracers
over a range of redshifts at the largest achievable scales, and properly treating the covariance arising from the redshift range
and sky coverage of each data set. Ho et al. (2008) used 2MASS objects (z < 0.2), photometrically selected SDSS LRGs
(0.2 < z < 0.6) and quasars (0.6 < z < 2.0), and NVSS radio galaxies, finding an overall detection significance of
3.7σ . Giannantonio et al. (2008) used a similar sample (but with a different SDSS galaxy and quasar selection, and with
the inclusion of the HEAO X-ray background maps) and found a 4.5σ detection of ISW. Both of these measurements are
consistent with the ‘‘standard’’ ΛCDM cosmology.73 Zhao et al. (2010) utilize the Giannantonio et al. (2008) measurement
in combination with other data to test for late-time transitions in the potentialsΦ and Ψ , finding consistency with GR.

Giannantonio et al. (2008) estimate that a cosmic variance limited experiment could achieve a 7–10σ ISW detection.
Because of the low S/N ratio, the ISW effect does not add usefully to the precision of parameter determinations within
standard dark energy models, but it could reveal signatures of non-standard models. Early dark energy – dynamically
significant at the redshift ofmatter–radiation equality – can produce observable CMB changes via the early ISWeffect (Doran
et al., 2007; de Putter et al., 2009 discuss the related problem of constraining early dark energy via CMB lensing). Perhaps the
most interesting application of ISW measurements is to constrain, or possibly reveal, inhomogeneities in the dark energy
density (see Section 2.2), which produce CMB anisotropies via ISW and are confined to large scales in any case (see de Putter
et al., 2010). However, it is not clear whether even exotic models can produce an ISW effect that is distinguishable from the
ΛCDM prediction at high significance. Measuring the ISW cross-correlation requires careful attention to angular selection
effects in the foreground catalogs, but these effects should be controllable, and independent tracers allow cross-checks of
results. Since the prediction of conventional dark energy models is robust compared to expected statistical errors, a clear
deviation from that prediction would be a surprise with important implications.

7.9. Cross-correlation of weak lensing and spectroscopic surveys

Our forecasts in Section 7.2 incorporate an ambitious Stage IV weak lensing program, and in Section 8.5.3 we consider
the impact of adding an independent measurement of f (z)σ8(z) from redshift-space distortions in a spectroscopic galaxy
survey, finding that a 1%–2%measurement can significantly improve constraints on the growth-rate parameter∆γ relative
to our fiducial program. However, some recent papers (Bernstein and Cai, 2011; Gaztañaga et al., 2012; Cai and Bernstein,
2012) suggest that a combined analysis of overlapping weak lensing and galaxy redshift surveys can yield much stronger
dark energy and growth constraints than an after-the-fact combination of independent WL and RSD measurements.

The analysis envisioned in these papers involves measurement of all cross-correlations among the WL shear fields (and
perhaps magnification fields) in tomographic bins, the angular clustering of galaxies in photo-z bins of the imaging survey,
and the redshift-space clustering of galaxies in redshift bins of the spectroscopic survey, as well as auto-correlations of
these fields. While the forecast gains emerge from detailed Fisher-matrix calculations, the essential physics (Bernstein and
Cai, 2011; Gaztañaga et al., 2012) appears to be absolute calibration of the bias factor of the spectroscopic galaxies via
their weak lensing of the photometric galaxies (galaxy–galaxy lensing, Section 5.2.6). This calibration breaks degeneracy
in the modeling of RSD, and it effectively translates the spectroscopic measurement of the galaxy power spectrum into a
normalizedmeasurement of thematter power spectrum.While the second technique can also be applied to galaxy clustering
in the photometric survey, using photo-z’s, the clustering measurement in a spectroscopic survey is much more precise
because there are more modes in 3-d than in 2-d. The cross-correlation approach is more powerful if the spectroscopic
survey includes galaxies with a wide range of bias factors (Mcdonald and Seljak, 2009), e.g., a mix of massive absorption-
line galaxies and lower mass emission-line galaxies.

These studies are still in an early phase, and it remains to be seen what gains can be realized in practice. The largest
synergistic impact arises when the WL and RSD surveys are comparably powerful in their individual measurements
of growth parameters (Cai and Bernstein, 2012). Stochasticity in the relation between the galaxy and mass density
fields depresses cross-correlations relative to auto-correlations, a potentially important theoretical systematic, though
stochasticity is expected to be small at large scales, and corrections can be computed with halo-based models that are
constrained by small and intermediate-scale clustering. Conversely, it may be possible to realize these gains even when the
weak lensing and spectroscopic surveys do not overlap, by calibrating the bias of a photometric sample that has the same
target selection criteria as the spectroscopic sample. Gaztañaga et al. (2012) also investigate the possibility of implementing
these techniques in a narrow-band imaging survey with large numbers of filters, which is effectively a low-resolution

73 The Ho et al. (2008) measurement is almost 2σ aboveΛCDM, but we attribute no special significance to this!
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spectroscopic survey. They find that most of the gains of a spectroscopic survey are achieved if the rms photo-z uncertainty
is∆z/(1 + z) . 0.0035, while larger uncertainties degrade the results.

7.10. Strong gravitational lenses

Strong gravitational lenses can be employed to measure expansion history in a variety of ways. One is to simply count
the number of lenses as a function of angular separation and (when available) redshift — the predicted counts depend
on dark energy because the probability of lensing goes up when path lengths are larger (Kochanek, 1996). This approach
requires a large sample of lenses with well understood statistical characteristics and selection biases. Observationally it is
a stiff challenge, but the more fundamental difficulty is that the predicted counts also depend on the evolution of the mass
distribution, in particular that of the early-type galaxies that dominate the lensing statistics. For example, Oguri et al. (2012)
derive constraints from a sample of 19 strong lenses found from 50,000+ source quasars in the SDSS, andwhile the analysis
yields a robust detection of dark energy, the cosmological parameter values are significantly degenerate with uncertainties
in the evolution of the galaxy velocity function. The latter can be addressed to some degree with measurements of galaxy
velocity dispersions, but even then one is left with uncertainty in the exact relation between the observable stellar velocity
dispersion and the potential well depth that is important for lensing. With a sufficiently large sample of lenses one can
‘‘self-calibrate’’ by using the full distribution as a function of angular separation and redshift, though one still relies on direct
galaxy counts for an overall normalization. While future imaging surveys will yield much larger samples of lens candidates
(which can then be confirmed spectroscopically), we suspect that the systematic uncertainties in interpreting lens counts
will be too large for this method to be competitive as a dark energy probe — rather, it will probe the dynamical history
of galaxy assembly. The number of giant cluster arcs as a function of curvature radius and redshift offers an alternative
form of the ‘‘lens counting’’ test that depends on both geometry and structure growth (e.g., Horesh et al., 2011), but one
must again understand the detailed mass assembly history of the central regions of massive halos to derive dark energy
constraints (Killedar et al., 2012).

A second approach is to use angular positions of multiple sources with different (known) redshifts to obtain distance
ratios, a strong-lensing version of the cosmography test discussed in Section 5.2.7. Clusters of galaxies are the best targets
for this approach, as they sometimes have large numbers of lensed sources (see Soucail et al., 2004 and Jullo et al., 2010
for representative observational applications). The difficulty is that the sources with different redshifts also probe different
locations in the lens potential, so to derive cosmological results one needs strong constraints on substructure in the lens
cluster and in the foreground and background mass distributions. Meneghetti et al. (2005) and D’Aloisio and Natarajan
(2011) discuss some of the theoretical issues in this approach and their implications for data requirements. Obtaining
strong cosmological constraints from cosmographic analysis of cluster lenses will be observationally demanding, and mass
modeling uncertainties may be a limiting systematic.

The most promising of the strong-lensing approaches uses time delay measurements, which attach an absolute scale
to the angular separations and redshifts measured for a gravitational lens. Predicted time delays scale as H−1

0 , and more
generally with the angular diameter distance relationDA(z). The critical systematic is again the uncertainty in the total mass
and mass distribution of the lens, which enters predictions of the angular positions and time delays. Given the observed
positions, a time-delay measurement determines a degenerate combination of the distance scale (H−1

0 ) and the surface
mass density of the lens within the Einstein radius (Kochanek et al., 2003), so a dynamical measurement, usually the stellar
velocity dispersion, is required to break the degeneracy and isolate the cosmological information. When the sources are
resolved (i.e., galaxies rather than AGN in the optical, or jets mapped with VLBI), or when the multiplicity of images is
unusually high, then reproducing the data places more stringent constraints on the mass distributions (e.g., Suyu et al.,
2012b). In the best cases, distance scale constraints at the ∼5% level, after marginalizing over uncertainties in the mass
distribution, are achievable for an individual lens (e.g., Suyu et al., 2010, 2012a). Careful measurements and modeling of a
number of well constrained lenses could lead to high aggregate precision, adding significant power to tests of dark energy
models (Coe and Moustakas, 2009; Linder, 2011). The critical question from the point of view of dark energy is whether the
massmodeling uncertainties are independent from system to system, so that the net uncertainty drops as 1/

√
N , or whether

global uncertainties in the approach tomassmodeling impose a systematic floor. The answer to this question should become
clearer as the current generation of cosmological time-delay analyses proceeds.

7.11. Galaxy ages

In principle the age of the universe is an observable that can probe cosmic expansion history. The integral that determines
age,

t(z) =


∞

z

dz ′

1 + z ′
H−1(z ′), (160)

is similar to the integral for comoving distance (Eq. (7)), except that it extends from z to ∞ instead of 0 to z. The conflict
between the ages of globular clusters and the value of t0 in a decelerating universewas one of the significant early arguments
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for cosmic acceleration, and a number of authors have employed ages of high-redshift galaxies or clusters of galaxies as a
constraint on dark energy models (e.g., Lima and Alcaniz, 2000; Jimenez et al., 2003; Capozziello et al., 2004).

Jimenez and Loeb (2002) proposed using differential ages of galaxies at different redshifts to measure, in effect, H(z).
Observational studies thus far have concentrated on the massive ellipticals, as these have the fewest complications (dust,
ongoing star formation). This differential approach removes some of the uncertainties in the population synthesis models,
but it relies on identifying a population of galaxies at one redshift that is just an aged version of a population at a higher
redshift, or accounting for the evolutionary corrections that arise frommergers, low-level star formation, and movement of
galaxies into or out of the passive population. The state-of-the art observational study is the analysis of ∼11,000 early-type
galaxies from several large surveys by Moresco et al. (2012). They report measurements of H(z) in eight bins out to z ≈ 1,
with uncertainties of∼5%–15%per bin including estimated systematic errors. At low (z < 0.3) redshift,Moresco et al. (2011)
analyzed a sample of 14,000 early type galaxies from the SDSS, obtainingH0 = 72.6±2.9 (stat)±2.3 (syst) km s−1 Mpc−1,
compatible with other estimates of H0 and competitive in precision. These papers provide extensive discussions of
systematic uncertainties and argue that they can be well controlled. Nonetheless, the reliance on population synthesis and
galaxy evolution models means that this method will face a stiff burden of proof if it finds a discrepancy with simple dark
energy models or other observational analyses, particularly if the differences are at the sub-percent level that is the target
of future dark energy experiments.

7.12. Redshift drift

The redshift of a comoving source changes as the universe expands. Sandage (1962) was the first to propose this ‘‘redshift
drift’’ as a cosmological test, but he noted that it appeared far beyond the capabilities of existing experimental techniques.
Loeb (1998) repopularized the idea, noting that high-resolution spectrographs on large telescopes could potentiallymeasure
the effect in absorption-line spectra of high-redshift quasars. Quercellini et al. (2012) provide an extensive review of the
redshift-drift method and other forms of ‘‘real-time cosmology’’ experiments. The expected change in redshift over a time
interval∆t , expressed as an apparent velocity shift, is

∆v ≡
c∆z
1 + z

= cH0∆t

1 −

H(z)/H0

1 + z


, (161)

which vanishes for a coasting universewithH(z)/H0 = (1+z)−1. For our fiducial cosmological model, the predicted change
over a ∆t = 10 year observational span is +1.32 cm s−1, −1.21 cm s−1, and −3.66 cm s−1 for sources at z = 2, 3, and 4,
respectively. Corasaniti et al. (2007) estimate that observations of 240 quasars over a span of 30 years using the CODEX
spectrograph proposed for the European Extremely Large Telescope could measure H(z) over z = 2–5 with an aggregate
precision of ≈2% (see Liske and Codex Team, 2006 and Balbi and Quercellini, 2007 for similar discussions and Liske et al.,
2008 for detailed calculations of CODEX performance). The BAO component of the fiducial Stage IV program that we present
in Section 8.1 (which assumes 25% sky coverage and errors that are 1.8 times those of linear theory sample variance) yields
errors of 0.6%–0.7% in H(z) per bin of 0.07 in ln(1 + z) at z = 2–3 (see Table 6). The fiducial BAO program would thus be
much more powerful than the redshift-drift approach, but it is not yet clear that high-redshift BAO surveys of this volume
will prove practical.

7.13. Alternative methods: summary

Of the methods described in this section, redshift-space distortion is the one that seems almost guaranteed to have a
broad-ranging impact in future studies of cosmic acceleration. Because of its direct sensitivity to f (z) and its use of non-
relativistic tracers, RSD is a valuable complement to weak lensing and clusters as a probe of structure growth. The redshift
surveys ongoing or planned for BAO measurements will automatically enable RSD measurements with high statistical
precision over a significant range in redshift. The primary systematics for RSD are associated with theoretical modeling
uncertainties, and these are likely to diminish with time as more sophisticated techniques are developed, numerical
simulations become more powerful, and galaxy clustering measurements provide more detailed tests of the models. The
AP method may also amplify the return from BAO redshift surveys, perhaps by a large factor, depending on the success of
modeling non-linear velocity distortions.

The z = 0 Hubble constant is only a single number, but it is an important one, as it determines the current critical
density and the current expansion rate, with the maximal leverage against the CMB at z ≈ 1100. Ongoing technical
developments seem to offer a realistic path to achieving H0 measurements with 1%–2% uncertainty, tight enough to make
significant contributions to dark energy constraints even in the era of Stage IV experiments. JWST and Gaia represent
dramatic improvements in technological capabilities for H0 studies, perhaps allowing progress to the sub-percent level.

The impact of the other methods discussed here is more difficult to predict. In some cases, interesting results at the few-
percent level are already in hand but it is still too early to saywhether the limiting systematics can be reduced to the percent
or sub-percent level required for long-term progress. In other cases, such as precision gravity tests, there are clear paths to
radically improved measurements, but these will provide useful clues or tests only for a limited class of cosmic acceleration
models.
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The one method that looks like it could ultimately outperform even Stage IV experiments is that of standard sirens
applied to compact star binaries (Section 7.5), because of the opportunity to measure hundreds of thousands of distances by
a technique that has no obvious limiting systematics. This approach requires extraordinary technological advances, which
are unlikely to be achieved in the next decade, and perhaps not in the next two decades. However, themost precisemapping
of the expansion history of the universe might ultimately come from spacetime ripples rather than electromagnetic waves.

8. A balanced program on cosmic acceleration

Having discussed many observational methods individually, we now turn to what we might hope to learn from them
in concert. To the extent that this report has an underlying editorial theme, it is the value of a balanced observational pro-
gram that pursues multiple techniques at comparable levels of precision. In our view, there is much more to be gained by
doing a good job on three or four methods than by doing amaximal job on one at the expense of the others. This is not a ‘‘try
everything’’ philosophy—moving forward fromwherewe are today, an observationalmethod is interesting only if it has rea-
sonable prospects of achieving percent- or sub-percent-level errors, both statistical and systematic, on observables such as
H(z), D(z), and G(z). The successes of cosmic acceleration studies to date have raised the field’s entry bar impressively high.

A balanced strategy is important both for cross-checking of systematics and for taking advantage of complementary
information. Regarding systematics, the next generation of cosmic acceleration experiments seek much higher precision
than those carried out to date, so the risk of being limited or biased by systematic errors is much higher. Most methods
allow internal checks for systematics – e.g., comparing distinct populations of SNe,measuring angular dependence and tracer
dependence of BAO signals, testing for B-modes and redshift-scaling of WL – but conclusions about cosmic acceleration will
be far more convincing if they are reached independently bymethods with different systematic uncertainties. Twomethods
only provide a useful cross-check of systematics if they have comparable statistical precision; otherwise a result found only
in the more sensitive method cannot be checked by the less sensitive method.

Regarding information content, we have already emphasized the complementarity of SN and BAO as distance determi-
nationmethods. SN have unbeatable statistical power at z . 0.6, while BAO surveys thatmap a large fraction of the skywith
adequate sampling can achieve higher precision at z & 0.8. Overlapping SN and BAO measurements provide independent
physical information because the former measure relative distances and the latter absolute distances (h−1 Mpc vs. Mpc),
and the value of h is itself a powerful dark energy diagnostic in the context of CMB constraints (see Section 7.1 and Sec-
tion 8.5.1). WL, clusters, and redshift-space distortions provide independent constraints on expansion history, at levels that
can be competitive with SN and BAO, and they provide sensitivity to structure growth. Without structure probes, we would
have little hope of clues that might locate the origin of acceleration in the gravitational sector rather than the stress–energy
sector, and we would, more generally, reduce the odds of ‘‘surprises’’ that might push us beyond our current theories of
cosmic acceleration.

The primary purpose of this section is to present quantitative forecasts for a program of Stage IV dark energy experiments
and to investigate how the forecast constraints depend on the performance of the individual components of such a program.
Our forecasts are analogous to those of the DETF (Albrecht et al., 2006), updated with a more focused idea of what a Stage
IV programmight look like, and updated in light of subsequent work on parameterized models and figures of merit for dark
energy experiments,most directly that of the JDEM Figure-of-Merit ScienceWorkingGroup (FoMSWG;Albrecht et al., 2009).
In Section 8.1 we summarize our assumptions about the fiducial program. In Section 8.2 we describe the methodology of
our forecasts, in particular the construction of Fisher matrices for the fiducial program. In Section 8.3 we present results for
the fiducial program and for variants in which one or more components of this program are made significantly better or
worse. We also compare these results to forecasts of a ‘‘Stage III’’ program represented by experiments now underway or
nearing their first observations.

We have elected to focus on SN, BAO, and WL as the components of these forecasts, for two reasons. First, it is more
straightforward (though still not easy) to define the expected statistical and systematic errors for thesemethods than for oth-
ers. Second, the most promising alternative methods – clusters, redshift-space distortions, and the Alcock–Paczynski effect
– will be enabled by the same data sets obtained forWL and BAO studies. It is therefore reasonable to view these as auxiliary
methods that may improve the return from these data sets (perhaps by substantial factors) rather than as drivers for the ob-
servational programs themselves. In Sections 8.4 and 8.5we present forecasts for howwell the fiducial CMB+SN+BAO+WL
programs predict the observables of these and other alternativemethods, providing a target for howwell theymust perform
to add new information beyond that in our primary probes. In some cases we find that plausible levels of performance could
substantially improve tests of cosmic acceleration models. In Section 8.6 we focus on the precision with which our fiducial
programmeasures fundamental observables, andwe discuss aggregate precision as a useful, nearlymodel-independentway
of characterizing the power of an experiment and the level of systematics control required to realize it. Section 8.7 provides
a high-level summary, discussing the potential yield from programs that combine CMB, SN, BAO, and WL measurements
with additional constraints from clusters, redshift-space distortions, and direct H0 determinations.

8.1. A fiducial program

As discussed in Section 1.3, Astro2010 and the European Astronet report have placed high priority on ground- and space-
based dark energy experiments. The Stage III experiments currently underway will already allow much stronger tests of
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cosmic acceleration models, and Stage IV facilities built over the next decade should advance the field much further still.
Our Stage IV program corresponds roughly to the goals recommended by the Cosmology and Fundamental Physics panel
report of Astro2010.

For SN studies, we anticipate that Stage IV efforts will be limited not by statistical errors but by systematics associated
with photometric calibration, dust extinction, and evolution of the SN population. For our fiducial program, we assume that
SN surveys will achieve net errors (statistical + systematic) of 0.01 mag for the mean distance modulus in each of three
redshift bins of width∆z = 0.2 extending from z = 0.2 to a maximum redshift zmax = 0.8 (see discussion in Section 3.4).
We also assume the existence of a local SN sample at z = 0.05 with the same 0.01 mag net error. High quality observations
could yield a smaller systematic error in the local sample, but we suspect that the most challenging systematic for this
local calibration will be transferring it to the more distant bins. We treat the bin-to-bin errors as uncorrelated, though
this is clearly an approximation to systematic errors that are correlated at nearby redshifts and gradually decorrelate as
one considers differing redshift ranges and observed-frame wavelengths. Even with 0.15 mag errors per SN, achieving this
level of statistical error requires only 225 SNe per bin, and we expect that the error per SN can be reduced by working at
red/IR wavelengths and by selecting sub-populations based on host galaxy type, spectral properties, and light curve shape.
For purely ground-based efforts, we consider our 0.01 mag floor for systematic errors to be somewhat optimistic, given
the challenges of dust extinction corrections and photometric calibration. However, a space-based program at rest-frame
near-IR wavelengths, enabled by WFIRST, could plausibly achieve better than 0.01 mag systematics. We suspect that it will
be hard to push calibration and evolution systematics below 0.005 mag even with WFIRST, and pushing statistical errors
below this level begins to place severe demands on spectroscopic capabilities, unless purely photometric information can
be used to identify populations with scatter below 0.1 mag per SN. We also consider the impact of increasing zmax beyond
0.8, thoughwe argue that this is beneficial mainly when one is hitting a systematics floor at lower z and high-z observations
have uncorrelated systematics.

For BAO, the primary metric of statistical constraining power is the total comoving volume mapped spectroscopically
with a sampling density high enough to keep shot-noise sub-dominant. There are several projects in the planning stages
that could map significant fractions of the comoving volume available out to z ≈ 3. These include the near-IR spectroscopic
components of Euclid and WFIRST, ground-based optical facilities such as BigBOSS, DEspec, and SuMIRe PFS, and radio
intensity-mapping experiments (see Section 4.7). For our fiducial program, we assume that these projects will collectively
map 25% of the comoving volume out to z = 3, with errors a factor of 1.8 larger than the linear theory sample variance
errors.74 We specifically assume full redshift coverage from z = 0–3 with fsky = 25% sky fraction, but other combinations
of redshift coverage and fsky that have the same total comoving volume yield similar results. The factor 1.8 accounts for
imperfect sampling (hence non-negligible shot-noise) and for non-linear degradation of the BAO signal. It approximates the
effects of sampling with nP = 2 and using reconstruction (Section 4.3.3) to remove 50% but not 100% of the non-linear
Lagrangian displacement of tracers. We implicitly assume that theoretical systematics associated with location of the BAO
peak will remain below this level, an assumption we consider reasonable but not incontrovertible based on the discussion
in Section 4.5.

For WL, the primary metric of statistical constraining power is the total number of galaxies that have well measured
shapes and good enough photometric redshifts to allow accurate model predictions and removal of intrinsic alignment
systematics. For our fiducial case, we assume a survey of 104 deg2 achieving an effective surface density of 23 galaxies per
arcmin2 with zmed = 0.84, corresponding to IAB < 25 and reff > 0.25′′. The effective galaxy number is 8.3×108. Euclidplans a
14,000 deg2 imaging survey and can likely achieve this surface density or slightly higher. LSST will survey a still larger area,
and it might or might not achieve this effective surface density, depending on how low a value of reff/rPSF it can work to
before shape measurements are systematics dominated. The WFIRST design reference mission (Green et al., 2012; DRM1)
would achieve neff ≈ 40 arcmin−2 but would only image 3400 deg2 in its 2.4-year high-latitude survey, thus measuring
about 4.8 × 108 galaxy shapes. An extended WFIRST mission, or an implementation ofWFIRST using one of the NRO 2.4-m
telescopes (Dressler et al., 2012), could potentially reach 104 deg2. Even individually, therefore, any one of these projects
may well exceed the number of shape measurements assumed in our fiducial program, and collectively they will almost
certainly do so. We compute constraints from cosmic shear in 14 bins of photometric redshift and from the shear-ratio test
described in Section 5.2.7, but we do not incorporate higher order lensing statistics or galaxy-shear cross-correlations. We
include information up to multipole lmax = 3000, beyond which statistical power becomes limited at this surface density
and systematic uncertainties associated with non-linear evolution and baryonic effects become significant.

Forecasting the systematic uncertainties in Stage IV WL experiments is very much a shot in the dark. Systematic errors
are already comparable to statistical errors in surveys of 100 deg2, so lowering them to the level of statistical errors in a
104 deg2 survey that has higher galaxy surface density requiresmore than anorder ofmagnitude improvement.We therefore
consider a ‘‘fiducial’’ and an ‘‘optimistic’’ case forWL systematics. For the fiducial case,we incorporate (andmarginalize over)
aggregate uncertainties of 2 × 10−3 in shear calibration and 2 × 10−3 in the mean photo-z, with errors in each redshift bin
larger by

√
14 but uncorrelated across bins. We also incorporate intrinsic alignment uncertainty as described by Albrecht

et al. (2009, Section 2h of Appendix A), which includes marginalization over both GI and II components (see Section 5.6.1).
For our ‘‘optimistic’’ case we adopt no specific form of the systematic errors but simply assume that they will double the

74 This is equivalent to assuming linear theory sample variance over a fractional volume 25%/1.82
= 7.7%.
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statistical errors throughout. At an order of magnitude level, we can see that the optimistic case corresponds to a global
fractional error σ ∼ 2N−1/2

mode ∼ 2f −1/2
sky l−1

max = 1.3 × 10−3, significantly lower than the fiducial case assumption of 2 × 10−3

errors for shear and photo-z calibration (which, roughly speaking, combine in quadrature tomake a 2.8×10−3 multiplicative
uncertainty). However, at scales and redshifts where the statistical errors are large, multiplying them by two can be a larger
change than adding the shear-calibration and photo-z systematics. As a result, there will be some measures (e.g., the error
onΩk) for which our ‘‘optimistic’’ program performs slightly worse than our fiducial program. Of course, WL experiments
that achieved the statistical limits of several ×109 source galaxies – possible in principle – would be several times more
powerful than even our optimistic scenario.

8.2. Forecasting constraints

The fiducial program outlined above provides a baseline for evaluating improvement in the determination of the cos-
mological parameters relative to current constraints. We use a Fisher matrix analysis to quantify this improvement and to
study the complementarity of the main probes of cosmic acceleration. Since our knowledge of the exact design of future
surveys and the systematic errors they will face is inherently imperfect, we also consider the effect of varying the precision
of each technique in our forecasts, including both pessimistic and optimistic cases for SN, BAO, and WL data.

Quantifying the impact of each probe on our understanding of cosmic acceleration requires metrics for evaluating
progress. The precision with which the dark energy equation of state (and its possible time dependence) can be measured
is a common choice; while not the only quantity of interest, it is clearly a central piece of the puzzle. One of the main
quantities we use below is the DETF figure of merit defined in Eq. (26), FoM = [σ(wp)σ (wa)]

−1. The FoM indicates how
well an experiment determines the dark energy equation of state parameter and its derivative dw/da at the pivot redshift
zp, and it thereby indicates the ability to detect deviations from the standard ΛCDM model with wp = −1 and wa = 0.
When one considers experiments of increasing power, σ(wp) and σ(wa) tend to shrink in concert, so the DETF FoM scales
roughly as an inverse variance and therefore increases linearly with data volume when statistical errors dominate. If the
error of every individual measurement (e.g., each DL or H(z)measurement) goes down by

√
2, then the FoM doubles.

While the DETF FoM is relatively simple to evaluate for a particular experiment, it omitsmuch of the information thatwill
be available from future experiments, including some potentially important clues to the nature of cosmic acceleration. For
example, the true dark energy dynamics may be considerablymore complicated thanwhat the two-parameter linear model
can accommodate, so that constraints onw0 andwa may yield incomplete ormisleading results. Additionally, the equation of
state alone is insufficient to describe the full range of possible alternatives to the standard cosmological model. For example,
modified gravity theories can mimic the effect of any particular equation of state evolution on the Hubble expansion rate
and the distance–redshift relation while altering the rate of growth of large-scale structure (e.g., Lue et al., 2004; Song
et al., 2007). Including such possibilities requires extra parameters that describe changes in the growth history that are
independent of equation of state variations, as discussed in Section 2.2. Other standard parameters of the cosmological
model, such as the spatial curvature and the Hubble constant, are important due to degeneracies with the effects of cosmic
acceleration that can limit the precision of constraints on the dark energy equation of state.

To include more general variations of the equation of state as well as altered growth of structure from modifications
to GR on large scales, we adopt the JDEM FoMSWG parameterization (Albrecht et al., 2009). The equation of state in this
parameterization is allowed to vary independently in each of 36 bins of width ∆a = 0.025 extending from the present to
a = 0.1 (z = 9). Specifically, the equation of state has a constant value of wi at (1 − 0.025i) < a < [1 − 0.025(i − 1)],
for i = 1, . . . , 36. At earlier times, the equation of state is assumed to be w = −1, although the impact of this assumption
is typically quite small since dark energy accounts for a negligible fraction of the total density at z > 9 in most models.
Modifications to the linear growth function of GR GGR(z) are included through the parameters G9 and ∆γ as defined in
Eqs. (44) and (45). These parameters describe the change relative to GR in the normalization of the growth of structure
at z = 9 and in the growth rate at z < 9, respectively. Adding these to the binned wi values and the standard ΛCDM
parameters, the full set is

p = (w1, . . . , w36, lnG9,∆γ ,Ωmh2,Ωbh2,Ωkh2,Ωφh2, ln As, ns,∆M), (162)

where the primordial amplitude As is defined at k = 0.05 Mpc−1. ∆M is an overall offset in the absolute magnitude scale
of Type Ia supernovae. The Hubble constant is determined by these parameters through h2

= Ωmh2
+ Ωkh2

+ Ωφh2. We
compute our forecasts at the fiducial parameter values chosen by the FoMSWG to match CMB constraints from the 5-year
release of WMAP data (Komatsu et al., 2009); these are listed in Table 5. These parameters are similar but not identical to
those of themodel used in Section 2 (Table 1), which is based onWMAP7. Note that spatially flatΛCDM and GR are assumed
for the fiducial model.

We use a Fisher matrix analysis to estimate the constraints on these parameters from the fiducial program defined in
Section 8.1 and its variations. The Fisher matrix for each experiment consists of a model of the covariance matrix for the
observable quantities and derivatives of these quantities with respect to the parameters.We compute the latter numerically
with finite differences and confirm the results using analytic expressions when possible.

We model SN data as measurements of the average SN magnitude in each of several redshift bins and in a low-redshift
calibration sample. While our fiducial case assumes that the net magnitude error is uncorrelated from one bin to the next,
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Table 5
Fiducial model for forecasts.

w1 . . . w36 lnG9 ∆γ Ωmh2 Ωbh2 Ωkh2 Ωφh2 ln As ns ∆M

−1 . . . −1 0 0 0.1326 0.0227 0 0.3844 −19.9628 0.963 0

we also consider the impact of including a correlated component of the error by defining the SN covariance matrix as

CSN
αβ =

σ
2
m,u δαβ , α = 1 or β = 1,

σ 2
m,u


0.2
∆z


δαβ + σ 2

m,c exp


−
|zα − zβ |
∆zc


, α > 1 and β > 1,

(163)

where ∆z is the bin width, σm,u is the uncorrelated error in a bin of width ∆z = 0.2 (or in the local sample at redshift z1),

σm,c is the correlated error with correlation length ∆zc , and the net error in each bin zα (α > 1) is σm =


σ 2
m,u + σ 2

m,c . In
general these errors are redshift dependent, but here we assume that they are constant for simplicity. We do not consider
possible correlations between the local SN sample and the high-redshift bins. For the fiducial forecasts we take σm,c = 0, so
the covariance matrix is diagonal. The SN Fisher matrix is then computed as a sum over redshift bins

F SN
ij =


α,β

∂m(zα)
∂pi

(CSN
αβ)

−1 ∂m(zβ)
∂pj

, (164)

wherem(zα) = 5 log[H0⟨DL(zα)⟩]+M is the average magnitude in the bin and the derivatives are taken with respect to the
parameters of Eq. (162).

For BAO we divide the observed volume into bins of equal width in ln(1 + z), assumed to be uncorrelated, and compute
the Fisher matrix

FBAO
ij =


µ,ν,α

∂rµ(zα)
∂pi

[CBAO
µν (zα)]

−1 ∂rν(zα)
∂pj

, (165)

where the measurement vector r(zα) ≡ {D(zα)/rs,H(zα)rs}, the sum is over µ, ν = 1, 2 and α = 1, . . . ,Nbin, and rs is the
sound horizon at recombination (see Section 2.3), for which we use the fitting formula from Hu (2005),

rs ≈ (144.4 Mpc)

Ωmh2

0.14

−0.252 
Ωbh2

0.024

−0.083

. (166)

We estimate the covariance matrix in each redshift bin using the BAO forecast code by Seo and Eisenstein (2007), which
provides estimates of the fractional error on distance and the Hubble expansion rate at each redshift (relative to rs),

σln(D/rs) =


CBAO
11 /(D/rs) and σln(Hrs) =


CBAO
22 /(Hrs), respectively, as well as the cross correlation r = CBAO

12 /


CBAO
11 CBAO

22 .
For our default forecasts, we start with the linear theory cosmic variance predictions, corresponding to the limit of perfect
sampling of the density field within the observed volume and no degradation of the signal due to non-linear effects. To
approximate the effects of finite sampling and non-linearity, we increase these errors by a factor of 1.8 for our fiducial
forecasts, which leads to parameter constraints comparable to what would be expected with sampling nP = 2 and
reconstruction that halves the effects of non-linear evolution. In Table 6 we list the volume for fsky = 0.25 and fiducial
BAO covariance matrix elements for 20 redshift slices from 0 ≤ z ≤ 3. The results we obtain are only weakly dependent on
the number of redshift bins chosen to divide up the total volume.

The WL Fisher matrix is based on the methodology described by Albrecht et al. (2009), where the explicit formulas
are given. It includes both power spectrum tomography and cross-correlation cosmography (redshift scaling of the
galaxy–galaxy lensing signal), but makes no assumption about the galaxy bias. The galaxies are sliced into Nz = 14 redshift
bins and we consider power spectra in Nℓ = 18 bins logarithmically spaced over 10 < ℓ < 104. We consider all power
spectra and cross-spectra of the galaxies gi and the E-mode shear γ E

i . This leads to 2Nz scalar fields on the sky, and hence
N2pt = 2Nz(2Nz + 1)/2 × Nℓ bins in the power spectrum matrix.75 The length N2pt vector C of power spectra incorporates
all 2-point information.

Our task is now to construct a model both for C and for its covariance matrixΣ , and then to construct the Fisher matrix
for parameters p:

Fij =
∂CT

∂pi
Σ−1 ∂C

∂pj
, (167)

75 Since we neglect magnification bias, some of these spectra, e.g. the correlation of high-redshift galaxies with low-redshift shear, are zero for all
cosmological models.
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Table 6
BAO errors for the fiducial program.

zmin zmax V [(Gpc/h)3] σln(D/rs) [%] σln(Hrs) [%]

0.000 0.072 0.010 13.386 21.881
0.072 0.149 0.075 4.895 8.002
0.149 0.231 0.217 2.873 4.697
0.231 0.320 0.449 1.997 3.265
0.320 0.414 0.781 1.515 2.476
0.414 0.516 1.218 1.213 1.983
0.516 0.625 1.761 1.009 1.649
0.625 0.741 2.407 0.863 1.410
0.741 0.866 3.148 0.754 1.233
0.866 1.000 3.970 0.672 1.098
1.000 1.144 4.860 0.607 0.992
1.144 1.297 5.799 0.556 0.909
1.297 1.462 6.770 0.514 0.841
1.462 1.639 7.758 0.481 0.785
1.639 1.828 8.745 0.453 0.740
1.828 2.031 9.718 0.429 0.702
2.031 2.249 10.664 0.410 0.670
2.249 2.482 11.576 0.393 0.643
2.482 2.732 12.443 0.379 0.620
2.732 3.000 13.261 0.368 0.601

Column 3 gives the volume of the redshift slice for fsky = 0.25.
In all redshift slices, errors on D/rs and Hrs are correlated with
correlation coefficient r = 0.409.

where T denotes a matrix transpose. Systematic errors may be incorporated as either nuisance parameters p (marginalized
over some prior) or as additional contributions toΣ:

Σij → Σij + σ 2
ϖ

∂Ci

∂ϖ

∂Cj

∂ϖ
, (168)

whereϖ is the amplitude of some systematic and σϖ is the amount over which it is marginalized.
We incorporate inΣ the following contributions:

• The Gaussian covariance matrix.
• The 1-halo contribution to the shear 4-point function, given by Eq. (A9) of Albrecht et al. (2009).
• Galaxy bias and stochasticity, fully marginalized76 in each bin of ℓ and z.
• The II intrinsic alignment term, obtained by fully marginalizing out the shear auto-correlations in each redshift slice.
• The GI intrinsic alignment term. It is assumed that Eq. (139) will allow estimation of Peδ(k) and removal of this term in

the linear and weakly non-linear regimes (taken to be ℓ < 102.5). At smaller scales, we impose a weak prior that the GI
not exceed present upper limits. This is implemented as

σ [Peδ(k)]
Pδ(k)

= 0.003

Nℓ,nonlin(Nz − 1), (169)

where the square root is introduced to prevent many bins from being used to ‘‘average down’’ this systematic (Albrecht
et al., 2009).

The photometric redshift errors (one bias parameter for each bin) and shear calibration errors (also one bias parameter for
each bin) are treated as nuisance parameters in the parameter vector p and are marginalized out before combining with
other cosmological probes.

The forecasts for the main SN, BAO, and WL probes are supplemented by the expected constraints from upcoming CMB
measurements providedby the Planck satellite.Weadopt the Fishermatrix FCMB constructedby the FoMSWG,which includes
cosmological constraints from the 70, 100, and 143 GHz channels of Planck with fsky = 0.7, assuming that data collected
at other frequencies will be used for foreground removal. The noise level and beam size for each channel comes from the
Planck Blue Book (Planck Collaboration, 2006). Information from secondary anisotropies of the CMB is not included in this
Fisher matrix; in particular, constraints from the ISW effect (Section 7.8) are removed by requiring the angular diameter
distance to the CMB to be matched exactly, as described in Albrecht et al. (2009). Additionally, the large-scale (ℓ < 30)
polarization angular power spectrum and temperature–polarization cross power spectrum, which mainly contribute to
constraints on the optical depth to reionization τ , are excluded from the forecast and replaced by aGaussian priorwithwidth
στ = 0.01. This prior accounts for uncertainty in τ due to limited knowledge of the redshift dependence of reionization,
which is not included in the simplest models of the CMB anisotropies. Although τ does not appear in the parameter set for

76 i.e. with sufficiently wide prior that no significant information remains.
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the Fisher matrices, marginalization over τ in the CMB constraints contributes to the uncertainty on the primordial power
spectrum amplitude As, which in turn affects predictions for the growth of large-scale structure.

Combined constraints on cosmological parameters are obtained simply by adding the Fisher matrices of the individual
probes, i.e. F = FSN + FBAO + FWL

+ FCMB. Then the forecast for the parameter covariance is C = F−1, and in particular the
uncertainty on a given parameter pi after marginalizing over the error on all other parameters is


[F−1]ii.

Computing the Fisher matrix in the FoMSWG parameter space with a large number of independent bins for w(z) gives
us the flexibility to project these forecasts onto a number of simpler parameterizations, including thew0–wa model for the
purposes of computing the FoM. To change from the original parameter set p to some new set q, we compute

F̃kl =


i,j

∂pi
∂qk

Fij
∂pj
∂ql
, (170)

which gives the Fisher matrix F̃ for the new parameterization. In particular, projection from bins wi to w0 and wa involves
the derivatives ∂wi/∂w0 = 1 and ∂wi/∂wa = z/(1 + z). We also compute the pivot redshift zp and the uncertainty in
the equation of state at that redshift, wp. Given the 2 × 2 covariance matrix Cij for w0 and wa (marginalized over the other
parameters), the pivot values are computed as (Albrecht et al., 2009)

zp = −
C12

C12 + C22
, (171)

σwp = C11 −
C2
12

C22
,

where the first index corresponds tow0 and the second towa.
One drawback to the w0–wa parameterization is that constraints on w(z) at high redshift are coupled to those at low

redshift by the form of the model; for example, if observations determine the value of the equation of state perfectly at
z = 0 and at z = 0.1, then it is completely determined at high redshift even in the absence of high redshift data. To
specifically address questions related to the ability of dark energy probes to constrain dark energy at low redshift vs. high
redshift, we define an alternative but equally simple parameterization in which w(z) takes constant, independent values
in each of two bins at z ≤ 1 and z > 1. The projection onto this parameterization using Eq. (170) requires the derivatives
∂wi/∂w(z ≤ 1) = Θ(1 − zi) and ∂wi/∂w(z > 1) = 1 − Θ(1 − zi), where Θ(x) is the Heaviside step function equal to 0
for x < 0 and 1 for x ≥ 0.

Principal components (PCs) of the dark energy equation of state provide another way to determine which features of
the equation of state evolution are best constrained by a given combination of experiments (Huterer and Starkman, 2003;
Hu, 2002a; Huterer and Cooray, 2005; Wang and Tegmark, 2005; Dick et al., 2006; Simpson and Bridle, 2006; de Putter
and Linder, 2008; Tang et al., 2011; Crittenden et al., 2009; Mortonson et al., 2009b; Kitching and Amara, 2009; Maturi and
Mignone, 2009). We compute the PCs for each forecast case by taking the total Fisher matrix for the original parameter set
(Eq. (162)) and marginalizing over all parameters other than the 36 binned values of wi. If we call the Fisher matrix for the
wi parameters Fw , then the PCs are found by diagonalizing Fw:

Fw = Q3QT , (172)

where Q is an orthogonal matrix whose columns are eigenvectors of Fw and 3 is a diagonal matrix containing the
corresponding eigenvalues of Fw . Up to an arbitrary normalization factor, the eigenvectors are equal to the PC functions
ei = (ei(z1), ei(z2), . . .) which describe how the binned values of w(z) are weighted with redshift. Here we adopt the
normalization of Albrecht et al. (2009),

36
k=1

ei(zk)ej(zk) =

36
k=1

ek(zi)ek(zj) = (∆a)−1δij, (173)

where ∆a = 0.025 is the bin width; for i = j this condition approximately corresponds to
 1
0.1 da[ei(a)]

2
= 1. With this

convention, the columns ofQ are (∆a)1/2 ei. The PCs rotate the original set of parameters to a set of PC amplitudesQT (1+w)
with elements

βi = (∆a)1/2
36
j=1

ei(zj)(1 + wj). (174)

Combining Eqs. (173) and (174), we can constructw(z) in each redshift bin from a given set of PC amplitudes as

wi = −1 +

36
j=1

αjej(zi), (175)
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Table 7
Key to forecast variations.

Any × 4 Quadruple fiducial errors (divide Fisher matrix by 16)
Any × 2 Double fiducial errors (divide Fisher matrix by 4)
Any/2 Halve fiducial errors (multiply Fisher matrix by 4)

SN-III Stage III-like SN: total magnitude error of 0.02 per∆z = 0.2 bin
over 0.2 ≤ z ≤ 0.8 and in local sample at z = 0.05

SNzmax Increase max. redshift to zmax = 1.6 (7 bins with∆z = 0.2 and 0.01 mag. error)
SN−local Omit local sample at z = 0.05
SNcx Correlated errors: σm,u = σm,c = 0.007,∆zc = 0.2, with x bins over

0.2 ≤ z ≤ 0.8

BAO-III Stage III-like BAO, approximating forecasts for BOSS LRGs+HETDEX:
(D/rs,Hrs) errors of (1.0%, 1.8%) at z = 0.35, (1.0%, 1.7%) at z = 0.6,
and (0.8%, 0.8%) at z = 2.4. These are ‘‘BAO only’’ forecasts for BOSS
and ‘‘full power spectrum’’ forecasts for HETDEX

BAOzmax Reduce maximum redshift to zmax = 2 (20 bins), retaining fsky = 0.25

WL-opt ‘‘Optimistic’’ Stage IV case (total error = 2× statistical)
WL-III Stage III-like WL, approximating forecasts for DES: 5000 deg2 and

neff = 9 arcmin−2

CMB-W9 Fisher matrix forecast for 9-year WMAP data

where αi ≡ (∆a)1/2βi. The accuracy with which the αi can be determined from the data is given by the eigenvalues of Fw ,
σi ≡ σαi = (∆a/Λii)

1/2, and the PCs are numbered in order of increasing variance (i.e. σi+1 > σi).
For constraints that aremarginalized over thewi parameters, we impose aweak prior onwi as suggested by Albrecht et al.

(2009) to reduce the dependence of forecasts for∆γ on the poorly-constrained high redshiftwi values, since arbitrarily large
fluctuations inw(z) can alter the high redshift growth rate. We include a weak Gaussian prior with width σwi = ∆w/

√
∆a

by adding to the total Fisher matrix

Fprior
ij =


σ−2
wi
δij, i ≤ 36,
0, i > 36,

(176)

assuming that the parameters are ordered as in Eq. (162) with p1 = w1, p2 = w2, etc. For most forecasts, we use a default
prior width of∆w = 10 (σwi ≈ 63), which approximately corresponds to requiring that the average value of |1 + w| in all
bins does not exceed 10. In the next sectionwe also consider how constraints on certain parameters changewith a narrower
prior of ∆w = 1. For priors wider than the default choice, the Fisher matrix computations are subject to numerical effects
arising from the use of a finite number ofwi bins to approximate continuous variations inw(z), so we do not present results
with weaker priors than ∆w = 10. Note that the construction of PCs of w(z) as described above does not include such a
prior onwi.

8.3. Results: forecasts for the fiducial program and variations

8.3.1. Constraints in simplew(z)models
We begin with forecasts for which the 36w(z) bins are projected onto the simplerw0–wa parameter space. Tables 7–10

give the forecast 1σ uncertainties for the fiducial program and numerous variations. Each forecast case is labeled by a list
of the Fisher matrices that are added together, and the basic variations we consider are simple rescalings of the total errors
for each probe; for example, [SN/2, BAO×4, WL-opt, CMB] includes the fiducial SN data with the total error halved (i.e. the
Fisher matrix multiplied by 4), 4 times the fiducial BAO errors, the optimistic version of the WL forecast, and the fiducial
Planck CMB Fisher matrix. Note that /2 denotes amore powerful program and ×2 denotes a less powerful program. The key
in Table 7 describes other types of variations of the fiducial probes. In some cases we omit a probe entirely, e.g. [SN, BAO,
WL] sums the fiducial Fisher matrices of the three main probes but does not include the Planck CMB priors. Note that even
thoughwe assume a specific systematic error component in computing certain Fishermatrices (in particular, FWL), the cases
with rescaled errors simply multiply each Fisher matrix by a constant factor and thus do not distinguish between statistical
and systematic contributions to the total error.

Constraints on the equation of state are given in Tables 8–10 by the DETF FoM and the error on wp. The rule of thumb
that σwa ≡ (FoM × σwp)

−1
≈ 10σwp holds at the ∼30% level for most of the forecast variations we consider — i.e., at the

best-constrained redshift, the value of w is typically determined a factor of ten better than the value of its derivative. The
forecast tables also list the uncertainty in the high redshift equation of statew(z > 1) for the alternative parameterization
wherew(z) takes independent, constant values at z ≤ 1 and z > 1. Note that all of thesew(z) constraints are marginalized
over uncertainties in G9 and∆γ , so they do not assume that structure growth follows the GR prediction.

For the fiducial program outlined in Section 8.1, the DETF FoM is projected to be around 600–800, depending onwhether
the WL forecast uses the default systematic error model or the optimistic model. This is roughly an order of magnitude
larger than the FoM forecast for a combination of Stage III experiments (e.g. see Table 9, rows 2–3) and nearly two orders
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Table 8
Forecast uncertainties for variations of the fiducial program.

Forecast case zp σwp FoM σw(z>1) 103 σΩk 102 σh σ∆γ σlnG9

1 [SN, BAO, WL, CMB] 0.46 0.014 664 0.051 0.55 0.51 0.034 0.015
2 [SN, BAO, WL-opt, CMB] 0.39 0.013 789 0.049 0.64 0.42 0.026 0.016

3 [BAO, WL, CMB] 0.63 0.017 321 0.054 0.56 0.99 0.034 0.015
4 [SN-III, BAO, WL, CMB] 0.57 0.016 433 0.053 0.56 0.75 0.034 0.015
5 [SN×4, BAO, WL, CMB] 0.61 0.017 353 0.054 0.56 0.91 0.034 0.015
6 [SN×2, BAO, WL, CMB] 0.57 0.016 433 0.053 0.56 0.75 0.034 0.015
7 [SN/2, BAO, WL, CMB] 0.32 0.010 1197 0.049 0.55 0.32 0.034 0.015
8 [SNzmax , BAO, WL, CMB] 0.42 0.011 841 0.050 0.55 0.40 0.034 0.015
9 [SN−local, BAO, WL, CMB] 0.59 0.016 376 0.053 0.56 0.85 0.034 0.015

10 [SNc3, BAO, WL, CMB] 0.46 0.014 652 0.051 0.55 0.51 0.034 0.015
11 [SNc6, BAO, WL, CMB] 0.46 0.014 663 0.051 0.55 0.51 0.034 0.015
12 [SNc12, BAO, WL, CMB] 0.46 0.014 667 0.051 0.55 0.50 0.034 0.015

13 [SN, WL, CMB] 0.26 0.022 152 0.321 2.13 0.72 0.038 0.022
14 [SN, BAO-III, WL, CMB] 0.32 0.019 299 0.120 1.19 0.57 0.035 0.017
15 [SN, BAO×4, WL, CMB] 0.30 0.020 245 0.145 1.16 0.65 0.036 0.018
16 [SN, BAO×2, WL, CMB] 0.36 0.018 380 0.087 0.76 0.58 0.035 0.016
17 [SN, BAO/2, WL, CMB] 0.50 0.010 1222 0.033 0.47 0.39 0.034 0.014
18 [SN, BAOzmax , WL, CMB] 0.42 0.014 547 0.071 0.66 0.52 0.034 0.015

19 [SN, BAO, CMB] 0.41 0.016 539 0.059 0.78 0.53 – –
20 [SN, BAO, WL-III, CMB] 0.41 0.016 543 0.058 0.77 0.52 0.145 0.048
21 [SN, BAO, WL×4, CMB] 0.42 0.016 553 0.057 0.75 0.53 0.126 0.031
22 [SN, BAO, WL×2, CMB] 0.43 0.015 587 0.055 0.68 0.52 0.065 0.020
23 [SN, BAO, WL/2, CMB] 0.48 0.012 815 0.047 0.45 0.47 0.018 0.012
24 [SN, BAO, WL-opt×4, CMB] 0.41 0.016 556 0.058 0.76 0.52 0.085 0.022
25 [SN, BAO, WL-opt×2, CMB] 0.41 0.015 606 0.055 0.73 0.49 0.045 0.018
26 [SN, BAO, WL-opt/2, CMB] 0.37 0.009 1397 0.040 0.52 0.30 0.017 0.013

27 [SN, BAO, WL] 0.31 0.020 368 0.075 7.82 1.48 0.037 6.697
28 [SN, BAO, WL, CMB-W9] 0.43 0.015 592 0.055 1.07 0.53 0.036 0.019

Forecasts in this table vary the assumptions about a single probe at a time from the fiducial program. With the
exception ofw(z > 1), aw0–wa model for the dark energy equation of state is assumed for all parameter uncertainties
here and in Tables 9 and 10. All forecasts allow for deviations from GR parameterized by∆γ and G9 .

Table 9
Forecast uncertainties for variations of the fiducial program (continued).

Forecast case zp σwp FoM σw(z>1) 103 σΩk 102 σh σ∆γ σlnG9

1 [SN, BAO, WL, CMB] 0.46 0.014 664 0.051 0.55 0.51 0.034 0.015

2 [SN-III, BAO-III, WL-III, CMB] 0.42 0.032 131 0.137 1.36 0.96 0.147 0.051
3 [SN-III, BAO-III, WL-III, CMB-W9] 0.33 0.039 92 0.174 2.41 1.01 0.148 0.064
4 [SN×4, BAO×4, WL×4, CMB] 0.51 0.048 52 0.179 1.32 1.98 0.128 0.033
5 [SN×2, BAO×2, WL×2, CMB] 0.49 0.026 188 0.095 0.85 1.00 0.065 0.021
6 [SN/2, BAO/2, WL/2, CMB] 0.43 0.007 2439 0.027 0.34 0.26 0.018 0.011
7 [SN/2, BAO/2, WL-opt, CMB] 0.34 0.008 1832 0.035 0.55 0.26 0.023 0.014

8 [SN-III, BAO-III, WL, CMB] 0.44 0.026 169 0.126 1.20 0.89 0.035 0.017
9 [SN×4, BAO×4, WL, CMB] 0.50 0.034 85 0.157 1.18 1.49 0.037 0.019

10 [SN×4, BAO×2, WL, CMB] 0.57 0.026 153 0.093 0.77 1.28 0.035 0.016
11 [SN×4, BAO/2, WL, CMB] 0.57 0.011 891 0.033 0.47 0.53 0.034 0.014
12 [SN×2, BAO×4, WL, CMB] 0.41 0.029 132 0.151 1.17 1.01 0.037 0.018
13 [SN×2, BAO×2, WL, CMB] 0.49 0.023 218 0.090 0.76 0.92 0.035 0.016
14 [SN×2, BAO/2, WL, CMB] 0.55 0.011 966 0.033 0.47 0.49 0.034 0.014
15 [SN/2, BAO×4, WL, CMB] 0.25 0.012 499 0.142 1.15 0.47 0.036 0.017
16 [SN/2, BAO×2, WL, CMB] 0.27 0.011 735 0.084 0.76 0.39 0.035 0.016
17 [SN/2, BAO/2, WL, CMB] 0.38 0.008 1921 0.032 0.47 0.27 0.034 0.014
18 [SNzmax , BAOzmax , WL, CMB] 0.40 0.012 694 0.069 0.66 0.42 0.034 0.015

Same as Table 8, but varying two or three probes at a time from the fiducial specifications.

of magnitude larger than current, ‘‘Stage II’’ FoM values (∼10). The equation of state in thew0–wa parameterization is best
measured by the fiducial set of Stage IV experiments at a redshift zp ≈ 0.5 with a 1σ precision of σwp ≈ 0.014, and the time
variation ofw(z) is determined to within σwa ≈ 0.11. The fiducial program also yields impressive constraints of 5.5× 10−4

on Ωk and 0.51 km s−1 Mpc−1 on H0. Forecast 1σ errors for the modified gravity parameters are 0.034 on ∆γ and 0.015
on lnG9. We caution, however, that theΩk, H0, and G9 errors (but not the∆γ error) are sensitive to our assumption of the
w0–wa parameterization (see Figs. 36–40). CMB constraints make a critical contribution – the FoM drops from 664 to 368 if
they are omitted entirely (Table 8, line 27) – but the difference between Planck precision and anticipatedWMAP9 precision
is modest (line 28) except forΩk, where it is a factor of two.
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Table 10
Forecast uncertainties for variations of the fiducial program (continued).

Forecast case zp σwp FoM σw(z>1) 103 σΩk 102 σh σ∆γ σlnG9

1 [SN, BAO, WL, CMB] 0.46 0.014 664 0.051 0.55 0.51 0.034 0.015

2 [SN, BAO-III, WL-III, CMB] 0.29 0.022 239 0.129 1.35 0.59 0.147 0.051
3 [SN, BAO×4, WL×4, CMB] 0.28 0.022 185 0.165 1.30 0.77 0.128 0.033
4 [SN, BAO×4, WL×2, CMB] 0.28 0.021 200 0.159 1.26 0.73 0.067 0.023
5 [SN, BAO×4, WL/2, CMB] 0.35 0.016 373 0.115 0.98 0.54 0.020 0.014
6 [SN, BAO×4, WL-opt,

CMB]
0.29 0.015 361 0.102 1.21 0.57 0.042 0.020

7 [SN, BAO×2, WL×4, CMB] 0.34 0.019 328 0.092 0.90 0.62 0.127 0.031
8 [SN, BAO×2, WL×2, CMB] 0.35 0.019 340 0.090 0.85 0.61 0.065 0.021
9 [SN, BAO×2, WL/2, CMB] 0.40 0.015 502 0.078 0.67 0.51 0.019 0.013

10 [SN, BAO×2, WL-opt,
CMB]

0.33 0.014 506 0.072 0.83 0.49 0.033 0.017

11 [SN, BAO/2, WL×4, CMB] 0.43 0.012 926 0.041 0.65 0.40 0.126 0.031
12 [SN, BAO/2, WL×2, CMB] 0.45 0.011 1010 0.038 0.59 0.40 0.064 0.020
13 [SN, BAO/2, WL/2, CMB] 0.54 0.008 1585 0.028 0.34 0.38 0.018 0.012
14 [SN, BAO/2, WL-opt, CMB] 0.43 0.010 1251 0.035 0.55 0.35 0.023 0.015

15 [SN-III, BAO, WL-III, CMB] 0.54 0.019 346 0.060 0.77 0.79 0.146 0.048
16 [SN×4, BAO, WL×4, CMB] 0.60 0.020 277 0.060 0.75 0.99 0.126 0.031
17 [SN×4, BAO, WL×2, CMB] 0.60 0.019 298 0.058 0.68 0.97 0.065 0.020
18 [SN×4, BAO, WL/2, CMB] 0.59 0.014 486 0.049 0.45 0.75 0.018 0.012
19 [SN×4, BAO, WL-opt,

CMB]
0.47 0.014 568 0.049 0.64 0.56 0.026 0.016

20 [SN×2, BAO, WL×4, CMB] 0.54 0.019 351 0.059 0.75 0.79 0.126 0.031
21 [SN×2, BAO, WL×2, CMB] 0.55 0.018 375 0.057 0.68 0.78 0.065 0.020
22 [SN×2, BAO, WL/2, CMB] 0.56 0.013 567 0.048 0.45 0.65 0.018 0.012
23 [SN×2, BAO, WL-opt,

CMB]
0.45 0.014 619 0.049 0.64 0.52 0.026 0.016

24 [SN/2, BAO, WL×4, CMB] 0.28 0.011 998 0.056 0.74 0.33 0.126 0.031
25 [SN/2, BAO, WL×2, CMB] 0.30 0.011 1061 0.053 0.67 0.33 0.065 0.020
26 [SN/2, BAO, WL/2, CMB] 0.35 0.009 1430 0.045 0.44 0.30 0.018 0.012
27 [SN/2, BAO, WL-opt, CMB] 0.30 0.010 1242 0.049 0.64 0.30 0.026 0.015

Continuation of Table 9.

Fig. 33 illustrates the key results of our forecasting investigation, highlighting many aspects of the interplay among the
three observational probes. In the upper left panel, the solid curve shows how the FoM changes as the total SN errors vary
from four times fiducial to half fiducial, keeping the other probes (BAO, WL, and CMB) fixed at their fiducial levels. Other
curves show the effect of doubling WL or BAO errors or switching to the optimistic WL forecast. The lower panels show
analogous results from varying the BAO orWL errors, while the upper right panel shows the effect of changing themaximum
redshift of the SN program. Over the range of variations plotted in Fig. 33, the FoM varies from just over 100 to almost 1400.

The scaling of the FoM with the forecast errors is not uniform among the three main probes. Starting from the fiducial
program, the effect of doubling or halving errors is greater for BAO than for SN, and greater for SN than for WL. This scaling
implies that BAOdata provide the greatest leverage in these forecasts. However, the hierarchy of the three probes is sensitive
to the assumptions about each experiment; in particular, assuming the optimistic version of WL errors promotes WL from
having the least leverage on the FoM to having the most leverage. More generally, the fact that varying the errors of any
individual probe changes the FoM noticeably demonstrates the complementarity of the methods.

Unlike many previous FoM forecasts, we marginalize over the structure growth parameters ∆γ and lnG9, which tends
to increase the uncertainties on w0 and wa. In most cases, the difference between the marginalized constraints and ones
obtained under the assumption of GR (∆γ = lnG9 = 0) is small, but the difference is greater if WL contributes significantly
to expansion history constraints; for example, for the fiducial program, the change in the FoM due to assuming GR is only
664 → 771, whereas with the WL-opt forecast the change is 789 → 1119.

The local calibrator sample plays an important role in the SN constraints. Omitting themeasurement at z = 0.05 reduces
the FoM from 664 → 376 (Table 8, line 9). Even replacing it with ameasurement over a broad low-redshift bin 0 < z < 0.2,
still with an error of 0.01 mag, reduces the FoM from 664 → 533 because it increases degeneracy between the supernova
absolute magnitude scale and dark energy parameters. Reducing the redshift of the calibrator sample below 0.05 makes
little further difference, and at lower redshifts peculiar velocity uncertainties may become too large to remove with high
precision. It is also interesting to ask whether it is better to go after SNe at high redshifts or to focus on reducing the errors
on SN data at low redshifts. Comparing the upper panels of Fig. 33, we find that the benefit from reducing errors is typically
greater than that from obtaining SNe beyond z ∼ 1, at least for the FoM. For example, reducing the error per redshift bin
from 0.01mag (the fiducial value) to 0.005mag raises the FoM by a factor of 1.80, but increasing themaximum redshift from
0.8 to 1.6 raises the FoM by only 1.27 (see Table 8). If BAO errors are doubled, the FoM drops substantially, but SN errors still
have much greater leverage than SN maximum redshift.
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Fig. 33. The DETF FoM, (σwpσwa )
−1 , for the fiducial program and simple variants. In each panel, the open circle marks the FoM of the fiducial program.

In the upper left panel, the other points along the solid curve show the effect of scaling the error on the SN measurements by factors of 2 or 4 while
keeping errors for other probes fixed at their fiducial values. Dotted, short-dashed, and long-dashed curves show the effect of, respectively, doubling the
BAO errors, doubling theWL errors, or adopting the optimistic WL forecasts in which systematic errors are simply twice the statistical errors. Other panels
show analogous results, but instead of scaling the total SN error they scale the total BAO error (lower left), the totalWL error (lower right), or themaximum
redshift of the SN constraints (upper right). In each panel, the dashed gray line marks the forecast performance of Stage III probes (including Planck) with
FoM = 131.

The weak dependence of w(z) constraints on the maximum SN redshift extends to other parameters as well. Fig. 34
compares the effect on 1σ errors of varying the maximum SN redshift to that of varying the maximum BAO redshift. For the
w0–wa model, the errors on all parameters are relatively insensitive to changes in the maximum SN redshift at z & 1, but
the errors onwa andΩk decrease by a factor of a few as themaximum BAO redshift increases from z = 1 to z = 3. Likewise,
the high redshift equation of statew(z > 1) can be determinedmuchmore precisely as BAO data extend to higher redshifts,
but it depends little on themaximum SN redshift. For the fiducial Stage IV forecasts, only the Hubble constant error depends
significantly on the depth of SNobservations (assuming aw0–wa model).More pessimistic assumptions about the achievable
BAO errors enhance the importance of high redshift SNe for determining wp (dotted line in Fig. 34), but the dependence of
other parameters on zmax for the SN data remains weak.

In practice, the impact of the maximum SN redshift on dark energy constraints will depend crucially on the behavior of
systematic errors. We have assumed in our forecasts here that the error per redshift bin stays constant as the maximum
SN redshift increases, but in reality higher redshift SNe are likely to have larger systematic errors associated with them,
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Fig. 34. Variation of 1σ parameter errors with themaximum redshift for BAO at fixed fsky (left) or for SNwith fixed error per∆z = 0.2 redshift bin (right).
For the solid curves, fiducial Stage IV forecasts are assumed for all other probes. The dotted curve in the right panel shows the scaling of σ(wp) with SN
zmax assuming 4 times larger BAO errors (BAO × 4). The plotted errors assume aw0–wa parameterization (except forw(z > 1)).

which would diminish the gains from high redshift SNe even more than indicated by the flattening of curves in Fig. 33.
However, once the systematic errors at z < 0.8 are saturated, then pushing to higher redshift may be the only way to
continue improving the SN constraints. The gain from the higher redshift SNe then depends onwhether their systematics are
uncorrelated with those at lower redshift, so that they indeed provide new information. While there has been considerable
recent progress in understanding and accounting of systematic errors in SN cosmology, there has been little exploration
to date of the correlation of systematics across redshift bins. The correlation of systematics may vary with details of
experimental design (e.g., flux calibration), and it also depends on aspects of the Type Ia supernova population that are, as yet,
poorly understood (e.g., whether there is a mix of single-degenerate and double-degenerate progenitors that changes with
redshift). To optimize a specific experiment, one must assess both the expected behavior of systematics and the observing
time required to discover SNe at different redshifts and to measure them with adequate photometric and spectroscopic
precision. The SDT report for WFIRST (Green et al., 2012) provides a worked example: with a two-tier strategy (shallow
wide fields and narrow deep fields), the CMB+SN FoM increases steadily as the maximum redshift is increased from 0.8 to
1.7 at (roughly) fixed observing time, assuming systematics that are uncorrelated among redshift bins. However, reducing
the systematics by a factor of two (from ≈0.02 mag per ∆z = 0.1 bin to ≈0.01 mag) has a larger impact than raising zmax
from 0.8 to 1.7. The contrast is less stark than in our Fig. 33 because the reduction in total error is less than a factor of two;
with the smaller systematic errors, theWFIRST DRM1 SN survey would be mainly statistics limited.

The behavior in Fig. 33 can be approximately understood in terms of the aggregate measurement precision, a notion
we discuss at greater length in Section 8.6 below. The local (z = 0.05) SN bin serves mainly to calibrate the SN absolute
magnitude, so in our fiducial program there are three ∆z = 0.2 redshift bins with cosmological information. Increasing
zmax to 1.6 changes the number of non-local bins from three to seven, improving aggregate precision by ∼

√
7/3, and the

impact on the FoM is roughly half the impact of reducing errors by a factor of two while retaining zmax = 0.8. If we increase
zmax to 1.6 but simultaneously inflate the errors of the non-local bins by

√
7/3, thus keeping the aggregate precision of the

z > 0.1measurements fixed, then the FoM rises to 749, a 13% improvement over the fiducial case, vs. a 26% improvement if
we increase zmax to 1.6 at constant per-bin error. In this sense, roughly half of the improvement when extending the redshift
limit comes from tightening the aggregate statistical precision by adding new bins, and half the improvement comes from
the greater leverage afforded by a wider redshift range. A similar calculation for zmax = 1.2 (where the corresponding
FoM improvements over the fiducial case are 9% and 17%) leads to the same conclusion. Ultimately, however, the trade
between extending the redshift range of a SN survey vs. improving the observations at lower redshift depends on aspects of
observational and evolutionary systematics that are still poorly understood. This remains an important issue for near-term
investigation with the much more comprehensive data sets that are now becoming available.

8.3.2. Constraints on structure growth parameters
While the DETF FoM is a useful metric for studying the impact of variations in each of the dark energy probes, it does

not tell the whole story. Deviations from the standard model might show up in other sectors of the parameter space; for
example, a detection of non-GR values for the growth parameters∆γ and G9 could point to a modified gravity explanation
for cosmic acceleration thatwould not be evident frommeasurements ofw(z) alone. Thus, even the less optimistic version of
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Fig. 35. FoM scaling with BAO errors (left) and WL errors (right) including changes in the error on ∆γ , normalized to the forecast uncertainty for the
fiducial program, σ fid

∆γ = 0.034. The fiducial Stage IV forecast is marked by an open circle. For the Stage III forecast, FoM×(σ fid
∆γ /σ∆γ ) = 30.

theWL experiment, which adds relatively little to thew(z) constraints obtained by the combination of fiducial SN, BAO, and
CMB forecasts, is a critical component of a program to study cosmic acceleration because of its unique role in determining
the growth parameters∆γ and G9.

The impact of various experiments on the structure growth parameters is more evident if we extend the DETF FoM to
include ∆γ in addition to w0 and wa. As shown in Fig. 35, the scaling of this new FoM with respect to WL errors (and, to a
lesser extent, BAO errors) is much steeper than it is for the usual FoM (Fig. 33). We do not show the scaling with SN errors or
zmax, since those assumptions do not affect the expected uncertainties for∆γ andG9 (see Table 8, lines 3–12). One could also
consider versions of the FoM that include uncertainties in G9 and that account for the correlations between the structure
growth parameters and the dark energy equation of state.

The complementarity between the SN, BAO, and WL techniques is further demonstrated in Figs. 36–38, which show
the forecast 68% confidence level contours in the w0.5–wa and∆γ –lnG9 planes after marginalizing over other parameters.
Instead of w0 we plot w0.5, the equation-of-state parameter at z = 0.5, because it is much less correlated with wa for
most of the forecast scenarios. In every panel, the blue ellipse shows the error contour of the fiducial forecast while other
ellipses show the effect of varying the errors of the indicated method. The opposite orientation of ellipses in Figs. 36 and 37
demonstrates the complementary sensitivity of SN and BAO tow(z): the SN data aremainly sensitive to the equation of state
at low redshift,whereas BAOdatameasure the equation of state at higher redshift. However, the sensitivity to the beyond-GR
growth parameters comes entirely fromWL data, which provide the only direct measurements of growth, and the strength
of the∆γ and G9 constraints depends directly on the WL errors, as shown in Fig. 38. Conversely, these constraints are very
weakly sensitive to the SN or BAO errors (Figs. 36 and 37), showing that the uncertainties are dominated by the growth
measurements themselves rather than residual uncertainty in the expansion history. Inspection of Table 8 shows that the
∆γ constraints are essentially linear in the WL errors, while the lnG9 constraints scale more slowly.

Although thew0–wa parameterization is flexible enough to describe awide variety of expansion histories, it is too simple
to account for all possibilities; in particular, w(z) is restricted to functions that are smooth and monotonic over the entire
history of the universe. Because many cosmological parameters are partially degenerate with the dark energy evolution,
assumptions about the functional form of w(z) can strongly affect the precision of constraints on other parameters. As an
example of this model dependence, the right panels of Figs. 36–38 show how the constraints on the growth parameters
weaken (dashed curves) if one allows the 36 binnedwi values to vary independently instead of assuming that they conform
to thew0–wa model. While∆γ forecasts are only mildly affected by the choice of dark energy modeling, constraints on the
z = 9 normalization parameter G9 depend strongly on the form ofw(z). This dependence follows from the absence of data
probing redshifts 3 . z < 9 in the fiducial Stage IV program. In thew0–wa model, dark energy evolution is well determined
even at high redshifts, since the two parameters of the model can be measured from data at z < 3, and thus the growth
function at z = 9 is closely tied to the low redshift growth of structure measured by WL. However, allowing w(z) to vary
independently at high redshift where it is unconstrained by data decouples the low and high redshift growth histories, and
therefore G9 can no longer be determined precisely. In fact, the constraints on G9 in that case depend greatly on the chosen
prior onwi (taken to be the default prior of σwi = 10/

√
∆a in Figs. 36–38). One important consequence of this dependence

on the w(z) model is that an apparent breakdown of GR via G9 ≠ 1 might instead be a sign that the chosen dark energy
parameterization is too restrictive.



212 D.H. Weinberg et al. / Physics Reports 530 (2013) 87–255

Fig. 36. Forecast constraints (68% confidence levels) for dark energy and growth parameters, varying errors on SN data: fiducial×4 (red),× 2 (green),× 1
(blue), and /2 (black). In all cases, the fiducial forecasts are used for the other probes (BAO,WL, CMB). Contours in the left panel use the value of the equation
of state at z = 0.5 (close to the typical pivot redshift), w0.5 = w0 + wa/3. Dashed contours in the right panel show the errors on growth parameters for
the binned w(z) parameterization, with the default priors corresponding to deviations of .10 in the average value of w. Solid contours assume a w0–wa
parameterization. In both cases, the G9 and ∆γ constraints are essentially independent of the SN errors. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 37. Same as Fig. 36, but varying BAO errors from fiducial × 4 (red) to fiducial/2 (black). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

8.3.3. Dependence on thew(z)model and binning of data
Other parameters are also affected to varying degrees by the choice of w(z) model and the priors on the model

parameters. Fig. 39 shows how errors onΩk and h are affected by relaxing assumptions about dark energy evolution. For the
fiducial programandminor variants,Ωk is veryweakly correlatedwithw0 andwa, resulting in similar errors on curvature for
thew0–wa andΛCDM models. However, generalizing the dark energy parameterization to include independent variations
in 36 redshift bins can degrade the precision ofΩk measurements by an order of magnitude or more. In that case, the error
onΩk is very sensitive to the chosen prior on the value of wi in each bin, and it improves little as the BAO errors decrease.
This dependence on priors reflects the fact that curvature is most correlated with the highest redshift wi values, which are
poorly constrained by the fiducial combination of data. Relative to curvature, constraints on theHubble constant are affected
more by the choice of dark energy parameterization but less by priors onwi in the binnedw(z)model.

Fig. 40 shows the dependence of σh on the precision of SN data for various dark energy parameterizations (σΩk is nearly
independent of the SN errors for this range of variations around the fiducial forecast; see Table 8). If we assume a w0–wa
model for dark energy, Hubble constant errors strongly depend on the precision of SN data. However, Fig. 40 shows that
either decreasing or increasing the number of dark energy parameters can almost completely eliminate the dependence of
σh on the SN data. In the case of the simpler ΛCDM model, the combination of the fiducial BAO, WL, and CMB forecasts is
sufficient to precisely determine all of the model parameters, and adding information from SN data has a negligible effect
on the parameter errors. Adding w0 and wa to the model introduces degeneracies between these dark energy parameters
and other parameters, including h. Since constraints from SN data help to break these degeneracies, reducing SN errors can
significantly improve measurement of the Hubble constant in thew0–wa model.
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Fig. 38. Same as Fig. 36, but varying WL errors from fiducial × 4 (red) to fiducial/2 (black). Lower panels assume the optimistic WL forecasts. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 39. Dependence of σΩk (left) and σh (right) on BAO errors for various dark energy parameterizations and priors. For thewi curves, the equation of state
varies independently in 36 bins with Gaussian priors of width σwi = ∆w/

√
∆a. The fiducial versions of the Stage IV SN, WL, and CMB data are included in

all cases.

As one continues to add more dark energy parameters to the model, the degeneracies between these parameters and h
increase, but another effect arises that diminishes the impact of SN data on σh. Measurement of the Hubble constant requires
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Fig. 40. Dependence of σh on SN errors for various dark energy parameterizations and priors, including the fiducial BAO, WL, and CMB forecasts.

relating observed quantities at z > 0 (e.g. SN distances) to the expansion rate at z = 0. In the case ofΛCDM or the w0–wa
model, the assumed dark energy evolution is simple enough that this relation between z = 0 and low-redshift observations
is largely set by the model. However, when we specifyw(z) by a large number of independent bins in redshift, this relation
must instead be determined by the data. Since SN data are only sensitive to relative changes in distances, the lowest-redshift
wi value (centered at z ≈ 0.01) is strongly degenerate with h (Mortonson et al., 2009a). This degeneracy is partially broken
by the local SN sample at z = 0.05: removing it from the forecasts increases the error on h from 0.44 to 0.48 in the binned
w(z) parameterization, and from 0.0051 to 0.0085 in the w0–wa model. SNe at even lower redshifts are more sensitive to
the Hubble constant, but they also have larger systematic uncertainties due to peculiar velocities.

For BAO data, the choice of redshift bin width affects forecasts for models with general equation-of-state variations.
Measurements of H(z) and D(z) in narrower bins are better able to constrain rapid changes in w(z). They can also reduce
uncertainty in the Hubble constant by about a factor of two, and in other parameters such asΩK , lnG9, and∆γ by a smaller
amount, relative to measurements in wide bins. However, in practice one cannot reduce the bin size indefinitely, since each
bin must contain enough objects to be able to robustly identify and locate the BAO peak; for example, requiring that the bin
be at least wide enough to contain pairs of objects separated by ∼100h−1 Mpc along the line of sight sets a lower limit of
∆z/(1+ z) & 0.03. We do not attempt to optimize the choice of bins for the simplified forecasts in this section, but we note
that binning schemes in analyses of BAO data aimed at constraining general w(z) variations should be chosen with care to
avoid losing information about dark energy evolution and other parameters. Similar concerns are likely to apply forWL data
as well.

8.3.4. Constraints onw(z) in the general model
So far, in the context of general dark energy evolution we have only considered the forecast errors on parameters such as

h andΩK that are partially degenerate withw(z). But how accurately canw(z) itself bemeasured whenwe do not restrict it
to specific functional forms? Since the errors onwi values in different bins are typically strongly correlated with each other,
it is not very useful to simply give the expectedwi errors, marginalized over all other parameters. Instead, we can consider
combinations of thewi that are independent of one another and ask how well each of these combinations can be measured
by the fiducial program of observations.

As mentioned in Section 2.2, many methods for combining w(z) bins into independent (or nearly independent)
components have been proposed. Here we adopt the principal component (PC) decomposition of the dark energy equation
of state. Starting from the Fisher matrix for the combined acceleration probes, the PCs are computed by first marginalizing
the Fisher matrix over everything except for the wi parameters and then diagonalizing the remaining matrix, as described
above in Section 8.2. The shapes of the three best-measured PCs for the fiducial program (with both fiducial and optimistic
WL assumptions) and some simple variations are plotted in Fig. 41. In general, the structure of the PCs is similar in all
cases; for example, the combination of wi that is most tightly constrained is typically a single, broad peak at z < 1, while
the next best-determined combination is the difference between w(z ∼ 0.1) and w(z ∼ 1). However, variations in the
forecast assumptions slightly alter the shape of each PC and, in particular, shift the redshifts at which features in the PC
shapes appear. Changes in the location of the peak in the first PC mirror the dependence of the pivot redshift zp for the
w0–wa model in Tables 8–10, with improved SN data decreasing the peak redshift and improved BAO data increasing it.
The direction and magnitude of these shifts reflects the redshift range that a particular probe is most sensitive to and the
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Fig. 41. The three best-measured PCs for the fiducial program (solid curves) and fromprogramswith SN, BAO, orWL errors halved (as labeled). The top row
uses the fiducial version of the WL forecast, while the bottom row uses the optimistic WL forecast with reduced systematic errors. Although not indicated
in the plot legends, all forecasts here include the default Planck CMB Fisher matrix. For all PCs shown here, ei(z) is nearly zero for 3 < z < 9.

Table 11
Errors on PC amplitudes for the fiducial program.

i σ fid
i σ

opt
i i σ fid

i σ
opt
i i σ fid

i σ
opt
i i σ fid

i σ
opt
i

1 0.011 0.009 10 0.135 0.102 19 0.442 0.378 28 1.652 1.810
2 0.017 0.014 11 0.143 0.116 20 0.779 0.413 29 2.285 2.217
3 0.026 0.019 12 0.168 0.137 21 0.824 0.436 30 3.243 2.973
4 0.038 0.026 13 0.180 0.150 22 0.939 0.531 31 6.540 6.785
5 0.052 0.036 14 0.185 0.160 23 0.978 0.609 32 12.43 19.20
6 0.067 0.047 15 0.216 0.179 24 1.212 0.725 33 16.59 24.78
7 0.083 0.062 16 0.252 0.240 25 1.307 0.892 34 25.17 46.41
8 0.099 0.074 17 0.310 0.244 26 1.457 1.036 35 59.32 94.09
9 0.115 0.089 18 0.323 0.308 27 1.587 1.561 36 74.12 118.0

σ fid
i refers to errors for the fiducial Stage IV program (CMB+SN+BAO+WL) and σ opt

i to the optimistic
WL case (CMB+SN+BAO+WL-opt).

degree to which that probe contributes to the total constraints onw(z). Note that so far we have only considered the impact
of forecast assumptions on the functional form of PCs, and not on the precision with which each PC can be measured. In
general, altering the forecast model changes both the PC shapes and PC errors, which complicates the comparison among
expected PC constraints from different sets of forecasts.

Comparing the top and bottom rows of panels in Fig. 41, we see again the contrast between the fiducial WL forecast and
the ‘‘WL-opt’’ forecast with reduced systematic errors. In the former case, decreasing WL errors by a factor of two has a
negligible effect on the PC shapes relative to similar reductions in SN or BAO errors. However, when we take WL-opt as the
baseline forecast the PCs depend more on the precision of WL measurements and less on that of the SN or BAO data.

The full set of PCs for the fiducial program is shown in Fig. 42, and the forecast errors on the PC amplitudes are listed in
Table 11. The best-measured, lowest-variance PCs vary smoothly with redshift, corresponding to averagingw(z) over fairly
broad ranges in z. There is a clear trend of increasingly high frequency oscillations for higher PCs. Visual inspection of Fig. 42
shows that the sum of the number of peaks and the number of troughs in the PC is equal to the index of the PC, a pattern
that continues at least up to PC 13. Higher PCs often change sign between adjacent z bins. High frequency oscillations in
w(z) are poorly measured by any combination of cosmological data because the evolution of the dark energy density, which
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Fig. 42. PCs for the fiducial program (solid curves). Dotted curves double the number of bins used for BAO data from the default choice of 20 to 40.

determines H(z), depends on an integral ofw(z) (Eq. (22)), and D(z) and G(z) depend (approximately) on integrals of H(z).
Rapid oscillations inw(z) tend to cancel out in these integrals. Many of themost poorly-measured PCs depend on the chosen
BAO binning scheme, since narrower BAO bins can better sample rapid changes in w(z). As an example, we show how the
PCs of the fiducial program are affected by doubling the number of BAO bins in Fig. 42.

The maximum redshift probed by SN, BAO, andWL data, primarily set by the highest-redshift BAO constraint at z = 3 in
our forecasts, imprints a clear signature in the set of PCs in Fig. 42. At high redshift, specifically z > 3 (a < 0.25), the first 29
PCs have almost noweight. Conversely, PCs 30 and 32–36 only vary significantly at high redshift and are nearly flat for z < 3;
additionally, the errors on these PCs are many times larger than those of the first 29 PCs.77 Thus,w(z) variations above and
below z = 3 are almost completely decoupled from each other in the fiducial forecasts, and the high-redshift variations are
effectively unconstrained. CMB data limit the equation of state at z > 3 to some extent, for example, through comparison
of the measured distance to the last scattering surface with the distance to z = 3 measured in BAO data. However, such
constraints are very weak when split among several independent w(z) bins at high redshift. Furthermore, since the dark
energy density typically falls rapidly with increasing redshift, variations in w(z) at high redshift are intrinsically less able
to affect observable quantities than low-redshift variations, resulting in reduced sensitivity to the high-redshift equation
of state even in the presence of strong constraints at earlier epochs. Likewise, variations inw(z) at even higher redshifts of
z > 9, where we assume thatw is fixed to −1, are unlikely to significantly affect constraints onw(z) at low redshift.78

77 Note that our wi parameterization has exactly (0.25–0.1)/0.025 = 6 bins at 3 < z < 9 and 30 bins at z < 3. PC 31 parameterizes variations in the
lowest redshift binw1 , which is poorly constrained as discussed in Section 8.3.3.
78 This partly depends on the choice of fiducial model at which the Fisher matrix used to construct the PCs is computed. Taking a fiducial model with a
larger dark energy density at high redshift than inΛCDMmakes the low-redshift PC shapesmore sensitive to assumptions about the high-redshift equation
of state (e.g., de Putter and Linder, 2008).
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Fig. 43. Ratios of inverse variances of PC amplitudes for variants of the fiducial program to the fiducial inverse variances (points and solid curves). Each
variant divides SN, BAO, or WL errors by a factor of 2 while keeping other probes fixed at the fiducial errors. The left panel assumes the default WL forecast
and the right panel assumes the optimistic version. Dotted curves in the left panel use σ̂i instead of σi , which describes how well the amplitudes of the
fiducial set of PCs are expected to be measured by some variant of the fiducial forecast.

Fig. 43 shows how the inverse variance σ−2
i of the 10 best-measuredw(z) PCs increases relative to the fiducial program

if we halve the errors on the SN, BAO, or WL data. Following Albrecht et al. (2009), when computing these ratios σ−2
(2)i/σ

−2
(1)i

(where 1 denotes the fiducial program and 2 the improved program), we first limit PC variances to unity by making the
substitution σ−2

i → 1 + σ−2
i , so that uninteresting improvements in the most poorly-measured PCs do not count in favor

of a particular forecast. We caution that, as noted earlier, the PC shapes themselves are changing as we change the errors
assumed in the forecast, so σ 2

(2)i and σ
2
(1)i are not variances of identicalw(z) components. However, as shown in Fig. 41, these

changes are not drastic if we consider factor-of-two variations about our fiducial program.
The differences in σ−2

i ratios among improvements in SN, BAO, andWL errors is striking. Relative to the fiducial program,
reduced SN errors mainly contribute to knowledge of the first few PCs. For the fiducial WL systematics, reducing WL
errors helps to better measure several of the highest-variance PCs in the plot (i > 10), but it makes little difference to
the well measured PCs. Reducing BAO errors tightens constraints on nearly all of the PCs, with the greatest impact in the
intermediate range between the SN and WL contributions. Assuming the optimistic WL errors gives much greater weight
to WL improvements, which now produce the largest improvement in the first five PCs (right panel of Fig. 43). The trends
for reducing SN or BAO errors are similar to before, but the magnitude of their effect is smaller because they are competing
with tighter WL constraints. The behavior of the σ−2

i ratios of the best-measured PCs mirrors that shown for the DETF FoM
in Fig. 33. With the fiducial WL systematics, BAO measurements have the greatest leverage, followed by SN, and the impact
of reducingWL errors is small. With the optimisticWL systematics, on the other hand, reducingWL errors makes the largest
difference, followed by BAO, followed by SN.

Dotted curves in the left hand panel show the σ−2
i ratios when we fix the PCs to be those of the fiducial program. In this

case, the PC errors for the improved programs are no longer uncorrelated, but the correlation coefficient of errors among
any pair of PCs is less than 0.5 in nearly all cases. Results are similar to before except for the first component (first two
components for BAO). These, of course, show less improvement when they are fixed to be those of the fiducial program
rather than shifting to be the components best determined by the improved data. Fig. 44 shows the expected improvements
in σ−2

i between our fiducial Stage III and Stage IV programs. Consistent with the DETF FoM plots in Fig. 33, the expected
improvements are dramatic, and considerably more so with the optimistic WL assumptions.

The DETF FoM compresses constraints in thew0–wa model to a single number. Similar figures of merit for PC constraints
have been defined in the literature, in various forms, each of which may be useful for different purposes. These include
the determinant of Fw , which characterizes the total volume of parameter space allowed by a particular combination of
experiments in analogy to the DETF FoM for the w0–wa parameter space, and the sum of the inverse variances of the PCs,
which is typically less sensitive than the determinant to changes in the errors of the most weakly constrained PCs (Huterer
and Turner, 2001; Bassett, 2005; Albrecht et al., 2006; Albrecht and Bernstein, 2007; Wang, 2008; Barnard et al., 2008;
Albrecht et al., 2009; Crittenden et al., 2009; Amara and Kitching, 2011; Mortonson et al., 2010; Shapiro et al., 2010; Trotta
et al., 2011; March et al., 2011).

Examples of these FoMs for the fiducial program and the variants considered in Fig. 43 are listed in Table 12. Here we
allow the PC basis to change with the forecast assumptions, so Fw is diagonal and det Fw =

36
i=1 σ

−2
i . As with the ratios

of PC variances in Fig. 43, we restrict the variances to be less than unity by replacing σ−2
i → 1 + σ−2

i . The other FoM,
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Fig. 44. Ratios of inverse variances of PC amplitudes of Stage IV to those of Stage III, assuming either the fiducial or optimistic versions of the Stage IV WL
forecast.

Table 12
Comparison of figures of merit for selected forecasts.

Forecast case log10
36

i=1


1 + σ−2

i

1/2
(
36

i=1 σ
−2
i )1/2 [σ(wp)σ (wa)]

−1

[SN, BAO, WL, CMB] 20.2 124 664
[SN/2, BAO, WL, CMB] 20.8 176 1197
[SN, BAO/2, WL, CMB] 26.0 186 1222
[SN, BAO, WL/2, CMB] 21.6 140 816
[SN, BAO, WL-opt, CMB] 23.0 157 789
[SN/2, BAO, WL-opt, CMB] 23.4 199 1242
[SN, BAO/2, WL-opt, CMB] 27.9 205 1251
[SN, BAO, WL-opt/2, CMB] 26.0 240 1397

computed as the sum of inverse variances, requires no such prior because PCs with large variances contribute negligibly
to the sum. Note that the choice of PC FoM definition can affect decisions about whether one experiment or another is
optimal; for example, halving WL errors (assuming fiducial systematics) relative to the fiducial model increases the det Fw
FoM more than halving SN errors, but the opposite is true for the sum of inverse variances, which favors improvements in
the best-measured PCs and more closely tracks the DETF FoM. In this case, at least, we regard the latter measure as a better
diagnostic, since the improvements for PCs that are poorly measured in any case seem unlikely to reveal departures from a
cosmological constant or other simple dark energy models. Another virtue of


σ−2
i (the square of the quantity tabulated

in Table 12) is its sensible scaling with measurement precision. If the error of all the individual cosmological measurements
(e.g., DL values andWL power spectrum amplitude) is dropped by a factor of two, as expected if experiments are statistically
limited and data volume is increased by a factor of four, then each σi will drop by a factor of two and


σ−2
i will go up by a

factor of four, scaling with data volume just like the DETF FoM. For det Fw , on the other hand, the FoM will go up by ≈ 2N ,
where N is the number of PCs that have σi significantly below one, so there is no obvious scaling with data volume.

The disagreement between different PC FoMs in Table 12 highlights one of the difficulties with using PCs or related
methods for evaluating the potential impact of future experiments. Forecasts for PCs provide awealth of information in both
the redshift-dependent shapes of the PCs and the expected errors on their amplitudes, but it is often difficult to interpret
what this information implies about cosmic acceleration. Given a set of forecasts for PCs, one can easily compute the expected
constraints on any specific model for w(z) by expressing the model in terms of the PC amplitudes (Eq. (174)); this is a
potentially useful application, but it makes very limited use of the available information.

More generally, we can use the forecast PC shapes and errors to try to visualize what types of w(z) variations are
allowed by a certain combination of experiments. One approach is to generate several random w(z) curves that would be
consistent with the forecast measurements. This method is easily implemented with the PCs because the errors on different
PC amplitudes are uncorrelated. One can generate a random realization of w(z) by simply drawing an amplitude αi from a
Gaussian distribution with mean zero and width σi, then using Eq. (175) to compute w(z) corresponding to the randomly-
drawn αi values.
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Fig. 45. Reconstruction of w(z) from PC constraints. Left: 20 randomly-generated models that would be indistinguishable from a cosmological constant
using the fiducial program of experiments. Three of the 20 models are highlighted (in red, green, and blue) to more clearly show examples of the evolution
with redshift. The lower panel shows the average of 1 + w(z) in bins of width ∆z = 0.4 for the same models as in the upper panel. Points along the
w(z) = −1 line in the upper panel mark the centers of the bins in which w(z) is allowed to vary in our forecasts. Right: w(z) reconstruction including
a prior of the form in Eq. (178). The upper panel shows a random selection of models consistent with this prior, but without including any data, and the
lower panel shows examples of models that are allowed by both the prior and the data assumed in the fiducial program.

In the upper left panel of Fig. 45, we use this method to plot several w(z)models using the fiducial program PC shapes
and errors from Fig. 42 and Table 11, respectively. We cut off the plot at z = 3, since w(z) variations at higher redshifts
are essentially unconstrained by the fiducial experiments. Even at lower redshifts, though, the allowed w(z) variations are
enormous, with wi values often changing by 10 or more from one bin to the next. (Recall that our prior corresponds to a
Gaussian of width σwi ≈ 63 per bin, Eq. (172).) Compared to the ∼1.5% constraints onwp in thew0–wa model, this forecast
looks rather depressing. The consequence of allowing the equation of state to be a free function of redshift is that it is nearly
impossible to say with any certainty what the value of w is at any specific redshift, because rapid oscillations in w(z) have
tiny effects on observables. The allowed range of variationswould be even larger ifwe considered amodelwith finer∆a bins.

The large variations of w(z) in Fig. 45 are driven by the poorly constrained PCs, which have many oscillations in w(z),
peak-to-peak amplitudes |∆w| ∼ 4, and normalization uncertainties σi ∼ 0.1–2.3 (see Fig. 42 and Table 11). The lower
left panel of Fig. 45 shows these w(z) realizations averaged over bins of width ∆z = 0.4, which vastly reduces the range
of variations, especially at z ∼ 1. However, the dispersion of w(z) in the bins centered at z = 0.6 and z = 1 is still about
0.3. Adding a precise, independent measurement of H0 reduces the uncertainty inw(z) in the lowest-redshift bin, but it has
little effect at higher redshifts (see Section 8.5.1).

Instead of averaging w(z) over wide redshift bins, one can impose a theoretical prejudice for models with smoothly-
varying equations of state by adding an off-diagonal prior to the Fisher matrix, imposing correlations among thewi that are
closely separated in redshift. Here we follow Crittenden et al. (2009), but we modify their method to use scale factor rather
than redshift as the independent variable (see also Crittenden et al., 2012), adopting a correlation function

ξ(|ai − aj|) =
(∆w)2

π∆ac


1 +


ai − aj
∆ac

2
−1

, (177)

where ∆w sets the amplitude of allowed w(z) variations and ∆ac is the correlation length. Following the calculation
in Crittenden et al. (2009), the covariance matrix for the wi bins, which is the inverse of the prior Fisher matrix for those
parameters, is

[Fprior
ij ]

−1
(i,j≤36) =

(∆w)2∆ac
π∆a2

x+ tan−1 x+ + x− tan−1 x− − 2x̄ tan−1 x̄ + ln

 1 + x̄2
(1 + x2+)(1 + x2−)

 , (178)

where x̄ = |i − j|∆a/∆ac , x+ = (|i − j| + 1)∆a/∆ac , and x− = (|i − j| − 1)∆a/∆ac . In the limit∆ac → 0, this reduces to
our default diagonal prior on thewi parameters with width σwi = ∆w/

√
∆a.

The upper right panel of Fig. 45 shows models randomly drawn from this prior with∆w/
√
∆a = 1 and∆ac = 0.2. The

influence of the correlation function is clearly evident in the smoother, lower-amplitude variations ofw(z) in these models,
and yet the range of possible models is still much greater than for simpler parameterizations like w0–wa. Combining this



220 D.H. Weinberg et al. / Physics Reports 530 (2013) 87–255

prior with the assumed data set of the fiducial Stage IV program, we obtain thew(z) realizations plotted in the lower right
panel of Fig. 45. Even more so than averaging w(z) in wide redshift bins, including this type of prior significantly narrows
the constraints onw(z). While the particular smoothness prior of (177) is certainly not unique, this approach of combining
PC constraints dictated by the data sets with theoretically motivated priors on the behavior of w(z) – perhaps based on an
underlying model for the potential V (φ) – may be the most valuable application of the PC approach.

Our constraints on generalw(z)models account for the possibility ofmodified gravity bymarginalizing over the structure
growth parameters∆γ and lnG9. If we instead restrict our analysis to GR by fixing∆γ = lnG9 = 0, the main effect is that
the dark energy equation of state at high redshifts, w(3 < z < 9), is better constrained because the CMB measurement of
the power spectrum amplitude at z ∼ 1000 can be more directly related toWLmeasurements of growth at lower redshifts.
Because of the additional CMB constraint on the distance to the last scattering surface,w(3 < z < 9) is strongly correlated
with Ωk, and therefore assuming GR considerably improves the determination of spatial curvature in the binned w(z)
parameterization. For our fiducial forecasts, assuming ∆γ = lnG9 = 0 lowers σΩk by a factor of ∼3 (0.0075 → 0.0023);
note that this is still several times larger than the error inΩk for the simplerΛCDM orw0–wa forecasts.

8.4. Forecasts for clusters

We have concentrated so far on the constraints expected for combinations of CMB, SN, BAO, and WL data, as all of these
methods are well studied and are likely to play a central role in Stage III and Stage IV studies of cosmic acceleration. For
other methods we adopt a simplified approach, first asking how well our fiducial CMB+SN+BAO+WL programs should
predict the basic observables of these methods, then showing how different levels of precision on these observables would
affect constraints on equation-of-state and growth parameters. We describe ourmethodologymore fully in the next section
(Section 8.5), butwebeginwith a discussion of clusters,where our analysis of stackedweak lensing calibration (Section 6.3.3)
gives a clear quantitative target for measurement precision.

Fig. 46a shows the predicted fractional error (1σ ) in σ8(z) for the fiducial Stage III and Stage IV experimental programs
discussed in Section 8.3, and for the Stage IV program with optimistic WL errors. All curves assume a w0–wa dark energy
parameterization, and for each case the lower, thinner curve shows the forecast assuming GR to be correct while the upper,
bolder curve allows GR deviations parameterized by G9 and ∆γ . Roughly speaking, we would expect a measurement with
precision better than that shownby the upper curve to significantly improve tests for GR deviations and ameasurementwith
precision better than that shown by the lower curve to significantly improve w0–wa constraints when assuming GR to be
correct. For Stage IV programswe predict σ8(z) constraints at the 0.75%–1% level over the full redshift range 0 < z < 3, with
little difference between the fiducial and optimisticWL assumptions. In fact, the ‘‘optimistic’’WL assumptions lead to slightly
larger errors in σ8(z) than the fiducial assumptions because for this quantity doubling the statistical errors has a larger im-
pact than adding 2× 10−3 shear calibration and photo-z errors (see Section 8.1). For Stage III, the predicted σ8(z) errors are
about 1.2% assuming GR, but they aremuch larger if we allowGR deviations, especially at z > 0.8. Even for Stage IV, the good
constraints at high z rely on the assumption of a w0–wa equation of state, which allows precise low redshift WL measure-
ments to be extrapolated to high redshift. The direct measurements of z > 1 clustering amplitude are considerably weaker.

Fig. 46b plots σ11,abs(z) errors, which are tighter than the σ8(z) errors by∼30%–50% because uncertainty in h contributes
noticeably to the latter. In Section 6.6 we estimated the errors on σ11,abs(z) achievable with a 104 deg2 cluster survey with
weak lensing mass calibration, assuming Stage III (10 arcmin−2) or Stage IV (30 arcmin−2) effective source densities and
survey depths. For a mass threshold of 2 × 1014M⊙ the σ11,abs(z) errors at z ≈ 0.5 are ∼1% and ∼0.5%, respectively, below
the corresponding Stage III and Stage IV errors shown in Fig. 46b. Furthermore, these cluster errors are per∆z = 0.1 redshift
bin, so constraints on the clustering amplitude in a smoothly evolving model can be substantially better if the cluster errors
are not correlated across redshifts. (The statistical errors should be uncorrelated, but some forms ofweak lensing systematics
could affect many redshift bins in the same direction.)

The cluster errors shown earlier in Fig. 30 were derived assuming perfect knowledge of Ωm, with σ11,abs(z) as the
single parameter controlling the cluster abundance at each redshift. In practice, cluster abundances constrain a parameter
combination that is approximately σ11,abs(z)Ω0.4

m , as discussed in Section 6. The fractional errors in Ωm from our fiducial
CMB+SN+BAO+WL programs are 2.7% (Stage III), 1.4% (Stage IV), and 1.2% (Stage IV with WL-opt), making Ω0.4

m
uncertainties comparable to the fractional errors in σ11,abs(z). Fig. 46c shows the predicted fractional errors in σ11,abs(z)Ω0.4

m ,
which in some ranges are significantly larger than those for σ11,abs(z). Finally, Fig. 46d shows our forecast errors on
σ11,abs(z)Ω0.4

m from a 104 deg2 cluster survey inwhich errors are limited byweak lensingmass calibration statistics. Herewe
have simply set the fractional errors from clusters on σ11,abs(z)Ω0.4

m equal to the ones we derived earlier on σ11,abs(z), which
should be a good but not perfect approximation. Comparing Figs. 46c and 46d shows that cluster errors are competitive
with those expected from the CMB+SN+BAO+WL combination for cluster mass thresholds of ∼4–8 × 1014M⊙ at Stage III
or 1 − 4 × 1014M⊙ at Stage IV.

Fig. 47 shows the potential improvement in equation-of-state and growth parameter determinations from including the
cluster constraints onσ11,abs(z)Ω0.4

m .We assume that these constraints have independent errors in each∆z = 0.1 bin. Upper
panels show the effect of adding Stage III cluster constraints (dotted curves in Fig. 46d) to the Stage III CMB+SN+BAO+WL
Fisher matrix. Even adding clusters with an 8 × 1014M⊙ mass threshold substantially improves the errors on G9 and ∆γ ,
and reducing the mass threshold to 1− 2× 1014M⊙ produces substantial further gains. Somewhat surprisingly, the cluster
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Fig. 46. (a) Predicted fractional errors (1σ ) on σ8(z) from our fiducial Stage III (dotted) and Stage IV (solid) CMB+SN+BAO+WL programs, and from the
Stage IV programwith optimisticWL systematic assumptions (dashed). All curves assume aw0–wa dark energy parameterization. For each case, the lower,
thin curve shows the forecast assuming GR is correct and the upper, thick curve shows the forecast allowing GR deviations parameterized by G9 and∆γ .
(b) Like (a), but for σ11,abs(z), the rms matter fluctuation in spheres of radius 11 Mpc (instead of 8h−1 Mpc). (c) Like (b), but for the parameter combination
σ11,abs(z)Ω0.4

m that approximates the quantity best constrained by cluster abundances. (d) Predicted fractional errors in σ11,abs(z)Ω0.4
m from cluster

abundances in a 104 deg2 survey calibrated by stacked weak lensing mass estimates with Stage III (neff = 10 arcmin−2) and Stage IV (neff = 30 arcmin−2)
source surface densities and survey depths (dotted and solid curves, respectively). From top to bottom, curves correspond to cluster mass thresholds of 8,
4, 2, and 1 × 1014M⊙ .

constraints also lead to significantly smaller errors on the equation-of-state parameter w0.5 and slightly smaller errors on
wa. This improvement largely reflects the additional information aboutΩm, which allows the distance and H(z) constraints
from other probes to translate more directly intow(z) constraints. We have checked that fixingΩm exactly would produce
a still greater improvement in (w0.5, wa) than the gain we have forecast from clusters, while making little difference to the
(G9,∆γ ) errors.

For Stage IV (middle and bottom panels), where we now assume the Stage IV cluster mass constraints, an 8 × 1014M⊙

cluster sample produces little improvement over CMB+SN+BAO+WL in G9 and ∆γ , but it still leads to noticeable
improvement inw0.5. A 1−2×1014M⊙ cluster sample produces substantial gains in both the equation-of-state and growth
parameters. As in the Stage III case, much of the improvement in the equation of state comes from the Ωm information
provided by clusters. However, the cluster constraints reduce the w0.5 error even if Ωm is held fixed, so some of this
improvement arises from another source, probably by allowing some WL information to be effectively transferred from
growth to distance. Adding our Stage IV, 1014M⊙ cluster constraint to the fiducial Stage IV program increases the DETF FoM
from 664 to 1258, and it increases the modified FoM [σ(wp)σ (wa)]

−1
× [0.034/σ(∆γ )] (Fig. 35) from 664 to 1955. For the
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Fig. 47. Predicted constraints (1σ ) on the equation-of-state parameters w0.5 = w(z = 0.5) and wa (left panels) and the growth parameters G9 and
∆γ (right panels) from our fiducial CMB+SN+BAO+WL programs combined with cluster abundance measurements of σ11,abs(z)Ω0.4

m with the precision
shown in Fig. 46d. Top panels show Stage III clusters with Stage III CMB+SN+BAO+WL, while middle and bottom panels show Stage IV clusters combined
with the fiducial and WL-opt Stage IV programs, respectively. Note the change in axis scale between the top and middle/lower panels. In each panel, the
outermost contour shows the constraints without clusters, and the remaining contours show the constraints for cluster mass thresholds of 8, 4, 2, and
1 × 1014M⊙ (outer to inner).

WL-opt program, the improvements are 789 → 1363 and 1037 → 2380, respectively. For Stage III CMB+SN+BAO+WL,
adding Stage III clusters leads to improvements of 131 → 183 (FoM) and 30 → 137 (modified FoM).

Our treatment here is simplified because we have ignored the impact of volume-element changes on the cluster abun-
dance and have set the scaling index of σ11,abs(z)Ω

q
m to a constant value q = 0.4 instead of including its redshift and mass

dependence. More importantly, we have assumed that errors in the cluster abundance will be dominated by the statis-
tical errors in the weak lensing calibration of the mean mass scale, not increased by marginalizing over uncertainties in
mass–observable scatter, incompleteness, contamination, or theoretical predictions. The effective mass calibration uncer-
tainties we are assuming are those in Fig. 28. These are probably pessimistic at z & 1, where the weak lensing calibration
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error exceeds 10% but one could likely use other calibration methods (including direct comparison to theory) to do better;
thus, we are underplaying the potential contribution of high-redshift clusters. Our approximate calculations confirm the
conclusions of Oguri and Takada (2011) that clusters calibrated with stacked weak lensing can make an important contri-
bution to testing cosmic acceleration models, even in the era of Stage IV dark energy experiments. Fig. 46 also provides a
target for other methods of measuring the matter clustering amplitude, such as the Lyα forest (Section 7.6).

8.5. Forecasts for alternative methods

We now turn to some of the alternative probes discussed previously in Section 7. For each technique, we first focus
on the question of complementarity with the primary methods by asking how well the observable quantity measured by
a particular technique is already known given the fiducial combination of SN, BAO, WL, and CMB data. These predictions
provide benchmarks that any additional measurement must reach in order to contribute significantly to constraints on dark
energy or modified gravity parameters. In many cases, the precision of the predictions depends strongly on the chosen
parameterization of deviations from the standard paradigm ofΛCDM and GR. We will generally assume aw0–wa model for
the results in this section, butwe note that if one adopts amore general parameterization of dark energy then the predictions
are normally weaker, and thus the value of alternative probes is potentially greater.

The covariance matrix for a set of observables X measured by a particular alternative probe can be computed
straightforwardly using the covariancematrix of the cosmological parameters given by the inverse of the total Fisher matrix
for SN, BAO, WL, and CMB data,

CX
ij =


k,l

∂Xi

∂pk
F−1
kl
∂Xj

∂pl
, (179)

where p is either the full set of parameters in Eq. (162) or the reduced set with w0 and wa replacing the 36 wi bins; in
the latter case, F is the Fisher matrix for the w0–wa parameterization computed using Eq. (170). We compute the full
covariancematrices for the alternativemethods, but the plots in the following sections only show thepredicted uncertainties

σXi =


CX
ii and do not reflect the fact that errors on the observables may be correlated.

In addition to computing how well the fiducial SN, BAO, WL, and CMB constraints predict each observable that would
be measured by the alternative techniques, we provide several examples to show the improvement in the FoM and other
parameters that would result from a specific measurement of that observable. For these tests, we only consider the impact
of measurement of a single quantity X at a time, so the total Fisher matrix is modified simply by adding the term

F alt
ij = σ−2

X
∂X
∂pi

∂X
∂pj
, (180)

where σX is the assumed uncertainty in the measurement of X .

8.5.1. The Hubble constant
For the Hubble constant, the predicted uncertainty from the fiducial probes is simply the value of σh that comes out of

the Fisher matrix forecasts of the previous section. Assuming a w0–wa dark energy model, the expected precision on H0 is
0.7% for the fiducial Stage IV forecasts and small variations of those forecasts, and 1.3% for Stage III (see Tables 8–10). These
are challenging, but probably attainable, targets for future efforts to independently measure H0.

In Fig. 48, we show the effect on the DETF FoM of adding a prior on H0 to the fiducial Stage III and IV forecasts. In all
cases, adding a prior with precision that matches the uncertainty one would have in the absence of the prior increases the
FoM by ∼40%. The uncertainties in other cosmological parameters are affected little by the inclusion of an independent H0
measurement, as discussed in Section 7.1.

For a more general dark energy parameterization such as the binned wi values, predictions for σh can be orders of
magnitudeweaker than they are forw0–wa orΛCDM (see Figs. 39 and 40). In this case an independent, localmeasurement of
H0 is vital for accurate determination of the Hubble constant. However, H0 priors do not significantly improve dark energy
constraints in this case; an H0 constraint limits the range of w(z) in the lowest-redshift bin, but since w(z = 0) is only
weakly correlatedwith the equation of state at higher redshifts by SN, BAO,WL, and CMBdata, the impact of an additionalH0
measurement on the equation of state at z > 0 is small. The improvement in the DETF FoM in Fig. 48 is largely a consequence
of the restrictions that thew0–wa parameterization places on the evolution ofw(z) between z = 0 and higher redshifts. Of
course, a discrepancy between directly measured H0 and aw0–wa prediction would already provide the crucial insight that
w0–wa is inadequate; it just would not give further direction about the evolution ofw(z).

8.5.2. The Alcock–Paczynski test
For the AP test (Section 7.3), we consider the observable H(z)DA(z). Since Stage IV BAO data provide tight constraints on

both H(z) and DA(z), which are further strengthened by the SN, WL, and CMB measurements, it is not surprising that the
product H(z)DA(z) is predicted very precisely in the combined forecasts. The left panel of Fig. 49 shows that the uncertainty
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Fig. 48. Dependence of the DETF FoM on the accuracy of additional measurements of the Hubble constant for Stage III and IV forecasts from Section 8.3.
The fiducial Stage IV program with FoM = 664 is marked by an open circle.

Fig. 49. Left: Predicted fractional error (1σ ) of the AP parameterH(z)DA(z) fromour fiducial Stage III and Stage IV CMB+SN+BAO+WLprograms, assuming
aw0–wa dark energy parameterization. Right:Dependence of the DETF FoMon additionalmeasurements ofH(z)DA(z) at a single redshift. For each forecast,
the three curves from top to bottom assume AP measurements at z = 0.5, z = 1, and z = 2, respectively.

in the AP observable is ∼0.2% at 0 < z < 3 for Stage IV data, and it is still predicted to sub-percent accuracy with Stage
III data. Independent measurements of the AP observable that are significantly less precise than these predictions would
contribute little to cosmological constraints. Note that these results are for a w0–wa dark energy model. If we instead
use independently-varying w(z) bins, the uncertainty in the AP observable for the Stage IV forecasts increases to ∼1% at
1 < z < 3 and becomes much larger at both lower and higher redshifts, although the exact precision of the predictions in
this case depends strongly on the detailed forecast assumptions such as the prior on wi in each bin or the number of bins
used for BAO data.

In the right panel of Fig. 49, we show the improvement in the DETF FoM (assuming the w0–wa parameterization) when
various measurements of the AP observable are added to the fiducial Stage III and IV forecasts. Since the predictions for
H(z)DA(z) are weakest at z . 0.5, a direct measurement of the AP observable at those redshifts has a greater impact on the
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Fig. 50. Left: Predicted fractional error (1σ ) of the RSD observable σ8(z)f (z) from our fiducial Stage III and Stage IV CMB+SN+BAO+WL programs,
assuming a w0–wa dark energy parameterization. The lower, thin curves for each forecast additionally assume GR by fixing ∆γ = lnG9 = 0. Right:
Improvement in the 1σ uncertainty on∆γ from an additional RSDmeasurement at a single redshift. For each forecast, the lower and upper curves assume
RSD measurements at z = 0.2 and z = 1, respectively.

FoM than measurements at higher redshifts.79A 1% measurement of H(z)DA(z) at z = 0.5 increases the Stage III FoM by
about 13%; a similar improvement in the Stage IV FoM requires an accuracy of 0.5% at the same redshift. While the demands
suggested by Fig. 49 appear stiff, large redshift surveys in principle have the information to achieve very high precision on
H(z)DA(z). The challenge is lowering systematics to the level needed to achieve this precision.

8.5.3. Redshift-space distortions
For redshift-space distortions (RSD; Section 7.2), the relevant observable isσ8(z)f (z).WL data provide some limits on this

observable by constraining the structure growth parameters∆γ and (in combination with the CMB) G9, and through their
constraints on the expansion history all of the acceleration probes contribute indirectly to the predicted growth history. The
resulting predictions for Stage III and IV programs are plotted in the left panel of Fig. 50. We show predictions both for the
general case where we marginalize over the structure growth parameters and for GR (∆γ = lnG9 = 0).

With the assumption of GR, the RSD observable is predicted to 1%–2% accuracy for Stage III and 0.5%–1% accuracy for
Stage IV. If we allowmodifications to GR through∆γ and G9, however, the uncertainty at z < 1 increases dramatically. This
change is mainly tied to the freedom to alter the growth rate f (z) at low redshift by varying∆γ . Note that the effect of∆γ
vanishes at high redshift becauseΩm(z) approaches unity and therefore f (z) → fGR(z) (see Eq. (44)). At z & 2, uncertainty
in G9 significantlyweakens Stage III predictions of the RSD observable, but the effect on Stage IV predictions ismuch smaller.

The DETF FoM can be improved by the addition of precise RSDmeasurements if we assume GR; for example, the fiducial
Stage IV (Stage III) FoM increases by∼10%–15%with a 1% (2%) RSD constraint at z = 1.Without assuming GR, the additional
information from an RSD measurement at a single redshift goes mainly into constraining the structure growth parameters
(and thus testing GR). In this case, the FoM improvement frompercent-level RSD constraints is.10%. However, percent-level
measurements in several redshift bins can still have an important impact on the FoM.

Low-redshiftmeasurements of the RSDobservable can contribute significantly to constraints on∆γ , as shown in the right
panel of Fig. 50. For Stage III forecasts, 1%–2% RSD measurements at z = 0.2 reduce the error in ∆γ by nearly an order of
magnitude, reaching an uncertainty comparable to that expected from the Stage IV probes. Likewise, the Stage IV constraint
on ∆γ can be improved by a factor of a few by the addition of percent-level RSD measurements. At higher redshifts, the
impact of RSD observations on the ∆γ uncertainty is greatly reduced due to the diminishing effect of ∆γ on the growth
rate at high z. This reduced sensitivity at high z is in some sense an artifact of the ∆γ parameterization; the error on ∆γ
is larger than the error on ln f by a factor |(d ln f /d∆γ )−1

| = |[lnΩm(z)]−1
|, which for the fiducial cosmological model of

Table 7 is 1.02 at z = 0.2 [whereΩm(z) = 0.373] and 3.23 at z = 1 [whereΩm(z) = 0.734].
We have computed but not plotted the impact of RSD measurements on the growth normalization parameter G9.

For Stage IV, the uncertainty in G9 is little affected by adding RSD measurements at any redshift. For Stage III, 1%–2%
measurements of σ8(z)f (z) can reduce the fractional error in G9 by up to a factor of two. As discussed in Section 7.7, some

79 Note, however, that either decreased SN errors or increased BAO errors for any of these forecasts would reduce the difference between the predictions
at z < 1 and at z > 1.
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Fig. 51. Predicted fractional error (1σ ) on the distance DA(z) from our fiducial Stage III and Stage IV CMB+SN+BAO+WL programs and the Stage IV
programwith optimistic weak lensing assumptions. For each case, the lower, thin curve assumes aw0–wa dark energy parameterization, while the upper,
thick curve represents our binnedw(z)model.

modified gravity theories predict a mismatch between measures of structure using non-relativistic tracers, which respond
to the Newtonian potential Ψ (Eq. (159)), and measures based on weak lensing, which responds to Ψ + Φ , the sum of the
Newtonian potential and space curvature. Consistency between RSD and WL, or cluster masses calibrated by weak lensing,
tests for deviations of this sort, in addition to theG9 and∆γ constraints obtained by combining themeasurements assuming
Ψ = Φ .

8.5.4. Distances
As a target for alternative distance indicator methods (Section 7.4) and standard sirens (Section 7.5), Fig. 51 plots the

predicted fractional error on the angular diameter distance from our fiducial Stage III and Stage IV CMB+SN+BAO+WL
programs. If we assume aw0–wa model then the constraints are tight, better than ≈0.25% for Stage IV and ≈0.5% for Stage
III at all z > 0.5. However, the highest redshift distance measurements included in our forecasts (other than CMB) are BAO
measurements at z = 3, so when we change to our general w(z)model the distance errors at z > 4 become dramatically
worse, ≈2% for Stage IV and ≈8% for Stage III. Furthermore, our Stage III forecast assumes a 0.8% distance measurement
from HETDEX at z = 2.4, which we consider somewhat optimistic because it assumes that the full power spectrum shape
can be used rather than the BAO scale alone. At z < 2 the Stage III curve has a jagged structure that depends to some degree
on the specific choices we have made in binning and in assigning BAO/WL measurements to particular redshifts.

The message to take away is that Stage III distance errors for the general w(z) model should be in the 1%–2% range
at z < 1, the 3%–5% range at 1 < z < 2, and the 6%–8% range at z > 4, with the errors at 2 < z < 4 depending on the
strength of BAOmeasurements from Lyα emission line galaxies (HETDEX) or the Lyα forest (BOSS). On the Stage III timescale,
alternative distance measurements at z > 1 with few percent precision could reveal otherwise hidden departures from the
w0–wa model. For Stage IV, where we assume powerful BAO experiments extending to z = 3, the demands on alternative
distance indicators aremuch stiffer. Even for the generalw(z)model, alternativemeasures at z > 4must reach 2% precision
to be competitive. The Stage IV distance errors in this model become large at z < 0.25, similar to the several percent errors
in H0 seen in Fig. 40. As already discussed in Section 8.5.1, precise low redshift distance measurements have the potential
to reveal late-time departures from smoothw(z) evolution.

8.6. Observables and aggregate precision

We have characterized the performance of the fiducial program and its variants in terms of their ability to constrain
parameterized models, from the specific (w0–wa + GR) to the general (w(zi), G9,∆γ ). An alternative, more model-agnostic
approach to characterizing the power of an experiment is via the aggregate precision with which it measures its basic
observable. We have already introduced this idea at a few points, most notably in our discussion of BAO. By ‘‘aggregate
precision’’ we mean the fractional (1σ ) error on an overall factor that multiplies the observable in all redshift bins (and, if
applicable, angular or mass bins). For the simple case of an observable O with independent fractional measurement errors
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Fig. 52. Forecast errors for fiducial Stage IV SN, BAO, and WL programs, compared to model deviations from fiducial ΛCDM. The top panels show the
forecast fractional errors in angular diameter distance from BAO (left) and luminosity distance from SNe (right), in absolute (Mpc) and relative (h−1 Mpc)
units, respectively. The lower left panel shows the H(z) error from BAO. The errors are uncorrelated from bin to bin, though the DA(z) and H(z) errors in
each bin are correlatedwith each other. Curves show the fractional changes in the predicted relations relative to the fiducial cosmology for CMB-normalized
models with 1 + w = ±0.02 orΩk = ±0.001, as labeled. Marginalization over M and H0 allows arbitrary vertical offsets to the model curves in the SN
panel without changing other cosmological parameters. The lower right panel shows forecast statistical errors (no systematics) in the cosmic shear power
spectrum for three of the 14 source photometric redshift bins, in bins of ∆ log l = 0.2 dex. Statistical errors are approximately uncorrelated for different
l-bins at a given z, but errors in different z-bins are correlated. Curves show the fractional change in the predicted spectrum inmodels with 1+w = ±0.02
or∆γ = ±0.05.

∆ lnO(zi) in N redshift bins, the aggregate precision follows from the quadrature combination of the individual errors:

∆ lnOagg =


N
i=1

[∆ lnO(zi)]−2

−1/2

. (181)

One important virtue of forecasting an experiment’s aggregate precision is that it focuses one’s attention on the required
control of systematics, especially systematics that are correlated across redshift bins.

Fig. 52 plots the errors on the observables in our fiducial SN, BAO, and WL programs. For SN (upper right), we adopt
independent errors of 0.01 mag in each of four redshift bins, corresponding to fractional errors in luminosity distance of
0.46%. The aggregate measurement precision is therefore ∆ lnDL,agg = 0.23%. This is equal to the aggregate precision
forecast for the SN component of the WFIRST design reference mission (DRM1) forecast by Green et al. (2012) for their
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‘‘optimistic’’ assumption about SN systematics.80 However, themeasurement in the z = 0.05bin goesmainly to constraining
the nuisance parameter M, the SN absolute magnitude scale, so it is arguably better to characterize our fiducial program’s
aggregate precision as 0.46%/

√
3 = 0.27%, which is closer to that of the ‘‘conservative’’ WFIRST forecast (0.32%). More

generally, we note that large local calibrator samples are likely to achieve high statistical precision, and the systematic
uncertainty in relating this local sample to fainter, redshifted sampleswill play a crucial role in determining the cosmological
performance of the SN program.

The left panels show the fractional errors predicted on DA(z) and H(z) for the fiducial BAO program, as tabulated in
Table 6. These error bars decrease with increasing redshift because of the greater comoving volume per ∆ ln(1 + z) bin
at high redshift. Comparison of the DL and DA panels nicely illustrates the complementarity of SN and BAO as low and
high redshift probes, respectively, though recall that they provide distinct information even at the same redshift because of
relative vs. absolute calibration. The aggregate precision of the BAO measurement is ∆ lnDA,agg = 0.13%, tighter than that
from SNe because of the larger number of bins. Statistical errors in H(z) are larger by a factor of 1.6 in each redshift bin, so
the aggregate precision of the H(z)measurement is lower by the same factor,∆ lnHagg = 0.21%. The DA and H(z) errors are
correlated, with a correlation coefficient of ≈0.41 in each redshift bin.

Achieving the goals of our fiducial BAO program – sampling the equivalent of fsky = 0.25 with nP ≈ 2 out to z = 3 –
will require multiple experiments probing different redshifts and regions of sky. While BigBOSS, Euclid, andWFIRST all plan
to measure BAO in the range 1 < z < 2, it is not clear that they can achieve fsky = 0.25 with nP ≈ 2 even collectively.
Euclid plans to survey ≈ 14,000 deg2 over the range 0.7 < z < 2 in its 6.25-year primary mission, but the forecasts in
Green et al. (2012), which are based on the Euclid instrument sensitivity of Laureijs et al. (2011) and the Hα luminosity
function and galaxy bias measurements of Sobral et al. (2013) and Geach et al. (2012), imply that Euclidwill reach nP < 0.5
at z > 1.2. BigBOSS plans to survey 14,000 deg2 in the northern hemisphere, and a southern hemisphere equivalent could
increase the area to 24,000 deg2 (limited in the end by Galactic extinction). Sampling density forecasts are more uncertain
for BigBOSS than for Euclid; Schlegel et al. (2011) predict nP > 2 out to z ≈ 1.05 and nP > 0.5 out to z ≈ 1.35, falling
to nP = 0.35 by z = 1.65.81 The WFIRST DRM1 of Green et al. (2012), with 2.4 years devoted to high-latitude imaging
and spectroscopy, is projected to achieve nP & 1 from 1.3 < z < 2.0, declining to nP ≈ 0.5 at z = 2.7. However, the
survey area is only 3400 deg2, so a substantially extended mission would be required to reach 104 deg2, and the depth is
still nP < 2. An implementation of WFIRST using one of the NRO 2.4-m telescopes could plausibly survey 104 deg2 with
nP = 1 − 2, depending on the instrument field of view and the time allocated to the spectroscopic survey (Dressler et al.,
2012). In concert with ground-based surveys covering z . 1.2 and z > 2, this offers the best current prospect of achieving
something close to our fiducial BAO program on the Stage IV timescale. Breakthroughs in 21 cm intensity mapping (see
Section 4.4.5) could also lead to major progress on this timescale.

As a context for assessing these projected measurement errors, curves in these panels show the impact of changingw or
Ωk in ‘‘CMB-normalized’’ models, as described in Section 2.4. These curves are similar to those in Fig. 2, but here we have
adopted much smaller parameter changes, 1 +w = ±0.02 orΩk = ±0.001, in line with the tight constraints expected for
Stage IV experiments.82 Note that a model that skirts the top of the 1σ error bars in Nbin redshift bins would be ruled out at
the N1/2

bin -σ level. However, while one can see the partial tradeoff between curvature and w, these plots do not capture the
impact of degeneracy with other parameters such as Ωm and wa. The behavior of the curves is explained in Section 2.4 so
we will not repeat it here, but one can see the complementarity of SN and BAO distance measurements in constraining w
and curvature, respectively, and the roughly constant sensitivity of BAO H(z) measurements at 1 < z < 3 to a change in
the equation of state. Some caution is required in interpreting the SN panel becausemarginalizing overH0 andM allows the
model curves to be offset vertically with no change in other parameters, so the direct information about w andΩk resides
in the slopes of the curves relative to the data points.

Analogous to the SN and BAO panels of Fig. 52, the lower right panel shows the projected 1σ statistical errors of the
WL power spectrum in logarithmic bins ∆ log l = 0.2 dex, for three of the 14 tomographic bins of source photometric
redshift. Several caveats are in order. First, while the statistical errors in different l bins at fixed redshift are independent,
errors among redshift bins are correlated because structure at redshift zl contributes to the lensing of all background shells
at zs > zl. Second, systematics in shape measurement or photometric redshift calibration will typically produce errors
that are correlated across both redshift and angle; here we have plotted only statistical errors. Third, in addition to the 11
auto-correlation power spectra not shown here, our fiducial program includes 14×13 shear cross-power spectra, and cross-
spectra between shear fields and galaxy density fields. All of these provide cosmological information, albeit with correlated
errors and some loss of constraining power through marginalization over galaxy bias and intrinsic alignments. Finally, the
shear power spectrumdepends on both geometry and structure growth: for sources at zs lensed bymatter at zl, the expected
shear depends on DA(zl), DA(zs), and σ8(zl).

80 Specifically, that forecast assumes uncorrelated systematic errors of 0.01(1 + z)/1.8 mag in 16∆z = 0.1 redshift bins out to z = 1.7. The total errors
have roughly comparable statistical and systematic contributions.
81 Schlegel et al. (2011) use a different convention, quoting nP for the redshift-space power spectrum at k = 0.14h Mpc−1 and µ = 0.6 instead of the
real-space power spectrum at k = 0.2h Mpc−1 . We have quoted the numbers from their Table 2.3 as is, with no conversion to our nP convention and no
independent assessment of the sampling density the instrument is likely to achieve.
82 These models have h = 0.7030 (w = −0.98), h = 0.7171 (w = −1.02), h = 0.7157 (Ωk = 0.001) and h = 0.7045 (Ωk = −0.001). Other parameters
can be computed from the conditionsΩbh2

= 0.02268,Ωch2
= 0.1119, andΩφ = 1 −Ωc −Ωb −Ωk .
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Fig. 53. Forecast errors for fiducial Stage IV cluster (left) and RSD (right) programs, with the assumptions described in the text. Curves show the predicted
deviations from our fiducialΛCDMmodel for CMB-normalized models with 1 + w = ±0.02 and∆γ = ±0.05.

Correlated errors, the multitude of auto- and cross-correlations, and the linked parameter dependences mean one
cannot characterize the information content of WL measurements as simply as that of SN or BAO measurements. We
can nonetheless define an aggregate precision as the fractional error on the matter fluctuation amplitude σ8 with all
other parameters – and thus DA(z), H(z), and G(z) – held fixed. From Eq. (92) one can see that the fractional error on an
overall scaling of DA(z) with fixed matter clustering would be similar to this fractional error on σ8 with fixed geometry.
For our fiducial Stage IV WL program we find an aggregate precision on σ8 of 0.33%, where our calculation includes
marginalization over the assumed 2 × 10−3 systematic uncertainties in shear calibration and photometric redshift offsets
(and over parameters describing intrinsic alignments). The uncertainty in this case is dominated by these systematics, and
the aggregate error is close to the quadrature sum (0.28%) of these two fractional contributions. For the optimistic WL case,
with total errors double the statistical errors (and thus double those plotted in Fig. 52), the aggregate precision on σ8 is
0.14%. If we assumed purely statistical errors, as plotted in Fig. 52, then the aggregate precision would of course be a factor
of two higher. As already discussed in Section 8.1, it is likely that LSST, Euclid, and WFIRST will collectively, and perhaps
even individually, exceed the performance of our fiducial Stage IV program as far as statistical errors are concerned. The key
question is whether they will achieve the tight level of systematics control that we assume. In principle these experiments
could collectively achieve an aggregate precision several times better than that of even our optimistic WL forecast, with
cross-checks between them testing for any experiment-specific systematics.

For a given photo-z bin, the statistical errors per ∆ log l = 0.2 dex bin shown in Fig. 52 shrink slowly with increasing l
because of decreased cosmic variance, then grow slowly as shape noise errors become dominant (see Section 5.4.1). Errors
are smaller for the higher photo-z bins because of the larger numbers of source galaxies the larger foreground volume.
Orange and green curves show the impact of 1 + w = ±0.02 variations, which is comparable to the 1σ error per∆ ln l bin
for zp = 0.88 and zp = 1.40. Red and blue curves show the impact of setting the growth index parameter to∆γ = ±0.05,
with all other cosmological parameters fixed. Because the logarithmic growth rate is f (z) ≈ [Ωm(z)]γ+∆γ , a negative
∆γ corresponds to faster growth and thus higher Cl. These ∆γ and 1 + w changes have effects of similar magnitude
but with different redshift dependence, so in principle WL measurements can break the degeneracy between them. In
practice, the strongest degeneracy breaking will likely come from combining WL data with SN and BAO constraints, which
are independent of∆γ .

Fig. 53 presents error forecasts for two other probes of structure growth, clusters and redshift-space distortions. The
cluster errors are based on Fig. 30, assuming stackedweak lensingmass calibration ofM > 2×1014M⊙ clusters over 104 deg2
with aWL source density of 30 arcmin−2. While Fig. 30 is couched in terms of errors on σ11,abs(z)with other parameters held
fixed, here we assume (as in Section 8.4) that the constrained quantity isΩ0.4

m σ11,abs(z), with the same fractional error; we
caution that this is only an approximate characterization of the constraints from clusters. If the errors are dominated byWL
shape noise and random cluster orientations, as assumed here, then they should be essentially uncorrelated among redshift
bins. The aggregate precision for the cluster program is 0.20%, and since this is comparable to that of our other fiducial
programs, it is not surprising that clusters have a significant impact on the expected uncertainties in equation-of-state and
growth parameters (Section 8.4). Achieving this high aggregate precision would demand tight control of the systematics
discussed in Section 6.4, including the effects of contamination, incompleteness, and mis-centering, the impact of
mass–observable scatter, and the prediction of themass function and stackedWL profiles in the presence of baryonic effects.

The RSD error bars in Fig. 53 are those shownpreviously by the lower solid curve in Fig. 31, computedwith the forecasting
code of White et al. (2009). They assume a galaxy sample like that of our fiducial BAO program out to z = 2 and full use
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of information up to comoving k = kmax = 0.2h Mpc−1 at each redshift. The sharp change in errors at z = 0.9 is due to
the assumed drop in bias factor as surveys transition from absorption-line galaxies to emission-line galaxies. The aggregate
precision on f (z)σ8(z) is 0.22%, again comparable to that of our other fiducial programs. The ranges z > 1.4 and z < 1.4
make equal contributions to this precision. As discussed in Section 7.2, we expect the dominant systematic uncertainty for
RSD to lie in theoretical prediction of the RSD signal in the presence of non-linear gravitational evolution and galaxy bias,
not the measurements themselves. To realize the full statistical power of Stage IV galaxy redshift surveys, these theoretical
uncertainties must be controlled at the 0.2%-level. TheWhite et al. (2009) forecasts, which assume that kmax scales with the
non-linear wavelength knl(z) of the matter power spectrum, yield smaller errors at high redshift and an aggregate precision
of 0.10%.

Curves in Fig. 53 again show the effect of isolated parameter changes with 1+w = ±0.02 and∆γ = ±0.05. In isolation,
either of these changes would be strongly ruled out by either the fiducial cluster program or the fiducial RSD program with
the assumptions adopted here. For clusters, the impact of the w changes is comparable to the 1σ error bar per ∆z = 0.1
redshift bin over the range 0.2 < z < 0.8. The impact of ∆γ changes exceeds the 1σ error at all z < 0.8. For RSD, the
∆γ = ±0.05 impact exceeds the 1σ per-bin error at all z < 1.7. In these CMB-normalized models, where changes to w
and Ωm have counteracting effects on f (z), the sensitivity of RSD to a constant-w change is greatest at high redshifts. The
impact of∆w = ±0.02 exceeds the per-bin 1σ error for z ≥ 0.9.

Quantities like the DETF FoM and errors on∆γ or lnG9 are useful for optimizing choices in a well defined experimental
program, e.g., area vs. depth or the value of different target classes in a spectroscopic survey. However, since we have little
ideawhere deviations fromGR+Λ are likely to showup (if they are there at all), we think that aggregate precision, including
the effects of systematics, is a comparably useful tool for providing seat-of-the-pants guidance in a more general situation.
For a given level of aggregate precision, a measurement at low redshift will typically have more direct sensitivity to dark
energy, a measurement at high redshift will typically have more direct sensitivity to curvature, and measurements over
a range of redshifts are needed to constrain dark energy evolution. However, given the degeneracies among parameters
(especially w, Ωm, and Ωk) and the powerful impact of CMB constraints, it is difficult to identify a specific redshift range
as the optimal one to probe. For a given method and a given facility, it makes sense to start where the pickings are easy, in
terms of gaining precision relative to existing knowledge, andmove tomore difficult terrainwhen required. This assessment
must also include consideration of where one can most readily control systematics, which is often but not always at low
redshift. Extending the redshift range of a method increases leverage for breaking degeneracies and constraining dark
energy evolution, but the more important impact is often to improve the method’s aggregate precision by bringing in
measurementswith decorrelated errors. Aswehave emphasized repeatedly, a full programshould employmultiplemethods
to take advantage of their complementary information content and redshift sensitivity and to cross-check for unrecognized
systematics. Fortunately, Figs. 52 and 53 show that several methods have the potential to achieve 0.1%–0.3% aggregate
precision in Stage IV experiments, a dramatic improvement on the ∼1%–5% precision that represents the current state of
the art for these methods.

8.7. Prospects with many probes

Section 8.3 demonstrates the power of a combined CMB+SN+BAO+WL experimental program, while Sections 8.4–
8.6 show that other probes could add substantial further sensitivity to dark energy or modified gravity. Drawing these
results together, we show in Fig. 54 the result of combining our fiducial CMB+SN+BAO+WL programs with representative
performance estimates for clusters, redshift-space distortions, and directH0 measurement. (While the AP test could also play
an important role, we consider current understanding of its systematic uncertainty too limited to allow even representative
performance estimates.) Top, middle, and bottom panels show inverse errors on wp, wa, and ∆γ , respectively, assuming
a w0–wa model with G9 and ∆γ as beyond-GR growth parameters. Black bars show the results of combining all of these
probes, while colored bars show the cumulative impact of successively omitting individual probes (see further explanation
below).

For Stage IV we assume our fiducial CMB, SN, BAO, and WL constraints, the cluster and RSD constraints described in
Section 8.6 (Fig. 53), and an H0 constraint with precision of 1%. For Stage III we adopt the CMB+SN+BAO+WL errors
summarized in Table 7. (Note, in particular, that our assumed Stage III SN errors are 0.02 mag per ∆z = 0.2 bin and our
Stage IV errors are 0.01 mag per bin, with the same error for the local calibrator sample at z = 0.05. For these plots, though
not for others in the paper, we also include the Union2 SN constraints when computing Stage III and Stage IV.) For Stage III
clusters we assume 5000 deg2 and a source density of 10 arcmin−2 for mass calibration (both appropriate to DES), while
keeping themass threshold at 2×1014M⊙. ForH0 we assume 2% errors, and for RSDwe take theWhite et al. (2009) forecasts
for BOSS. Finally, for current data we take WMAP CMB errors, Union2 SN errors, and the BAO data and errors described in
Section 4.2. We adopt the RSD errors reported by Blake et al. (2011a) from WiggleZ (see Section 7.2). We also include a 3%
error on H0, and a 4% error on σ8Ω0.4

m to represent clusters and weak lensing (see Section 6.2).
Beginning with the black bars representing the full combinations, we see that these projections predict improvements

of more than an order-of-magnitude for each of the three parameters – wp, wa, and∆γ – between current knowledge and
Stage IV results. These combinations yield 1σ errors of approximately 0.005 on wp, 0.1 on wa, and 0.01 on ∆γ , testing the
ΛCDM model far more stringently than it has been tested to date. Stage III projections are roughly the geometric mean of
current and Stage IV constraints in all cases.
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Fig. 54. Forecasts for inverse 1σ errors (left axis; errors themselves on the right axis) onwp ,wa , and∆γ from combining our fiducial CMB+SN+BAO+WL
programs with additional constraints from redshift-space distortions (RSD), clusters (CL), and direct H0 measurements. See text for a description of the
errors assumed for Current (left), Stage III (middle), and Stage IV (right) forecasts. Black bars show the results of combining all of these probes. Colored bars
show the cumulative impact of dropping probes in succession (‘‘−BAO’’ should be read as ‘‘minus BAO’’, for example). When a Stage IV probe is ‘‘dropped’’
it is set to its Stage III precision, and when a Stage III probe is ‘‘dropped’’ it is set to its current precision. CMB constraints are always retained.

It is interesting to ask what the different methods contribute to this performance, but there is no unique way to de-
compose a constraint into a sum of individual contributions, and the apparent relative importance of different components
depends on how the decomposition is done.We have attempted one form of ‘‘even-handed’’ decomposition by dropping in-
dividual probes in succession, beginning with the probe whose omission causes the largest increase in the parameter error,
then the probe that causes the largest increase after the first probe has already been dropped, and so forth. However, when
we ‘‘drop’’ a probe we do not omit it entirely; rather, we set the error for that probe in the Stage IV forecast equal to the
value we previously assumed for the Stage III forecast, or we set the error in the Stage III forecast equal to the value adopted
for current data. Thus, for example, the dark green bar in the upper right shows the impact on σ(wp) of replacing the Stage
IV BAO constraints with the Stage III BAO constraints. The light green bar next to it shows the impact of also setting the RSD
constraint to the Stage III value, the dark blue bar the impact of also setting the WL constraint to the Stage III value, and so
forth. To give one more example, the light blue bar in the middle of the bottom panel shows the error on ∆γ using Stage
III WL+SN+BAO+H0 but current constraints for RSD and clusters. If the Stage III WL improvement is also dropped (dark
blue bar) then there is no improvement over current knowledge of∆γ because none of the remaining probes (SN, BAO, H0)
directly measures structure growth. We always include CMB constraints, with WMAP9 errors for current and Planck errors
for Stage III and Stage IV. By construction, the rightmost colored bar for a given stage matches the black bar of the previous
stage, since we have then set all probes back to their value in the previous stage.

We caution against reading toomuch into the ordering of probes in Fig. 54 because it depends in detail on our assumptions
about the expected errors of the individual components; furthermore, a probe only gains in this plot based on its differential
improvement between current performance and Stage III or between Stage III and Stage IV. The detailed examination of
CMB+SN+BAO+WL in Tables 8–10 and the associated figures provides much more nuanced information. These caveats
notwithstanding, Fig. 54 demonstrates several interesting points. In present data, BAO make the largest contribution to wp

constraints and SNe to wa constraints,83 though it is really the combination of the two with CMB data that is required to
achieve interesting constraints in a model space that allows wp, wa, and Ωk to vary simultaneously. BAO become more
powerful in our fiducial Stage III and Stage IV programs, making the largest contribution to both thewp andwa constraints.
Current constraints on∆γ rely entirely on RSD, as the cluster constraint on σ8Ω0.4

m is degenerate with G9. With our adopted
error forecast, RSD remains the most powerful contributor to∆γ constraints at Stage III and Stage IV, outweighing bothWL

83 Interestingly, the roles of BAO and SNe in the current wp constraint are reversed relative to the original arXiv posting of our article because of the
inclusion of the new SDSS DR7 and BOSS measurements, both published in 2012.
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Fig. 55. Like Fig. 54, but showing variations on the Stage IV fiducial program. The middle column shows forecasts with the optimistic WL systematics and
SN errors reduced by a factor of two. The right column shows the effect of, additionally, doubling the errors on RSD and BAO. The left column repeats the
fiducial case from Fig. 54 for reference.

and clusters. Indeed, with these errors Stage IV RSD also makes an important contribution to thewp measurement. WL and
clusters make significant contributions to∆γ constraints but have limited impact onwp andwa.

Fig. 55 shows two variants on the fiducial Stage IV case. In the middle column we consider a combined programwith SN
errors improved by a factor of two and the optimistic WL systematics. The forecast errors on wp, wa, and∆γ shrink by 6%,
21%, and 8%, respectively.WL and SN now leapfrog RSD as contributors to thewp error, though they still contribute less than
BAO. The improvement in wa is driven by the supernova improvement, though BAO remains the largest contributor. The
right column shows the effect of, additionally, doubling the errors on BAO and RSD, since our fiducial assumptions for these
programs are perhaps overoptimistic compared to the capabilities of planned Stage IV experiments. The forecast errors are
larger than they are for the fiducial case but by moderate amounts, 20% (wp), 14% (wa), and 28% (∆γ ). WL leapfrogs BAO to
become the strongest contributor to wp precision, while SN and WL both leapfrog BAO for wa. With doubled measurement
errors, RSD makes only a modest contribution to the parameter constraints, even for∆γ .

Perhaps the most important message to take from Figs. 54 and 55 is that these six probes together with CMB
measurements provide a tight web of constraints on cosmic accelerationmodels, and that even if one or twomethods prove
disappointing, there are others (including ones not shown in this plot) to take up slack.We have focusedmuch of our review
on the stiff challenges of controlling systematic errors at the level demanded by future dark energy experiments. However,
given the ingenuity of the community in devising and refining analysis methods, we are optimistic that the powerful data
sets provided by these experiments will ultimately lead to constraints at the high end of our forecasts.

9. Conclusions

The first evidence for darkmatter emerged from studies of galaxy clusters in the 1930s (Zwicky, 1933), and the darkmat-
ter problem assumed a central position in cosmology after technological advances allowed dynamical measurements in the
outer regions of individual galaxies (Rubin and Ford, 1970; Rogstad and Shostak, 1972; see review by Faber and Gallagher
(1979)). Because it clusters on small scales, dark matter has a rich phenomenology, and detailed studies of galaxies, galaxy
clusters, large scale structure, the Lyα forest, and the CMB have largely pinned down its properties even though we have yet
to identify the dark matter particle or particles. The implications of the dark matter problem have proven even more pro-
found thanmight have been imagined in the 1930s, pointing the way to an entirely new form of matter whose cosmic mean
density exceeds that of all baryonicmaterial by a ratio of 6:1. There are now several plausible ideas ofwhat darkmattermight
be — ideas that are rooted in well motivated extensions of the standard model of particle physics and that (at least in some
cases) naturally explain the observed density of dark matter (Bertone et al., 2005). With experimental methods advancing
on many fronts, there are good reasons to hope that dark matter will soon be identified in particle accelerators, detected
directly in underground experiments, or detected indirectly via its annihilation into γ -rays, neutrinos, or cosmic rays.
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Evidence for cosmic acceleration began to emerge in the early 1990s, and it rapidly evolved into a near-airtight case
following the supernova discoveries of the late 1990s (see Section 1.1). Whether the cause is a new energy component or
a breakdown of GR, the implications of cosmic acceleration are dramatic, even more so than those of dark matter. Cosmic
acceleration may ultimately provide clues to the nature of quantum gravity, or to the structure of the universe on scales
beyond the Hubble volume, or to its history over times longer than the Hubble time. There are already many theories of
cosmic acceleration, but none of them offers a convincing explanation of the observedmagnitude of the effect, and nearly all
of them were introduced to explain the observed acceleration, rather than emerging naturally out of fundamental physics
models. In contrast to dark matter, most models of dark energy predict that it is phenomenologically poor, affecting the
overall expansion history of the universe but little else. That impression could yet prove incorrect: other signatures of
‘‘cosmic acceleration physics’’ might appear in small-scale gravitational experiments, in the behavior of gravity in different
large scale environments, or in non-gravitational interactions.

While the solution to the cosmic acceleration problem could come from a surprising direction, including theory, there is a
clear experimental path forward through increasingly precise measurements of expansion history and growth of structure.
Relative to current knowledge, Stage IV experiments can improve the measurement of basic cosmological observables –
H(z), D(z), and G(z) – by one to two orders of magnitude. Correspondingly, they can achieve a 1–2 order-of-magnitude
improvement in constraints on w, 2–3 orders-of-magnitude improvement in the DETF figure-of-merit, and still greater
gains in higher dimensional parameterizations, including tests of GR violations. Any robust deviation from a cosmological
constant model would have profound implications, and the greater the precision and detail with which such a deviation is
characterized, the greater the direction for understanding its cause.

We have reviewed in considerable detail the four leading methods – supernovae, BAO, weak lensing, and clusters – and
we have briefly discussed some of the emerging newmethods, whose capabilities and limitations are as yet less thoroughly
explored.We have also investigated the complementarity of thesemethods for constraining theories of cosmic acceleration.
We have spent little time on the CMB as it has little direct constraining power on these theories, but it does provide crucial
constraints on other cosmological parameters that are essential to precision tests. We now conclude our article with an
editorial recap of our main takeaway points.

Type Ia supernovae have unbeatable precision for measuring distances at z . 0.5. Future surveys can readily achieve
statistical errors of 0.01 mag or less (0.5% in distance) averaged over bins of ∆z = 0.2. The challenge is getting systematic
uncertainties at or below the level of such statistical errors. In our view, the key systematics for SN studies are imperfect
photometric calibration, evolution in the population of SNe represented at different redshifts, and the effects of dust
extinction. The first can be addressed by careful technical design, of the instruments used for SN surveys and of the observing
and calibration procedures. The second can be addressed by obtaining high quality observations of the SNe and their host
galaxies that allow one to match the properties of high and low redshift systems. The third is best addressed by working
in the rest-frame near-IR, where extinction is low. Rest-frame IR observations may also mitigate evolution systematics and
improve statistical errors, since current observations indicate that the scatter in SN luminosities is smaller in the near-IR
than in the optical.

The BAO method complements the SN method in several ways. SN measure distance ratios relative to local calibrators
(i.e., distances in h−1 Mpc), while BAO measure absolute distances (in Mpc) assuming a calibration of the sound horizon.
SN and BAO measurements at the same redshift therefore provide complementary information, effectively constraining
H0, which is itself sensitive to acceleration when combined with CMB data. Spectroscopic BAO measurements that sample
a constant fraction of the sky become more precise at high redshift because they cover a greater comoving volume and
because they measure H(z) directly in addition to DA(z). (Of course, they also require a larger number of tracers to probe
these larger volumes, and the tracers themselves are fainter at higher redshifts.) Cosmic variance limited BAO surveys have
roughly constant sensitivity to dark energy over the range 1 < z < 3 because the decreasing dynamical impact of dark
energy at higher redshifts is balanced by the greater BAOmeasurement precision. Furthermore, the BAOmethod is the only
one that we expect to be statistics-limited even with Stage IV surveys. Non-linear matter clustering and non-linear galaxy
bias may shift the BAO peak by more than the statistical errors of Stage IV experiments, but the shifts can be computed
using theoretical models that are constrained by the smaller scale clustering data, andmoderate fractional accuracy in these
corrections is enough to keep any uncertainty in the corrections well below the statistical errors. Thus, we see the main
challenge for the BAO method as finding ways to efficiently map the available structure. There are several promising ideas,
both ground-based and space-based, and Stage IV BAO constraints will likely come from a union of several approaches
covering different redshift ranges.

Weak lensing measurements provide sensitivity to both the distance–redshift relation and the growth of structure. The
statistical precision achievable with future facilities is very high, so the challenge is reducing systematic uncertainties to
a level that does not overwhelm these statistical errors. The most important problem is reducing multiplicative shape
measurement biases to the level of ∼10−3 or below, which requires (among other things) determining the PSF that affects
the galaxy images to very high accuracy. This is an area of highly active research, and it is not yet clear what approach will
provemost successful; we have advocated pursuit of a Fouriermethod that becomes exact in the limit of high S/N ratio. Since
most shape measurement systematics depend inversely on the ratio r50/rPSF of galaxy size to PSF radius, one can mitigate
these systematics by restricting the analysis to larger galaxies, but this gives up statistical precision by reducing the surface
density of usable sources. The second major challenge for WL studies is the measurement and calibration of photometric
redshift distributions, characterizing both their means and their outlier fractions at the ∼10−3 level or below. Meeting this
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challenge requires optical andnear-IR imaging for robust identification of spectral breaks, and large spectroscopic calibration
data sets. The third systematics challenge for WL is intrinsic alignment of galaxies. With continuing theoretical work and
good photometric redshifts, we believe that this systematic can be kept subdominant, but it remains a challenging problem.
WL measurements are rich with observables, including higher order statistics and varied combinations of galaxy–galaxy
lensing, galaxy clustering, and tomography. Despite the field’s formidable technical obstacles, we think it quite possible
that constraints from WL surveys will eventually exceed current forecasts because these additional observables provide
cosmological sensitivity and/or allow systematic uncertainties to be calibrated away.

Cluster abundancemeasurements provide an alternative route tomeasuring the growth of structure and thus testing the
consistency of GR growth predictions. In addition, by reducing uncertainty inΩm and breaking other degeneracies, cluster
abundance measurements can sharpen the equation-of-state constraints from SN, BAO, and WL distance measurements.
The key challenge for cluster cosmology is achieving unbiased and precise calibration of the cluster mass scale. Realizing the
statistical power of future surveys requires absolute mass calibration accurate at the 0.5%–1% level. In our view, this is only
achievable with weak lensing, because the baryonic physics associated with other observables is too uncertain to predict
them this accurately from first principles. We thus see cluster studies as a natural byproduct of WL surveys and in some
sense as a specialized branch of WL, one that takes advantage of the strong additional information afforded by knowing the
locations of peaks in the optical galaxy density, X-ray flux, or SZ decrement. IfWL provides the fundamentalmass calibration,
then the shape measurement and photometric redshift uncertainties that affect WL also affect cluster methods.

While all of these methods can be pursued at ambitious levels from the ground, all would benefit from the capabilities
of a space mission, especially from the capability of wide-field near-IR imaging and spectroscopy, which is possible at the
necessary depth only from space. For SN, a space platform provides the greater stability and sharp PSF needed for highly
accurate photometric calibration, and it allows observations in the rest-frame near-IR, which is crucial for minimizing
extinction systematics and may be valuable for reducing evolution systematics. For BAO, near-IR spectroscopy allows
emission-line galaxy surveys over the huge comoving volume from 1.2 . z . 2, which is difficult to probe with ground-
based optical or IR observations. (Intensity-mapping radiomethodsmay be able to probe this redshift range from the ground,
but this approach still has significant technological hurdles to overcome.) ForWL, space observations allow the deep near-IR
photometry that is essential for robust and accurate photometric redshifts, and they provide stable imaging with a sharp
PSF that enables accurate shape measurements for a high surface-density source population. The above considerations
motivated both WFIRST and the IR capabilities of Euclid. Space-based optical imaging, the other major element of Euclid,
allows a significantly sharper PSF and thus potentially more powerful WL measurements, if the systematic errors are
sufficientlywell controlled.More generally, space-basedWLmeasurements can employ a higher galaxy surface density than
ground-based surveys to the same photometric depth, both because the PSF itself is smaller and because greater stability
and the absence of atmospheric effects should allow accurate measurements down to a smaller ratio of r50/rPSF.

The current generation of ‘‘Stage III’’ experiments such as BOSS, PS1, DES, HSC, and HETDEX are collectively pursuing
all of these methods, and they should achieve dark energy constraints substantially better than those that exist today. It is
crucial that the next generation, Stage IV experiments maintain, collectively, a balanced program that includes SN, BAO, and
WL, as well as other methods (clusters, Alcock–Paczynski, redshift-space distortions) that can be applied to the same data
sets. There is much more to be gained, and much lower risk, from doing a good job on all three methods than from doing
a maximal job on one at the expense of the others. A balanced program takes advantage of the methods’ complementary
information content and areas of sensitivity, and it allows the best cross-checks for systematic errors. It is becoming standard
practice to trade systematic uncertainties for statistical errors by parameterizing their impact andmarginalizing — e.g., over
an uncertain shear calibrationmultiplier or photometric redshift offset.While this is a powerful strategy for removing biases
due to ‘‘knownunknowns’’, it does not protect against ‘‘unknownunknowns’’. Any conclusion about cosmic accelerationwill
bemore compelling if it is demonstrated by independentmethods, and themore interesting the conclusion, themore crucial
this independent confirmation will be.

In Section 8 we have provided quantitative forecasts for a fiducial Stage IV program and for many variants upon it. Our
fiducial SN program assumes 0.01 mag mean errors for a local calibrator sample at z = 0.05 and in three bins of∆z = 0.2
at 0.2 < z < 0.8, uncorrelated from bin to bin. Our fiducial BAO program assumes mapping 1/4 of the sky to z = 3, with
errors that are 1.8× the linear theory sample variance errors over this volume. Different combinations of redshift range
and sky coverage that have the same comoving volume yield nearly the same results. Our fiducial WL program assumes
statistical errors of a∼109-galaxy imaging survey (more precisely, 104 deg2 with 23 galaxies/arcmin2), and systematic errors
of 2× 10−3 in shear calibration and photometric redshift calibration. We also consider an optimistic case in which the total
(systematic + statistical) errors are simply double the statistical errors, which effectively corresponds to total errors ∼2–3
times smaller than those of the fiducial case. Our fiducial program corresponds fairly closely to the one recommended by the
Astro2010 Cosmology and Fundamental Physics panel, and it is a reasonable, probably conservative forecast of what could
be achieved by a combination of LSST, Euclid/WFIRST, and ground-based BAO and SN surveys.

To quantify the expected performance of this program and its variants, we considered two dark energy models, one with
wa = w0 + wa(1 − a) = wp + wp(ap − a), where ap = (1 + zp)−1 is the expansion factor at which w is best constrained,
and a second withw(a) allowed to vary freely in each of 36 bins of∆a = 0.025, reaching to z = 9. In both cases we allowed
deviations from GR-predicted growth rates characterized by an overall multiplicative offset G9 in G(z) and by a shift∆γ in
the logarithmic growth rate d lnG/d ln a ∝ [Ωm(a)]γ+∆γ . We focused principally on the expected errors inwp,wa,∆γ , and
G9, including the DETF FoM defined as (σwpσwa)

−1. While principal components (PCs) of the general w(a) model allow a
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much richer characterization of the dark energy history (and its uncertainties), we regard the combination of the DETF FoM
and the∆γ error to be as good as any alternative for characterizing the strength of a combined program.

The primary results of our forecasting investigation appear in Tables 8–10 and, in distilled form, in Figs. 33 and 38. The
FoMof our fiducial program is 664,more than five times better than our Stage III forecast and a roughly 50-fold improvement
on current knowledge. Within the adopted parameterization, 1σ errors on individual parameters are 0.014 on wp, 0.11 on
wa, 0.034 on∆γ , 0.015 on lnG9, 5.5× 10−4 onΩk, and 5.1× 10−3 on h. All three methods contribute significantly to these
constraints. For our fiducial assumptions, BAO have the greatest leverage on the DETF FoM, in the sense that halving the
BAO errors produces the greatest increase in the FoMwhile doubling the BAO errors produces the greatest decrease. WL has
the least leverage, which implies that the fiducial BAO and SN measurements constrain the expansion history well enough
that the WL measurements add relatively little constraining power. However, the error on ∆γ scales nearly linearly with
the WL errors, since all of the information on growth comes from the WL measurements. (Note that we scale the total WL
errors, equivalent to multiplying systematic and statistical errors by the same factor.) Conversely, changing the SN or BAO
errors has almost no impact on the∆γ constraint.

Changing to our optimistic assumptions about WL systematics (total errors equal to twice the statistical errors), while
retaining the fiducial SN and BAO assumptions, raises the FoM from 664 to 789 and lowers the∆γ error from 0.034 to 0.026.
For the optimistic systematics model, WL measurements have the greatest leverage on the DETF FoM instead of the least,
and the ∆γ errors continue to scale approximately linearly with the WL errors. Thus, our conclusions about the power of
WL relative to BAO and SN depend significantly on the assumed importance of WL systematics, which is difficult to predict
at present.

When we move from the w0–wa model to the general w(z) model, the forecast errors on ∆γ barely change, since it is
constrained by differential measurements of matter clustering over the redshift range of our fiducial data sets. The errors
on G9, on the other hand, expand dramatically, because even within GR the overall amplitude of structure can be shifted by
the behavior of w(z) outside of our constrained redshift range (i.e., at z > 3). If the amplitude of matter clustering proved
inconsistent with that of aw0–wa, G9 = 1 model, it would definitely indicate something interesting, but this measurement
alone would not show whether the unusual behavior arises from a violation of GR or from unexpected behavior of w(z) at
high redshift.

For variations around our fiducial program, the impact of reducing the errors of SN measurements is greater than the
impact of increasing the redshift range of these measurements. For example, reducing the error per redshift bin from 0.01
mag to 0.005 mag increases the FoM from 664 to 1197, while increasing the maximum redshift from 0.8 to 1.6 only raises
the FoM to 841. These scalings imply that the highest priority for SN studies is to minimize statistical and systematic errors
at z < 1, and that pushing to higher redshifts is a lower priority until the reduction in z < 1 systematics has been saturated.
At fixed fsky, BAO constraints have a stronger dependence onmaximum redshift, because at higher z the BAOmeasurements
become more precise and the importance of the direct H(z)measurements grows.

We have not incorporated cluster abundances into our primary forecasts, but we have investigated how precisely our
fiducial Stage III and Stage IV programs (CMB+SN+BAO+WL) predict the parameter combination σ11,abs(z)Ω0.4

m that is best
constrained by cluster abundances. For aw0–wa dark energy model, the forecast precision is ∼1.5% for Stage III and ∼0.75%
for Stage IV if we assume GR is correct. If we allow GR deviations parameterized by G9 and∆γ , then the forecast precision
degrades significantly, especially for Stage III at z > 0.5. Our analysis in Section 6.3.3 indicates that clusters calibrated by
stacked weak lensing should be able to achieve higher precision on σ11,abs(z)Ω0.4

m . When we add the anticipated cluster
constraints for a 104 deg2 survey with a 1014M⊙ mass threshold, assuming that calibration errors are limited by weak
lensing statistics, we find that the DETF FoM grows by a factor of 1.4 at Stage III and 1.9 at Stage IV relative to the fiducial
CMB+SN+BAO+WLprogram. The error on∆γ decreases by a factor of 3.2 for Stage III and by 1.6 for Stage IV. Cluster studies
will be enabled automatically by largeWL surveys,which canbeused to identify clusters as optical galaxy concentrations and
to provide mass calibration for clusters identified by any method (X-ray, SZ, optical). If they can achieve the limits imposed
by weak lensing statistics, they can add considerable leverage to tests of dark energy models and deviations from GR.

We have adopted a similar strategy for some of the alternative probes discussed in Section 7. For a w0–wa dark energy
model, the forecast precision on H0 is 0.7% from our fiducial Stage IV program, 1.3% for Stage III. A direct measurement of H0
with 1% precision would improve the DETF FoM of the fiducial Stage IV program by 20%; a 2% measurement would improve
the Stage III FoM by 15%. The forecast constraint on H0 degrades, dramatically, to ∼60% in our general w(z) model, since
large changes inw at low redshift can affectH0 significantly while havingminimal impact on probes at higher redshift. Thus,
a discrepancy between direct measurements and H0 constraints from CMB+SN+BAO+WL data could be a diagnostic for
unusual low-z evolution of dark energy.

The Alcock–Paczynski parameter H(z)DA(z) is constrained to ∼0.2%–0.3% by our fiducial Stage IV program over the
redshift range 0.2 < z < 3, setting a demanding target for AP tests. The corresponding precision forecast for Stage
III is ∼0.5%. Redshift-space distortions and galaxy clustering can measure the parameter combination σ8(z)f (z), which
is constrained by our Stage IV fiducial program to about 5% at z ≈ 0.1, 2.5% at z = 0.5, and ∼1% beyond z = 1,
numbers that improve only slightly for the optimistic weak lensing systematics. For Stage III, the constraints at a given
redshift are considerably weaker. In all cases the constraints are tighter if we assume GR (∆γ = 0, G9 = 1), but the
main purpose of redshift-space distortion analyses would be to test GR growth, so we regard the looser constraints as
the more relevant targets for such analyses. This level of precision appears within reach of large galaxy redshift surveys
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if theoretical systematics can be adequately controlled, making redshift-space distortions a potentially powerful addition to
the arsenal of cosmic acceleration probes. While WL and redshift-space distortions both probe structure growth, they have
different dependences on the two distinct potentials that enter the GR spacetime metric (see Section 7.7), so a discrepancy
between them could reveal a GR-deviation that might not be captured by ∆γ alone. Galaxy redshift surveys designed for
BAO measurements should allow redshift-space distortion analyses (and AP tests) as an automatic by-product, which may
greatly increase their science return. Precise measurements of the shape of the galaxy power spectrum could also reveal
signs of scale-dependent growth, another possible consequence of modified gravity models, though these may be difficult
to distinguish from other factors that affect the power spectrum shape (see Section 7.7).

The aggregate precision of our fiducial Stage IV program measurements, in the sense described in Section 8.6, is 0.23%
in DL (from SN), 0.13% in DA (from BAO), 0.21% in H (also from BAO), and 0.33% in σ8 for fixed geometry (for fiducial WL;
optimistic WL yields 0.14%). For the fiducial Stage IV cluster program with weak lensing mass calibration we forecast 0.20%
aggregate precision on σ8(z)Ω0.4

m , while our fiducial Stage IV RSD forecast yields 0.22% aggregate precision on f (z)σ8(z). The
ultimate limits on H0 and Alcock–Paczynski measurements are still difficult to predict, but sub-percent precision appears
well within reach on the Stage IV timescale. These forecasts represent a dramatic advance over the current state of the
art, which is roughly 1%–5% for distance measurements (SN, BAO, H0) and ∼5% for structure growth measurements (σ8,
f (z)). The cosmological measurements of the past two decades have established a ‘‘standard model’’ of cosmology based on
inflation, cold dark matter, a cosmological constant, and a flat universe. Themeasurements of the next two decades will test
that model far more stringently than it has been tested to date.

The future of cosmic acceleration studies depends partly on the facilities built to enable them, partly on the ingenuity
of experimenters and theorists in controlling systematic errors and fully exploiting their data sets, and partly on the
kindness of nature. The next generation of experiments could merely tighten the noose around w = −1, ruling out many
specific theories but leaving us no more enlightened than we are today about the origin of cosmic acceleration. However,
barely a decade after the first supernova measurements of an accelerating universe, it seems unwise to bet that we have
uncovered the last ‘‘surprise’’ in cosmology. Equally important, the powerful data sets required to study cosmic acceleration
support a broad range of astronomical investigations. These observational efforts are natural next steps in a long-standing
astronomical tradition: mapping the universe with increasing precision over ever larger scales, from the solar system to the
Galaxy to large scale structure to the CMB. These ever growing maps have taught us extraordinary things — that gravity
is a universal phenomenon, that we live in a galaxy populated by 100 billion stars, that our galaxy is one of 100 billion
within our Hubble volume, that our entire observable universe has expanded from a hot big bang 14 billion years in the
past, that the dominant form of matter in the universe is non-baryonic, and that the early universe was seeded by Gaussian
(or nearly Gaussian) fluctuations that have grown by gravity into all of the structure that we observe today. We hope that
the continuation of this tradition will lead to new insights that are equally profound.
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Appendix. Glossary of acronyms and facilities

Note that we have not repeated the acronyms of X-ray surveys listed in Table 4.

ACS: Advanced Camera for Surveys (on Hubble Space Telescope)
ACT: Atacama Cosmology Telescope
ADEPT: Advanced Dark Energy Physics Telescope
AP: Alcock–Paczynski
BAO: Baryon Acoustic Oscillations
BOSS: Baryon Oscillation Spectroscopic Survey
BigBOSS: Big Baryon Oscillation Spectroscopic Survey
CCD: Charge Coupled Device
CDM: Cold Dark Matter
CFHT: Canada–France–Hawaii Telescope
CFHTLS: Canada–France–Hawaii Telescope Legacy Survey
Chandra: Chandra X-ray Observatory (NASA)
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CHIME: Canadian Hydrogen Intensity Mapping Experiment
CMB: Cosmic Microwave Background
COBE: Cosmic Background Explorer
COSMOS: Cosmic Evolution Survey (from Hubble Space Telescope)
CSP: Carnegie Supernova Project
DES: Dark Energy Survey
DEspec: Dark Energy Spectrograph
DESTINY: Dark Energy Space Telescope
DETF: Dark Energy Task Force
DUNE: Dark Universe Explorer
EE50: Encircled Energy 50%
eROSITA: extended Roentgen Survey with an Imaging Telescope Array
ESA: European Space Agency
ESSENCE: Equation of State: SupErNovae trace Cosmic Expansion
Euclid: Euclid dark energy space mission (ESA)
FKP: Feldman–Kaiser–Peacock (1994) P(k) estimation method
FFT: Fast Fourier Transform
FIRST: Faint Images of the Radio Sky at Twenty-Centimeters (from the VLA)
FWHM: Full Width at Half Maximum
Gaia: Gaia astrometry mission (ESA)
GR: General Relativity
HEAO: High-Energy Astrophysics Observatory (NASA)
HETDEX: Hobby-Eberly Telescope Dark Energy Experiment
HOD: Halo Occupation Distribution
HSC: Hyper-Suprime Camera (for Subaru Telescope)
HST: Hubble Space Telescope
IGM: Intergalactic Medium
IRAC: Infrared Array Camera (on Spitzer Space Telescope)
ISCS: IRAC Shallow Cluster Survey
JDEM: Joint Dark Energy Mission
JEDI: Joint Efficient Dark-energy Investigation
JPAS: Javalambre Physics of the Accelerating Universe Astrophysical Survey
JWST: James Webb Space Telescope
KIDS: Kilo-Degree Survey
LCS: Light Curve Shape
LIGO: Laser Interferometer Gravitational Wave Observatory
LOSS: Lick Observatory Supernova Survey
LRG: Luminous Red Galaxy
LSST: Large Synoptic Survey Telescope
NASA: National Aeronautics and Space Administration
NOAO: National Optical Astronomy Observatories
NVSS: NRAO VLA Sky Survey
Pan-STARRS: Panoramic Survey Telescope and Rapid Response System
PAU: Physics of the Accelerating Universe
PCA: Principal Component Analysis
Planck: Planck CMB satellite (ESA)
PS1: Pan-STARRS 1
PSF: Point Spread Function
PTF: Palomar Transient Factory
RASS: ROSAT All Sky Survey
RCS: Red-Sequence Cluster Survey
ROSAT: Roentgen Satellite
SDSS: Sloan Digital Sky Survey
SED: Spectral Energy Distribution
SFR: Star Formation Rate
SKA: Square Kilometer Array
SN: Supernova
SNAP: Supernova Acceleration Probe
SNLS: Supernova Legacy Survey (part of CFHTLS)
SNR: Signal-to-Noise Ratio
SPT: South Pole Telescope
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STEP: Satellite Test of Equivalence Principle
SuMIRe: Subaru Measurement of Images and Redshifts
2SLAQ: 2dF and SDSS Large Area Quasar survey
VHS: VISTA Hemisphere Survey
VLBI: Very Long Baseline Interferometry
VIKING: VISTA Kilo-Degree Infrared Galaxy Survey
VIRGO: VIRGO gravity wave observatory
VVDS: VIMOS-VLT Deep Survey
UKIDSS: UKIRT Infrared Deep Sky Survey
WFC3: Wide-Field Camera 3 (on Hubble Space Telescope)
WFPC2: Wide-Field and Planetary Camera 2 (on Hubble Space Telescope)
WFIRST: Wide Field Infrared Survey Telescope
WiggleZ: WiggleZ galaxy redshift survey
WISE: Wide-field Infrared Survey Explorer
WL: Weak Lensing
WMAP: Wilkinson Microwave Anisotropy Probe (NASA)
XMM-Newton: X-ray Multi-Mirror Mission
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