
Tutorial IV
Observational Cosmology

Exercise 1:

Coordinate Distance and Mattig’s Formulae.

Earlier during the lectures, when discussing Robertson-Walker geometries,
we encountered the issue of how to translate our theoretical models into
observationally relevant properties.

The main issue in translating the geometry of space into observational
realities is the relation between the “theoretical” coordinate distance r (the
comoving coordinate location of an object comoving with the expansion of
the Universe, usually taken as the hypothetical location at the spacetime
hypersurface at present time) and the redshift z of an object. The relations
r(z) are called Mattig’s formula. In general it is not possible to find an-
alytical expressions for the expansion history, but for a matter-dominated
Universe this is perfectly feasible.

To keep it simple, we are first going to observe in matter-dominated
Universe. At the end of the sections on the Robertson-Walker metric, we
derived the general relation between coordinate distance r and redshift z,

r =
c

H0

∫ z

0

dy

H(y)/H0

(1)

• Show that for a matter-dominated Universe you obtain the following
relation for the coordinate distance r(z):

r =
c

H0

∫ z

0

dy

(1 + y)
√

1 + Ω0y
(2)

• Calculate the coordinate distance r(z) for an object in an Einstein-de
Sitter Universe (Ω0 = 1). That is, express r in terms of redshift z.

• Calculate the coordinate distance r(z) for an object in an empty
matter-dominated Universe (Ω0 = 0).

To be able to assess observational probes we also need to have expressions
for the curvature measure R0Sk(r/R0), with

Sk(r/R0) =



























sinh(r/R0) k = −1

r/R0 k = 0

sin(r/R0) k = +1

(3)
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• Calculate R0Sk(r/R0) for an Einstein-de Sitter Universe, and show
that it is equal to

R0Sk(r/R0) =
2c

H0

{

1 −
1

√
1 + z

}

(4)

• Calculate R0Sk(r/R0) for an empty Ω0 = 0 Universe, and show that

R0Sk(r/R0) =
c

2H0

z
2 + z

1 + z
(5)

The general expressions for Mattig’s formulae in a matter-dominated Uni-
verse are:

R0 Sk(r/R0) =
2c

H0

Ω0z + (Ω0 − 2)
{

√

1 + Ω0z − 1
}

Ω2

0
(1 + z)

(6)

or, more convenient for Ω0 � 1,

R0 Sk(r/R0) =
c

H0

z

(1 + z)

1 +
√

1 + Ω0z + z

1 +
√

1 + Ω0z + Ω0z/2
(7)
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Exercise 2:
Angular and Luminosity Distance

Using the expressions for Mattig’s formulae above,

• Give the general expression for luminosity distance DL(z) and angular
diameter distance DA(z) in a matter-dominated Universe (use expres-
sion eqn. 6).

• Calculate specifically the expression for the angular diameter distance
DA(z) in an Einstein-de Sitter Universe.

• Show that DA(z) in an EdS Universe has a maximum. Derive the
redshift zmax at which DA(z) reaches its maximum. Make a sketch of
DA(z) vs. redshift z.

• Repeat the same for an empty Ω0 = 0 Universe and for a Ω0 = 0.3
Universe. What difference in behaviour with z do you find ?

• What does this mean for the angular size of an object with a fixed
physical size L seen at redshift z. Answer this question by plotting
the angle θ(z) as function of z for Ω0 = 1, Ω0 = 0.3 and Ω0 = 0.0.

• For H0 = 71 km/s/Mpc calculate the value of the angular diameter
distance for objects at z = 1089.

We are now going to look at a very important application, observing the
Microwave Background. We want to work out what the angular size is of
the horizon of the Universe at recombination/decoupling. In this, we make
the simplifying assumption of living in a matter-dominated Universe. The
horizon scale at recombination is given by

RH = 3c tdec

(8)

=
2c

Hdec

• Show that an approximate expression for Da(z) at high redshifts z � 1

DA ≈
2c

H0Ω0

1

z
(9)

• Combing the expression for the horizon distance at decoupling RH

and the approximate expression for dA, what is the angular size θH

of a patch on the sky with the size of the horizon at recombination in
terms of Hdec, zdec, Ω0 and H0 ?
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• Show that for z � 1, the Hubble parameter H(z) in a matter-dominated
Universe is approximately

H2(z) ≈ Ω0H
2

0
z3 (10)

• Show that for the recombination/decoupling horizon angle on the sky,

θH ≈ 1.74◦ Ω
1/2

0

(

zdec

1089

)

−1/2

(11)

• Given that temperatures on the CMB sky are the same everywhere,
what conclusion do you draw from your inference ?
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