
Tutorial II
Newtonian Cosmology; Hubble Expansion

Exercise I:

Newtonian Cosmology

In 1934 – i.e. way after Friedman derived his equations- Milne and Mc-
Crea showed that relations of the ‘Friedman’ form can be derived using
non-relativistic Newtonian dynamics.

• Write down the field equation for the gravitational force in the non-
relativistic limit.

• Imagine you are a particle moving outside a spherically symmetric
mass concentration of radius R with a total mass M and a density
profile ρ(r). What two essential simplifications can you invoke to de-
rive your equation of motion ?

• Write down the equation of motion (ie. the equation for your ac-
celeration). In addition, derive the corresponding energy equation
(conservation of energy).

• We go one step further, and assume you are embedded within the
spherically symmetric mass concentration. Imagine you are at a radius
r, what will be your equation of motion ?

Subsequently, the situation becomes even more benevolent: we find ourselves
in a homogeneous and isotropic medium.

• Write down the equation of motion and the energy equation.

• What three qualitative different situations can you distinguish on the
basis of the energy E of a shell ?

• Take a shell of initial radius r1,i and another shell of initial radius r2,i,
in how far does their evolution differ (or not) ? (assume that there are
no non-radial motions). What does this imply for the evolution r(t)
for any shell in the mass distribution ?

• What does the latter imply for the evolution of the density ρ(t).

In principle, we are now all set to solve the equation of motion of the system,
as a function of E. In fact, it is possible to derive the full solution for any
spherically symmetric - not even homogeneous - mass distribution. This
is the socalled Spherical Model. It would be a good exercise to do so ...
however, we go for the real work, solving the equation of motion for a matter-
dominated FRW Universe.
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Exercise II:
Solutions Matter-dominated FRW Universes

The general Friedman-Robertson-Walker-Lemı̂tre equation for a Universe
including a non-zero cosmological constant is
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We are going to investigate the simple situation of a matter-dominated Uni-

verse. Assuming matter can be assumed to be “cosmic dust” (true for dark
matter, and baryonic matter on large scales) pressure can be ignored, ie.
p = 0. In a matter-dominated Universe the cosmological constant is zero,
Λ = 0.

• On the basis of the full FRW equations above, derive the following
FRW equations for a matter-dominated FRW Universe
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• Assume k = 0. What does this imply for Ω0 ? Solve this equation
for this situation, ie. derive the expansion factor a(t). Note that this
solution is known as the Einstein-de Sitter Universe.

Regretfully, for a general matter-dominated Universe you will not succeed in
finding a direct solution. To be able to solve the FRW equations we need to
resort to a parameterized solution. Introduce the parameter Φ, the socalled
development angle.
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• Show that the FRW equation (of motion) in terms of the development
angle becomes
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• Solve these second-order differential equations by using the solution
ansatz

a(Φ) = c1 eb1Φ + c2 eb2Φ +
1

2

Ω0

Ω0 − 1
(6)

After settling the values of b1 and b2, determine the values of c1 and
c2 from the initial condition a(t = 0) = a(Φ = 0) = 0). Show that you
obtain the following set of solutions:

- for a high-density Ω0 > 1 Universe
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- and for a low-density Ω0 < 1 Universe
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• Make a graph of solutions a(t) (i.e. expansion factor a vs. time t)
for the three classes of solution: Einstein-de Sitter Universe, Open
Universe (Ω0 < 1) and Closed Universe (Ω0 > 1)
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Exercise III:
Hubble Expansion and Bounded Objects

We have seen that galaxies are participating in the uniform Hubble ex-
pansion. Question is why we ourselves do not expand along. If this were so,
we would not notice anything like expansion. Assume a Hubble parameter
of H0 = 71 km/s/Mpc. As a thought experiment compute

• the expected Hubble expansion rate between your toes and the tip of
your head.

• the expected Hubble expansion rate between the core of the Earth and
ourselves ?

• What is the reason behind the Hubble expansion being insignificant
under these circumstances ? Suggestion: compute the gravitational
binding energy/escape velocity at the surface of the Earth and compare
to v = Hr.

• Repeat the same exercise for Planet Earth wrt. the Sun and Dwarf
Planet Pluto wrt. the Sun. Subsequently, consider the Sun and the
Galaxy. Next, consider the Local Group (mainly M31 and the Galaxy).
Then, consider the Local Group, or the Galaxy, wrt. the Local Super-
cluster dominated by the Virgo Cluster. Thus, what is your conclusion
with respect to the scale at which the Hubble expansion becomes no-
ticeable ? Note that you are expected to look up the relevant numbers
yourself !
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Exercise IV (Computer Task):
Hubble Expansion and Anisotropic Velocities

Kinematically speaking, the isotropic and uniform Hubble expansion of the
Universe is a rather special circumstance. We may appreciate this when
looking at the general flow of a fluid around a position r0. The kth compo-
nent vk(r of the velocity at location r is given by

vk(r) = vk(r0) +
1

3
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in which the divergence ∇ · v encapsulates the expansion or contraction of
a volume element, the shear σij its shape deformation and ωij the vorticity,
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The Hubble expansion is unique in that it does not have any anisotropic

terms, both shear and vorticity are equal to zero. In other words, the Hubble

parameter is equal to

H(t) =
1

3
∇ · v (11)

In the lecture the Hubble expansion illustrated by means of a two-dimensional
cartoon involving hundred randomly distributed points within a square. In
this computer task you will need to follow up on this experiment for the
generic case involving both an anisotropic shear term and a vorticity term.
You may need whatever computer program (Matlab, Python, IDL) you feel
most at ease with.

• Distribute N = 1000 points randomly within a box of size 100 × 100.
This defines timestep t1. The particles have an initial location
~rj(t1) = (r1,j, r2,i), j = (1, . . . , N).

We are going to follow the evolution of the initial particle distribution at 2
subsequent timesteps t2 and t3. The initial timestep is t1. At t1 the particles
have an initial position ~rj(t1) = (r1,j , r2,j), j = (1, . . . , N). Imagine we
are at a central position ~s, from where we observe the displacement of the
surrounding Universe.

In a time interval ∆t = (t − t1) each particle m gets displaced by an
amount ∆~rm(t),

~rm(t) = ~rm(t1) + ∆~rm(t) (12)
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where the displacement is a product of the deformation ~D with the time
interval ∆t,

∆~r(t) = ~D∆t , (13)

The deformation is the sum of an expansion/contraction H, shear σ and
vorticity ω term.

Assume we have a particle m with initial coordinates ~r(t1) = (r1, r2).
then the k-th coordinate of its deformation ~D is equal to

Dk(t) = H (rk − sk) + σkj(rj − sj) + ωkj(rj − sj) . (14)

where we use the Einstein summation convention !

For our experiment the resulting location ~r(t) = (r1(t), r2(t)) at time t of
the particle with initial location ~r(t1) = (r1, r2) is

rk(t) = rk + H(rk − sk) + Σkj(rj − sj) + Ωkj(rj − sj) , (15)

where H ≡ H∆t, Σkj ≡ σkj∆t and Ωkj ≡ ωkj∆t. Thus, for the initial time

t1 : H = 0, Σkj = 0, Ωkj = 0 (16)

Note that strictly speaking this expression is only valid for small displace-
ments (small timesteps): keep it moderate ... (but not too small either,
otherwise it is not too clarifying.

For the traceless shear tensor we have the following conditions:

Σij =

(

σ11 σ12

σ12 σ22

)

(17)

for which σ11 + σ22 = 0 (so that Σij is effectively specified by 2 numbers)
while the vorticity tensor is specified via one number, ω,

Ωij =

(

0 ω

−ω 0

)

(18)

Generate 6 different configurations:

• pure expansion only: Σij = Ωij = 0

• pure shear only: H = Ωij = 0

• pure vorticity only: H = Σij = 0
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• expansion + shear: Ωij = 0

• expansion + vorticity: Σij = 0

• expansion + shear + vorticity

For each timestep plot particle distribution within the central box of
size 50 × 50. You should decide yourself on the values for Σij, Ωij and H.
You have some freedom in choice, but do not assume values which are too
radical.

• Repeat the same, yet with ~s = (75, 75) as centre of the plotbox of size
50 × 50.
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