

Cosmic Structure Analysis

The

- overwhelming complexity of the individual structures,
- as well as their connectivity,
- the lack of structural symmetries,
- the intrinsic multiscale nature and
- the wide range of densities that one finds in the cosmic matter distribution

has prevented the use of simple and straightforward instruments.

To assess the key aspects of the nonlinear cosmic matter and galaxy distribution:

- multiscale character
- weblike network
- volume dominance voids

hierarchical structure formation

anisotropic collapse

asymmetry overdense vs. underdense

Despite the multitude of elaborate qualitative descriptions it has remained a major challenge to characterize the structure, geometry and topology of the Cosmic Web.

Quantities as basic and general as the mass and volume content of clusters, filaments, walls and voids are still not well established or defined. Since there is not yet a common framework to objectively define filaments and walls, the comparison of results of different studies concerning properties of the filamentary network -- such as their internal structure and dynamics, evolution in time, and connectivity properties -- is usually rendered cumbersome and/or difficult.

The overwhelming complexity of the individual structures as well as their connectivity, the lack of structural symmetries, its intrinsic multiscale nature and the wide range of densities that one finds in the cosmic matter distribution has prevented the use of simple and straightforward toolbox.

Over the years, a variety of heuristic measures were forwarded to analyze specific aspects of the spatial patterns in the large scale Universe. Only in recent years these have lead to a more solid and well-defined machinery for the description and quantitative analysis of the intricate and complex spatial patterns of the Cosmic Web.

Nearly without exception, these methods borrow extensively from other branches of science such as image processing, mathematical morphology, computational geometry and medical imaging.

Structure Statistics:

Correlation Functions Power Spectrum, et al. Standard Reference:

Martinez & Saar

Ergodic Theorem

Ensemble Averages

Spatial Averages over one realization of random field

- Basis for statistical analysis cosmological large scale structure
- In statistical mechanics Ergodic Hypothesis usually refers to time evolution of system, in cosmological applications to <u>spatial distribution</u> at one fixed time

Correlation Functions

Joint probability that in each one of

the two infinitesimal volumes $dV_1 \& dV_2$,

at distance r,

lies a galaxy

Infinitesimal Definition Two-Point Correlation Function:

$$dP(r) = \overline{n}^2 (1 + \xi(r)) \ dV_1 dV_2$$
mean density

Correlation Functions

In case of Homogeneous & Isotropic point process

then $\xi(\vec{r})$

only dependent on

$$|\vec{r}| = r$$

Infinitesimal Definition Two-Point Correlation Function:

$$dP(r) = \overline{n}^2 (1 + \xi(r)) \ dV_1 dV_2$$
mean density

Power-law Correlations

$$\xi(r) = \left(\frac{r}{r_0}\right)^{-\gamma}$$

$$\gamma \approx 1.8$$

$$r_0 \approx 5h^{-1}Mpc$$

Totsuji & Kihara 1969

Peebles 1975, 1980, ...

Correlation Functions

Angular & Spatial Clustering

$$dP(\theta) = \overline{n}^2 \{1 + w(\theta)\} d\Omega_1 d\Omega_2$$

Two-point angular correlation function is the "projection" of $\xi(r)$

Limber's Equation:

$$w(\theta) = \frac{\iint p(\vec{x_1}) p(\vec{x_2}) x_1^2 x_2^2 dx_1 dx_2 \xi(|\vec{x_1} - \vec{x_2}|)}{\left[\int_{0}^{\infty} x^2 p(x) dx\right]^2}$$

p(x): survey selection function

Angular Clustering Scaling

Two-point correlation function:

I small angles: power-law

$$w(\theta) = \left(\frac{\theta_0}{\theta}\right)^{\gamma}$$

$$\gamma \approx 0.8$$

ie. to homogeneity

Angular Clustering Scaling

sky-redshift space 2-pt correlation function (2,2)

Correlation function determined in sky-redshift space:

$$\xi(\sigma,\pi)$$

sky position: $\sigma = (\alpha, \delta)$ redshift coordinate: $\pi = cz$

Close distances:

distortion due to non-linear Finger of God Large distances:

distortions due to large-scale flows

Redshift Space Distortions Correlation Function

On average, $\xi_s(s)$ gets amplified wrt. $\xi_r(r)$

Linear perturbation theory (Kaiser 1987):

$$\xi_s(s) = (1 + \frac{2}{3}\Omega^{0.6} + \frac{1}{5}\Omega^{1.2})\xi_r(s)$$

Large distances:

distortions due to large-scale flows

Structural Insensitivity

Voronoi foam, R=1.6, smoothed original

2-pt correlation function is highly insensitive to the geometry & morphology of weblike patterns:

compare 2 distributions with same 2(r), cq. P(k), but totally different phase distribution

Voronoi foam, R=1.6, random phases

In practice, some sensitivity in terms of distinction Field, Filamentary, Wall-like and Cluster-dominated distributions:

because of different fractal dimensions

Structural Sensitivity

Walldominated

Filamentary

Cluster-like

Power Spectrum

Power Spectrum

P(k) specifies the relative contribution of different scales to the density <u>fluctuation field</u>. It entails a wealth of cosmological information.

$$\sigma^{2} = \int \frac{d\vec{k}}{(2\pi)^{3}} P(k) \qquad \Leftrightarrow \qquad P(k) \propto \left\langle \hat{f}(\vec{k}) \hat{f}^{*}(\vec{k}) \right\rangle$$

Formal definition:

Power Spectrum – Correlation Function

Gaussian random field fully described by 2nd order moment:

in Fourier space:

power spectrum

in Configuration (spatial) space:

2-pt correlation function

$$(2\pi)^{3} P(k_{1}) \delta_{D}(\vec{k}_{1} - \vec{k}_{2}) = \langle \hat{f}(\vec{k}_{1}) \hat{f}^{*}(\vec{k}_{2}) \rangle$$

$$\xi(\vec{r}_1, \vec{r}_2) = \xi(|\vec{r}_1 - \vec{r}_2|) = \langle f(\vec{r}_1) f(\vec{r}_2) \rangle$$

$$P(k) = \int d^3r \ \xi(\vec{r}) \ e^{i\vec{k}\cdot\vec{r}}$$

$$\xi(\vec{r}) = \int \frac{d^3k}{(2\pi)^3} P(k) e^{-i\vec{k}\cdot\vec{r}}$$

Random Field Phases

$$f(\vec{x}) = \int \frac{d\vec{k}}{(2\pi)^3} \, \hat{f}(\vec{k}) \, e^{-i\vec{k}\cdot\vec{x}}$$

$$\hat{f}(\vec{k}) = \hat{f}_r(\vec{k}) + i \hat{f}_i(\vec{k}) = \left| \hat{f}(\vec{k}) \right| e^{i\theta(k)}$$

When a field is a Random Gaussian Field, its phases $\phi(k)$ are uniformly distributed over the interval [0,2 π]:

$$\theta(k) \in U[0, 2\pi]$$

As a result of nonlinear gravitational evolution, we see the phases acquire a distinct non-uniform distribution.

DTFE:

Delaunay Tessellation Field Estimator

Points, Tessellations & Patterns

Schaap & van de Weygaert 2000 Van de Weygaert & Schaap 2007 Cautun & van de Weygaert 2012

DTFE

Delaunay Tessellation Field Estimator

Density Estimate:
 Voronoi Tessellation (contiguous)

multi-D field interpolation:
 Delaunay Tessellations

Voronoi Tessellations

$$\Pi_i = \{ \vec{x} | d(\vec{x}, \vec{x}_i) < d(\vec{x}, \vec{x}_j) \quad \text{for all } j \neq i \}$$

Dual Tessellations

Voronoi Vertices

Centers Circumscribing Spheres 4 nuclei

Delaunay Tetrahedron

Sensitivity of Delaunay Tessellations

to weblike geometry of particle distribution:

suggestion for exploiting this to explore the topology of the cosmic mass distribution

DTFE Alpha Shapes

DTFE

- Delaunay Tessellation Field Estimator
- Piecewise Linear representation density & other discretely sampled fields
- Exploits sample density & shape sensitivity of Voronoi & Delaunay Tessellations
- Density Estimates from contiguous Voronoi cells
- Spatial piecewise linear interpolation by means of Delaunay Tessellation

DTFE Procedure

DTFE reconstruction procedure:

Summary

- I. Construction

 Delaunay Tessellation
- II. Point Sampling
- III. Determination Field Values
- IV. Calculation Field Gradient in Delaunay cell
- V. Interpolation to locations x
 - Image construction:
 interpolation to
 ordered locations
- VI. Processing of field

http://www.astro.rug.nl/~voronoi/DTFE/dtfe.html

Tracing the Cosmic Web:

Pattern Classification

Tracing the Cosmic Web

Classes Identification & Classification procedures

Graph & Percolation techniques
 Minimal Spanning Tree

Geometric, Hessian-based methods
 Vweb - velocity shear

gradient velocity field

Tweb - tidal field

Hessian potential field

Scale-space Multiscale Hessian-based methods MMF/Nexus

Topological Methods (Morse theory)
 Watershed Void Finder / Voboz

Disperse Spineweb

Phase-Space (multistream) structure:
 Phase-space sheet & flip-flop

Origami Multistream

Nexus/MMF:

Multiscale Morphology of the Cosmic Web

the Formalism

Aragon-Calvo, Jones, vdW, van der Hulst 2007 Cautun, vdW & Jones 2013

Inspiration from Medical Imaging:

trace blood vessels, tumors, etc.

- Florack, Kuijper et al.; Lindeberg et al.
- Sato et al. 1997; Lorentz et al. 1997
- Frangi et al. 1998 Multiscale vessel enhancement filter

Scale Space Pyramids

Gaussian smoothing

keeping

same number of pixels.

The ensemble of images is referred to as a scale space stack:

It is analysed as a single object.

Nexus Fields

 Nexus/Nexus+ fields relevant for cosmic web dynamics

- Identification on the basis of 6 different physical characteristics of the cosmic mass distribution:
- Density
- Log(Density)
- Tidal field
- Velocity Divergence
- Velocity Shear
- Nexus+ log(density)

from: Cautun et al. 2013

 Smooth the field over the range of relevant scales

$$f_n(\vec{x}) = \int d\vec{y} \ f_{DTFE}(\vec{y}) \ W_n(\vec{y}, \vec{x})$$

with Gaussian filter

$$W_n(\vec{y}, \vec{x}) = \frac{1}{(2\pi R_n^2)^{3/2}} \exp\left(-\frac{|\vec{y} - \vec{x}|^2}{2R_n^2}\right)$$

 Scale space: stacking density maps f_n

$$\Phi = \bigcup_{levels\ n} f_n$$

scale

Nexus/Nexus+ Scale Space

- Smooth the field over the range of relevant scales
- Density field around location to 2nd order determined by Hessian:

$$f(\mathbf{x}_0 + \mathbf{s}) = f(\mathbf{x}_0) + \mathbf{s}^T \nabla f(\mathbf{x}_0) + \frac{1}{2} \mathbf{s}^T \mathcal{H}(\mathbf{x}_0) \mathbf{s} + \dots$$

Hessian filtered Density field:

$$\frac{\partial^2}{\partial x_i \partial x_j} f_S(\mathbf{x}) = f_{\text{DTFE}} \otimes \frac{\partial^2}{\partial x_i \partial x_j} W_G(R_S)$$

$$= \int d\mathbf{y} f(\mathbf{y}) \frac{(x_i - y_i)(x_j - y_j) - \delta_{ij} R_S^2}{R_S^4} W_G(\mathbf{y}, \mathbf{x})$$

scale

 Morphology determined by eigenvalues of Hessian:

$$\lambda_1 > \lambda_2 > \lambda_3$$

Structure	λ ratios	λ constraints
Blob	$\lambda_1 \simeq \lambda_2 \simeq \lambda_3$	$\lambda_3 < 0 \; ; \; \lambda_2 < 0 \; ; \; \lambda_1 < 0$
Line	$\lambda_1 \simeq \lambda_2 \gg \lambda_3$	$\lambda_3 < 0 \; ; \; \lambda_2 < 0$
Sheet	$\lambda_1 \gg \lambda_2 \simeq \lambda_3$	$\lambda_3 < 0$

- Smooth the field over the range of relevant scales
- Select the characteristic scale of a particular (local) morphological element

Structure	λ ratios	λ constraints
Blob	$\lambda_1 \simeq \lambda_2 \simeq \lambda_3$	$\lambda_3 < 0 \; ; \; \lambda_2 < 0 \; ; \; \lambda_1 < 0$
Line	$\lambda_1 \simeq \lambda_2 \gg \lambda_3$	$\lambda_3 < 0 \; ; \; \lambda_2 < 0$
Sheet	$\lambda_1 \gg \lambda_2 \simeq \lambda_3$	$\lambda_3 < 0$

Nexus/MMF formalism:

Aragon-Calvo et al. 2007 Aragon-Calvo et al. 2010 Cautun et al. 2013 Cautun et al. 2014

Nexus/MMF Procedure

- Smooth the field over the range of relevant scales
- Hessian filtered density field
- Morphological characterization in terms of eigenvalues Hessian
- Select the *characteristic scale* of a particular (local) morphological element
- Nexus/MMF morphology Filter Bank

scale

Nexus: MMF Filter Bank

• Scale Space Map Stack

$$\Psi(\vec{x})$$

maximum morphology response across full range of scales

• To filter out morphology noise: morphology dependent thresholds,

$$\tau_c, \tau_f, \tau_w$$

value dependent on dynamical and/or structural (percolation) considerations

Object Map

$$O(\vec{x})$$

Nexus Morphological Signatures

- a) density field
- b) blob/cluster node signature
- c) filament signature
- d) wall signature

• from: Cautun et al. 2013

Nexus Signature & Thresholds

Nexus:

Multiscale Morphology Identification

Filaments

-1.0-0.7 -0.5

-4.0

-2.8

-2.0

-1.4

Colouring : Local scale filament

Nexus Cosmic Web

Stochastic Spatial Pattern

- Clusters,
- •Filaments &
- Walls

around

Voids

in which matter & galaxies

have agglomerated

through gravity

Nexus Filaments

• Nexus identification of filaments (blue)

- Identification on the basis of 6 different physical characteristics of the cosmic mass distribution:
- Density
- Velocity Divergence
- Tidal field
- Velocity Shear
- Log(density)
- Nexus+

Nexus Walls

• Nexus identification of walls (orange)

- Identification on the basis of 6 different physical characteristics of the cosmic mass distribution:
 - Density Velocity Divergence
 - Tidal field Velocity Shear
- Log(density) Nexus+
- from: Cautun et al. 2013

Spine of the Cosmic Web

Nexus/MMF:

Cosmic Web Characteristics

Aragon-Calvo, vdW & Jones 2010 Cautun, vdW, Jones & Frenk 2014

Cosmic Web:

Density-Morphology Connection

Mass & Volume content
Web morphologies

Density distribution Individual morphologies

Cautun et al. 2014

Walls & Filaments

Internal Diameter & Density Distribution

Walls & Filaments

Density Profiles

Filament Segmentation

V-web:

velocity (shear) flow field of the Cosmic Web

Hoffmann et al. 2012

Libeskind et al. 2013, 2014

Large Scale Flows

Large-Scale Flows:

- Structure buildup accompanied by displacement of matter:
 - Cosmic flows
- On large (Mpc) scales, structure formation still in linear regime
- Directly related to cosmic matter distribution
- Note: redshift space distortion

$$cz = Hr + v_{pec}$$

In principle possible to correct for this distortion, ie. to invert the mapping from real to redshift space

 Condition: entire mass distribution within volume should be mapped

$$\mathbf{v}(\mathbf{x},t) = \frac{H}{4\pi} \frac{f(\Omega_m)}{b} a \int d\mathbf{x}' \, \frac{\delta_{gal}(\mathbf{x}',t)}{|\mathbf{x}'-\mathbf{x}|^3}$$

Supergalactic Plane

mean KIGEN - adhesion reconstruction

Romano-Diaz & vdW 2007

Push of the Local Void

Tully et al. 2008: Local Void pushes with ~260 km/s against our local neighbourhood

Stokes' Flow Theorem

A velocity field can be decomposed into 3 basic components, according to the gradient of the flow field:

the velocity divergence, shear and vorticity in each tetrahedron.

$$\theta = \frac{1}{H} \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} \right)$$

$$\sigma_{ij} = \frac{1}{2} \left\{ \frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right\} - \frac{1}{3} (\nabla \cdot \mathbf{v}) \, \delta_{ij}$$

$$\omega_{ij} = \frac{1}{2} \left\{ \frac{\partial v_i}{\partial x_j} - \frac{\partial v_j}{\partial x_i} \right\}$$

Divergence

Shear

Vorticity

Stokes' Flow Theorem

A velocity field can be decomposed into 3 basic components, according to the gradient of the flow field:

the velocity divergence, shear and vorticity in each tetrahedron.

Shear Tensor: Eigenvalues & Deformation directions

$$\sigma_{ik} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_k} + \frac{\partial u_k}{\partial x_i} \right) - \frac{1}{3} (\vec{\nabla} \cdot \vec{u}) \delta_{ik}$$

 $\Rightarrow \sigma_1, \sigma_2, \sigma_3$

Wall

Inflow: 1 direction
Outflow: 2 directions

Filament

Inflow: 2 directions
Outflow: 1 direction

Cluster node

Inflow: 3 direction

PSCZ Divergence & Shear

Velocity Shear

Field

Resolution:

 $R_G = 3.0h^{-1} Mpc$ (left)

 $R_G = 10.0h^{-1} Mpc (right)$

CosmicFlows-3

Cosmic Web morphology: velocity shear based V-web identification flow pattern in cosmic web (Pomarede et al. 2017)

Watershed

Void Identification

Platen, vdW & Jones 2007

Definition of voids (Voronoi density & watershed)

WVF: Platen et al. 2007 ZOBOV: Neyrinck 2008

Sutter, Lavaux, Wandelt, Weinberg 2012

The Multiscale Watershed Void Finder

No exact definition of a void!

→ broad range and variety of void detection techniques

Our void finder:

- closely follows real geometry cosmic web
- no assumptions geometry void
- no user defined parameters
- → Watershed Void Finder by *Platen et al.*, 2007.

Figure from Colberg et al., 2008

Watershed Void Identification

Watershed Void Transform

Segmentation:

A division of space in individual cells

WATERSHEDS:

A cell is the union of points that are topological closer to a certain minimum

Topological Distance:

The path that connects two points via the steepest slope: the path a water-droplet would take, when running down a landscape

Following the waterflow into the distinct catchment basins.

Each basin belonging to one individual minima defines one region

Surface of Density Field

Every time two different flooding basins meet we draw a dividing wall

The Multiscale Watershed Void Finder

- local height → local density
- mountain ridges → walls and filaments
 - watershed basins → voids

WVF: Watershed Void Finder

Void persistence and merger trees

Adhesion model

Void evolution in idealized adhesion model:

- self gravity of walls and filaments modelled by artificial viscosity v
- discards nonlinear evolution on smaller scales
- models hierarchical evolution very good

Image courtesy: Johan Hidding

2 adhesion models

- $P(k) \propto k^1$
- $P(k) \propto k^{-1}$

Zel'dovich, 1970 Gurbatov, Saichev and Shandarin, 1989 Hidding et al., 2012

Void persistence and merger trees

- Merger tree is only based on one parent void!
- Combine information of all merger trees into

Persistence Diagram

(Edelsbrunner et al. 2000)

- Information w.r.t. formation and disappearance of voids due to hierarchical evolution
- Not only mathematical principle.

SpineWeb

Morse Smale & Watershed

Aragon-Calvo, Platen, vdW et al. 2010

Spine of the Cosmic Web

SpineWeb

Cosmic Spine

Cosmic Spine:

- Network of filamentary edges & sheetlike walls
- Connection of Cluster Nodes via filamentary bridges

Density Field Flow Lines

Critical Points:

- Maxima
- Minima
- Saddle Points (of various signatures)

Density Field Critical Points:

Ridges:

Connections
SaddlesMaxima

- Maximum
- X Saddle
- Minimum

Morse Complex & Field Singularities

Topological structure well-behaved C² field:

- "flow" field
- singularities minima, maxima, saddles
- critical integral lines: connection singularities
- saddles-maxima: spine of field filaments, sheets
- basin minima: voids

Practical Computation:

- Watershed Transform
- Pseudo Morse complex !!!!

Density Field & Landscape

Segmentation & Flowlines

SpineWeb Formalism

Extension of Watershed Transform:

- determination boundary regions between the watershed basins (the "voids").
- Identification of boundary pixels
- Topological Identity determined on the basis of # neighbouring voids/basins,

SpineWeb Procedure

Local Neighbourhood:

Counting Number Adjacent Voids:

 $N_v = 2$ wall

 $N_v = 3$ filament

SpineWeb Morphology Dissection

3-D SpineWeb Segmentation

Density Levels vs. Spine

density field level sets

Spinal Components:

- walls
- filaments

Spinal Walls

Spinal Filaments

Cosmo Topology

Topology

Study of the

(multiscale) shapes, complexity and connectivity

of the Cosmic Web

Geometry & Topology

Conventional Cosmological Topology Measure:

(Reduced) Genus

- # holes # connected regions
- (Gott et al. 1986; Hamilton et al. 1986; Choi et al. 2010)

Complete quantitative characterization of local geometry in terms of

Minkowski Functionals

- Minkowski Functionals:
 - Volume
 - Surface area
 - Integrated mean curvature
 - Genus/Euler Characteristic

(Mecke, Buchert & Wagner 1994)

Minkowski functionals

• Weyl's Tube formula:

Minkowski functionals Q_k are the parameters specifying the contribution of volumes r^k to the volume of a cube M^r with rounded edges of radius r:

$$Vol(M^r) = Q_0 + Q_1 r + Q_2 r^2 + Q_3 r^3$$

Topology, Homology & Cycles

Topology:

Study of connectivity and spatial relations that remain invariant under homeomorphisms (= continuous mapping between two topological objects)

Homology:

Description of topology of a space in terms of the relationship between cycles and boundaries.

Torus: one 0-cycle: rank group H_0 : 1:

two 1-cycles: rank group H₁: 2

one 2-cycle rank group H₂:

p-chain: sum of p-simplices

p-cycle: boundary of (p+1) chain

0-cycle: closed component

1-cycle: closed loop of edges,

or finite union

2-cycle: closed surface,

or finite union

adding two p-cycles → p-cycle

Group of p-cycles:

Euler-Poincare

Euler Characteristic 2 is alternating sum of Betti Numbers

3-manifold 2:

$$\chi(M) = \beta_0 - \beta_1 + \beta_2 + \beta_3$$
$$\approx \beta_0 - \beta_1 + \beta_2$$

boundary 2-manifold 22:

$$\chi(\partial M) = \beta_{0b} - \beta_{1b} + \beta_{2b}$$

the Rule of Euler

from: Robert Adler

SIMPLICIAL TOPOLOGY

Simplices, complexes, cycles, numbers of simplices, Betti numbers

$$\sum_{k} (-1)^{k} \#\{k \text{-dimensional simplices}\}\$$

$$\sum_{k} (-1)^{k} \beta_{k}$$

INTEGRAL GEOMETRY

Convexity, convex ring kinematic formulae Minkowski functionals

$$\mathcal{M}_k(M) = c_{dk} \int_{\text{Graff}(d,d-k)} \chi(M \cap V) d\mu_{d-k}^d(V)$$

$$\sum_{k} (-1)^{k} \#\{\text{critical points of index } k\}$$
$$\int_{M} \text{Tr}(R^{m/2}) \text{Vol}_{g}$$

ALGEBRAIC TOPOLOGY

Homology, homotopy, dimensions of groups, Betti numbers, persistence

DIFFERENTIAL TOPOLOGY

Curvature, forms, Betti numbers, Morse theory, integration, Lipschitz-Killing curvatures

Random Field Topology:

Morse Complex

Density Field Flow Lines

Critical Points:

- Maxima
- Minima
- Saddle Points (of various signatures)

Betti & Morse

Relation to Morse Theory:

Topological Structure Continuous Field determined by **singularities**:

- maxima
- minima
- saddle points

Betti & Morse

Number of singularities in field determines Euler characteristic:

 ζ_0 : minima

 ζ_1 : saddle 1

 ζ ,: saddle 2

 ζ_3 : maxima

$$\chi = \sum_{k=0}^{d} (-1)^k \zeta_k$$

Density Field & Landscape

Segmentation & Flowlines

Topological Hierarchy: Excursion Sets & Filtrations

Superlevel Sets

$$\mathfrak{M}_{v} = \left\{ \vec{x} \in \mathfrak{M} \mid f_{s}(\vec{x}) \in [f_{v}, \infty) \right\}$$
$$= f_{s}^{-1} [f_{v}, \infty)$$

Pranav et al. 2013a

Filtrations

Important source of information about topology of a field/point distribution:

Filtrations

Filtration provides view of topology as a function of scale.

Formally, given a space 2, a filtration is a nested sequence of subspaces

$$\emptyset = \mathfrak{M}_0 \subseteq \mathfrak{M}_1 \subseteq \mathfrak{M}_2 \subseteq \cdots \mathfrak{M}_m = \mathfrak{M}$$

Nature of filtrations depends (amongst others) on representation of the mass distribution.

Topological Hierarchy

Persistent Homology: "Cycling" over density filtration

Cosmic Web

Homology & Persistence

Voronoi Elements: Filaments

Voronoi Element Models: Persistence Diagrams

Voronoi Kinematic Models: Persistence Diagrams

LCDM Persistence

Nevenzeel & vdW 2015

LCDM Persistence

Morse-Smale simplification

LCDM:

Persistence & Morse Simplification

Nevenzeel & vdW 2017

LCDM:

Betti Curves & Morse Simplification

Betti Curve Stability

LCDM Persistence

(a) Skewed Gaussian fit of mean density curves.

(b) Skewed Gaussian fit of Betti curves

Nevenzeel & vdW 2017

LCDM: Evolving Persistence

Nevenzeel & vdW 2017

Homology of evolving LCDM cosmology

Betti₂: evolving void populations

