the Universe Mechanized:
 Hellenistic Cosmology

Euclides

Herophilus

Ctesibius

Archimedes
Eratosthenes

Apollonius

Hipparchus Heron of Alexandria
Ptolemaeus

Euclides (~300 BC)

 Herophilus ($335-280 \mathrm{BC}$)Aristarchus of Samos (310-230 BC)

Ctesibius ($285-222$ BC)

Archimedes (2877^{-212} BC)
Eratosthenes (276 -194 BC)
Apollonius of Perga (262-100 BC)
Hipparchus of Samos (190-120 BC)
Heron of Alexandria ($10-70, \mathrm{AD}$)
Ptolemaeus (83-168 AD)

Hellenistic Astronomers

Various astronomers made significant, even amazing, contributions. Noteworthy examples:

- Aristarchus of Samos - Heliocentric Universe
- distance Moon \& Sun
- size Sun
- Archimedes
- Planisphere/Planetarium ?
- Eratosthenes
- Hipparchus
- Diameter Earth
- multitude essential contributions

Problematic is the loss of nearly all, except for a few, of the books and works they have written ...

D

Aristarchus of Samos Apíotapxos

310-230 BCE

Aristarchus

of Samos (Samos, 310-230 BCE)

the ancient Copernicus

"On the Sizes \& Distances of the Sun and Moon ":

On the Sizes and Distances

Only one work of Aristarchus survives:

On the Sizes and the Distances of the Sun and Moon

First mathematically based attempt to measure distance Earth-Sun, thus

First attempt to measure scale Universe
Based upon geocentric view of Universe

On the Sizes and the Distances
Greek copy $10^{\text {th }}$ century

On the Sizes and Distances

Aristarchus' geometric construction used to estimate the distance to the Sun. Earth (E) -Sun (S)-Moon (M) triangle and sizes are not drawn to scale.

Measure angle b:

$$
\mathrm{c}=90^{\circ}-\mathrm{b} \quad \mathrm{EM} / \mathrm{ES}=\sin (\mathrm{c})
$$

Aristarchus:

$$
\begin{aligned}
\mathrm{b} & =87^{\circ} & & \text { real value: } \\
\mathrm{ES} & =19 \mathrm{EM} & & \text { real value: }
\end{aligned} \quad \mathrm{ES}=397{ }^{\circ} 50
$$

Numerically, very unstable procedure, reason for huge error. Nonetheless,

On the Sizes and the Distances
Greek copy $10^{\text {th }}$ century

On the Sizes and Distances

Aristarchus' estimate of size Sun:
angular diameter Sun ~
angular diameter Moon
Dist. Earth-Sun = 19 Dist. Earth-Moon

size Sun = 19 x size Moon
size Sun > size Earth

On the Sizes and the Distances
Greek copy $10^{\text {th }}$ century

Aristarchus:

Heliocentric Universe

Archimedes, "the Sand Reckoner" (~200 BCE):

You King Gelon are aware the 'universe' is the name given by most astronomers to the sphere the center of which is the center of the Earth, while its radius is equal to the straight line between the center of the Sun and the center of the Earth. This is the common account as you have heard from astronomers.

But Aristarchus has brought out a book consisting of certain hypotheses, wherein it appears, as a consequence of the assumptions made, that the universe is many times greater than the 'universe' just mentioned.

His hypotheses are that the fixed stars and the Sun remain unmoved, that

the Earth revolves about the Sun

on the circumference of a circle, the Sun lying in the middle of the orbit, and that the sphere of fixed stars, situated about the same center as the Sun, is so great that the circle in which he supposes the Earth to revolve bears such a proportion to the distance of the fixed stars as the center of the sphere bears to its surface.

Aristarchus:

Heliocentric Universe

Aristarchus' idea of Heliocentric Universe encountered sceptical, even hostile, reactions:

- Could not explain the absence of parallax of fixed stars (or they should be very, very far away ...)
- Impiety ... (even for those "rational" reeks ...)
"Cleanthes thought it was the duty of the Greeks to indict Aristarchus of Samos on the charge of impiety for putting in motion the Hearth of the universe [i.e. the earth], . . supposing the heaven to remain at rest and the earth to revolve in an oblique circle, while it rotates, at the same time, about its own axis"

Eratosthenes of Cyrene 'EpatooӨ́vins

276 BC - 194 BC

Eratosthenes of Cyrene (276-194 B.C.E.)

- Studied in Alexandria \& Athens
- Mathematician
- Astronomer
- Geographer
- Poet
- Athlete
- $2^{\text {nd }}$ Chief librarian

Great Library of Alexandria

- Friend of Archimedes
- Invented armillary sphere (240 BC)
- Calculated Earth's Circumference
- Became blind in 194 BC, starved himself to death

Earth Circumference:
Eratosthenes' measurement: 39,690 km - within 1% (present-day value: 40075 km) (in Egyptian stadia)

Archimedes of Syracuse Apxıinঠŋ弓

$$
\text { c. } 287-212 \mathrm{BCE}
$$

Archimedes

Syracuse, 285211212 BC,
Greatest mathenatician \& scientist of anqquity (all time 3)

- Probably studied in Alexandria, under followers Euclides
- Killed by Roman soldier, upon

Roman conquest Syracuse

- Famly Heron 1 PIing Syracuse ?
- Inyentions:
- war machines
- water screw
- water organ (?)
- burning miniors (???)
- planetarium inum

Cicero mentions two planetarium like machines...

"For when Archimedes fastencd ona globe the movements of moon, sum and fe wandering stars, he, just like Plato's God who built the world in the Timacus", made one rexplution of the sphere control several movenentsutterly unlike in slowness and speed. Now ilf in this world of ours phenomena cannot tale dace without the act of God, nether cobad Achimed es have reproduced the same moyements in on aglobe whout divine genims'

Cicero, Tusculan Disputations, Book I, Section XXV

Archimedes

- Pappus of Alexandita: Archimedes woté book "On Sphere-Making"
is this Antikythera (..?
- Comparewith

2
Archimedes Palimpsest
"On the Met od"
Fundamentals Catculus, Integral calculus

Hipparcus Iлт $\alpha \rho \chi \circ \zeta$

c. $190-120 \mathrm{BCE}$

Hipparchus of Nicaea (190-120 BC)

- Antiquities' Greatest Astronomer
- Responsible for the true Revolution in Astronomy
- Synthesis of

Babylonian Observational Astronomy Greek Theoretical/Geometric Models

- Astronomy as true Modern Science: Experiment \& Theory

Hipparcus

(Nicaea-Rhodos 190-120 BCE)

Greatest astronomer Greek antiquity

- Trigonometric Tables
- Precession of the Equinoxes
- Motion moon:
synodic, anomalistic, ... month
- Solar \& Lunar eclipses
- Orbit of the Moon: epicyclic theory
- Distance Moon
- Star catalogue \& Celestial Globe Lost, yet ... Farnese Atlas ?
- Defined Magnitude Scale
- Invented the Astrolabe

Star Magnitudes

Precession

Precession

Hipparchus' star catalog?

Farnese Atlas:

Hipparchus star catalog?

Farnese Atlas is the oldest surviving pictorial Record of Western constellations

Roman times ~ A.D. 150, presumed to represent constellations mapped in earlier Greek work

Atlas labors under the weight because he had been sentenced by Zeus to hold up the sky.

The globe shows:

- a depiction of the night sky as seen from outside the outermost celestial sphere
- low reliefs depicting 41 (42) of the 48 classical Greek constellations including:
- Aries the ram
- Cygnus the swan
- Hercules

Epicycle Theory

Retrograde Planetary Motion

Superior Planets:

- planet moves through in the night sky slower than the stars.
- each night planet appears to lag a little behind the stars: prograde motion
- near opposition, the planet would appear to reverse and move through
- the night sky faster than the stars for a time in retrograde motion
- before reversing again and resuming prograde.

Inferior planets:

- always observed to be near the sun
- appearing only shortly before sunrise or shortly after sunset
- apparent retrograde motion occurs during
- the transition between evening star into morning star, as they pass between Earth and the sun.

Epicycle Theory

- Apollonius of Perga
- Hipparchus (of Rhodos)
- Ptolemaeus

262-190 BCE
190-120 BCE
100-170 AD

Planetary motion in a Geocentric Universe: planets move on

- small circle
- epicycle

Superimposed and moving on

- large circle - deferent
- both epicycle and deferent rotate clockwise
- roughly parallel to ecliptic
- Explains retrograde motion of planets on the sky

Epicycle Model: essentials

Inferior and Superior planets

Period of time $=$ Number of anomalistic periods

+ Number of longitudinal periods

Ptolemaeus Epicycle Theory: Equant

- The angular rate at which the epicycle traveled was not constant unless he measured it from another point which he called the equant.
- It was the angular rate at which the deferent moved around the point midway between the equant and the Earth (the eccentric) that was constant;
- the epicycle center swept out equal angles over equal times only when viewed from the equant.
- It was the use of equants to decouple uniform motion from the center of the circular deferents that distinguished the Ptolemaic system.

Ptolemaeus Epicycle Theory

Ptolemaeus Planet Orbits

Ptolemaeus estimates of orbit sizes
$\left.\begin{array}{lllll}\text { Body } & \begin{array}{l}\text { Mean size } \\ \text { (in Earth radii) }\end{array} & \begin{array}{l}\text { Modern value } \\ \text { (semi-major } \\ \text { axis, } \\ \text { in Earth radii) }\end{array} & \begin{array}{l}\text { Ratio } \\ \text { (modern/Ptole } \\ \text { my) }\end{array} & \begin{array}{l}\text { Ratio } \\ \text { (modern/Ptole } \\ \text { my, }\end{array} \\ \text { normalized to } \\ \text { sun = 1) }\end{array}\right]$

Ptolemaeus Epicycle Theory

Claudius Ptolemaeus К入аuঠıо弓 Птодєнаıо弓

AD 83－168

Claudius Ptolemaeus

AD 83-168

Claudius Ptolemaeus

Thebaid/Ptolemais HermiouAlexandria 83-168A.D.

- Mathematician
- Astronomer
- Geographer
- Astrologer
additional interests in
- Optics
- Music
- Philosophy

Claudius Ptolemaeus

- Culmination \& Synthesis

Hellenistic Astronomy
Geography in Classical World

- Lasting and dominant influence,
$>1500 \mathrm{yrs}$,
European \& Islamic science

Ptolemy's Ribliography

Almagest (13 books)
Geography (8 books)
Optics (5 books)
Tetrabiblos (4 books)
Harmonics (3 books)
Planetary Hypotheses (2 books)
Analemma
Canobic Inscription

- Planispherium
- Other astronomical works
- Lost works
astronomy
geography physics astrology
astronomy
astronomy

- Standard of geographical theory until the 1500 's, until age of exploration:
Only surviving geographical treatise fromantiquity
- Represents.whole corpus of geographical knowledge acquired in Graeco-Roman antiquity
- Mapping earth with mathematical procedures from astronomy: coordinates, parallels, meridians
- Divided into 8 books:

Book 1:
Introduction and
directions to recreate Ptolemy's Map
Books 2-7: Latitudinal and longitudinal data for

- 2 -8,000 cities

Book 8: Description of 28 regional maps

- Based on the work of his immediate predecessor, Marinus of Tyre (80-130 A.D.)
- Combined data from a variety of sources
- Ptolemy was the first geographer to use longitude and latitude to create coordinates
- Derived 21 latitude lines - fairly accurate

Described 4 different projections

- Believed the oikoumene (inhabited world) to span

180 degrees (longitude) of the earth's 360

- Limits of the oikoumene

Northern bound: $\quad 63^{\circ} \mathrm{N}$ (the Thule parallel)
Southern bound: $\quad 16^{\circ} 25^{\prime} \mathrm{S}$
(the parallel opposite the equator from the one running through Meroë)

- Oikoumene stretches from
the Canary Islands in the west to China in the east

Geografia:

four Map Projections

- Projection 1
- Straight meridians \& Straight parallels
- Very similar to Marinus' map
- Projection 2
- Straight meridians \& Curved parallels
- Preferred method of Ptolemy's successors
- Constant scale in relation to Rhodes parallel
- 36+1 parallel meridians, each 5 degrees apart
- Projection 3
- Curved meridians \& Straight parallels
- made extreme parallels more accurate
- Projection 4
- View of globe from distance
- External rings represent latitude lines

Almagest

I Meya入ı \sum uvtǎıに Ma日ๆнатıкך $\Sigma u v \tau \alpha \xi ъ \zeta$

Almagest

ayil arblefinf-arier

kenánforlyptoiot-r

M:F: = wtrikod orये

- One of the most influent al scientific works in history (along with Euclid's "Elements", Copernicus'"Revolutionibus",
Galilei's "Dialogues" Newtor's "Principìa", Darwin's "Origin of Species")
- One of most influential books of all time
(perhaps only after Bible, Qur'an,
along with Euclid's"Elements", ...)

Almagest

math - phbleinfonter G3 גipuy,

 wtiladorictrifition

Systematic methodology

 p14piformaxióventwoip= patiobstapian Turtipen

Observational Data

Numerical parameters planetary models

Construction tables celestial phenomena
(solar, lunar \& planetary positions; solar \& lunar eclipses, ...)

Almagest

the Greatest

 whitod wientrif frtir Spartripustor ryter

\section*{| B | x^{2} | THA | \vdots |
| :--- | :--- | :--- | :--- |
| in | kH | | |}

 $\frac{1}{4}:$

 Cuvizazh

Success Almagest:

-

Loss of most of work §cientific predecessors: being obsolete, they ceased to be copied

Is this true?

Almagest

 -lyyhémherviriz 4 ruit 2

Syntaxis - Almagest

Almagest, Greek copy $13^{\text {th }}$ century

"The Great Book"

most Important \& Influential Astronomical Work of Antiquity

Ptolemy first scientist to spell out inductive method:

- models framed from preliminary facts
- expand models by logical induction
- testing hypothesis against reality

Only surviving comprehensive ancient treatise on astronomy:

- most important source of information on ancient Greek astronomy

Geocentric Model
Epicycle Theory
Dominated astronomy for >13 centuries

- Roman (Byzantine, Western) world Arab world

Syntaxis - Almagest

Almagest, Greek copy $13^{\text {th }}$ century

"The Great Book"

most Important \& Influential Astronomical Work of Antiquity

Geometrical models based on 800 yrs observations (Babylonians, Hipparchus, ...)

Models presented in convenient tables
Calculations fairly accurate for prediction solar and lunar eclipses

Almagest also contains star catalogue

- appropriated version Hipparchus' catalogue
- 48 constellations: modern ones, not full sky

Syntaxis - Almagest

Almagest, Greek copy $13^{\text {th }}$ century

Ptolemaeus' Cosmos

The cosmology of the Almagest:
five main points each subject of a chapter Book I.

- The celestial realm is spherical, and moves as a sphere.
- The earth is a sphere.
- The earth is at the center of the cosmos.
- The earth,
in relation to the distance of the fixed stars, has no appreciable size, must be treated as a mathematical point
- The earth does not move.

Syntaxis - Almagest

Almagest, Greek copy $13^{\text {th }}$ century

Ptolemaeus' Planetary Models

Order of planetary spheres:

- Moon
- Mercury
- Venus
- Sun
- Mars
- Jupiter
- Saturn
- Sphere fixed stars

Almagest:

Detailed Inventory

Syntaxis - Almagest

Almagest: 13 books

- Book I:
outline of Aristotelian cosmology:
- on the spherical form of the heavens,
- the (spherical) Earth lying motionless at centre
- the fixed stars and the various planets revolving around the earth
- followed by explanation of chords with a set of chord tables
- observations of the obliquity of the ecliptic
- introduction to spherical trigonometry
- Book II:
problems associated with the daily motion attributed to the heavens:
- risings and settings of celestial object
- length of daylight
- determination of latitude
- points at which the Sun is vertical
- shadows of the gnomon at the equinoxes and solstices
- other things which change with the spectator's position. There is also
- a study of the angles made by the ecliptic with vertical, with tables.

Almagest, Greek copy $13^{\text {th }}$ century

Syntaxis - Almagest

Almagest: 13 books

- Book III:
- length of the year, and the motion of the Sun
- explains Hipparchus' discovery of the precession of the equinoxes
- begin explanation epicycles
- Books IV \& V:
the motion of the Moon:
- lunar parallax
- motion of the lunar apogee
- sizes and distances of the Sun and Moon relative to Earth
- Book VI:
solar and lunar eclipses

Almagest, Greek copy $13^{\text {th }}$ century

Syntaxis - Almagest

Almagest: 13 books

-Books VII \& VIII:

- motions of the fixed stars:
- includes precession of the equinoxes
- star catalogue of 1022 stars:
- described by positions in the constellations
- magnitude scale for brightness:
+ brightness brightest stars marked of the $1^{\text {st }}$ magnitude ($\mathrm{m}=1$),
+ faintest $6^{\text {th }}$ magnitude $(\mathrm{m}=6)$, limit human visual perception
+ each grade of magnitude considered twice the brightness of the following grade (log. scale).
+ system believed to have originated with Hipparchus
+ Stellar positions: Hipparchan origin (despite Ptolemy's claim to the contrary)

Syntaxis - Almagest

Almagest: 13 books

- Book IX:
- general issues associated with creating models for the five (naked eye) planets
- motion of Mercury
- Book X:
motions of Venus and Mars
- Book XI:
motions of Jupiter and Saturn
- Book XII:
stations and retrogradations,
- occurring when planets appear to pause, then briefly reverse their motion against the background of the zodiac.
- Ptolemy understood these terms to apply to Mercury and Venus as well as the outer planets
- Book XIII:
motion in latitude:
the deviation of planets from the ecliptic

Almagest, Greek copy $13^{\text {th }}$ century

Epicycle Theory

Middle Ages

Ptolemaeus to Copernicus

One school in history of astronomy:

minor imperfections in the original Ptolemaic system were discovered through observations accumulated over time.
It was mistakenly believed that more levels of epicycles (circles within circles) were added to the models to match more accurately the observed planetary motions.
The multiplication of epicycles is believed to have led to a nearly unworkable system by the 16th century.

Copernicus created his heliocentric system in order to simplify the Ptolemaic astronomy of his day, thus succeeding in drastically reducing the number of circles.

With better observations additional epicycles and eccentrics were used to represent the newly observed phenomena till in the later Middle Ages the universe became a 'Sphere/With Centric and Eccentric scribbled o'er,/Cycle and Epicycle, Orb in Orb'

Alfonsine Tables

- Tables of solar, lunar and planetary positions wrt. fixed stars
- Called after Alfons X of Castile the Wise (el Sabio) (1221-1284)
- composed in 1252, in Toledo
- assembled by translators of Toledo
- based on observations an studies of Islamic scholars
- most popular astronomical tables for 300 years (incl. Copernicus)

Ptolemaeus to Copernicus

- As a measure of complexity:
- the number of circles is given as 80 for Ptolemy,
- versus a mere 34 for Copernicus
- By this time each planet had been provided with from 40 to 60 epicycles to represent after a fashion its complex movement among the stars. Amazed at the difficulty of the project, Alfonso is credited with the remark that had he been present at the Creation he might have given excellent advice.

