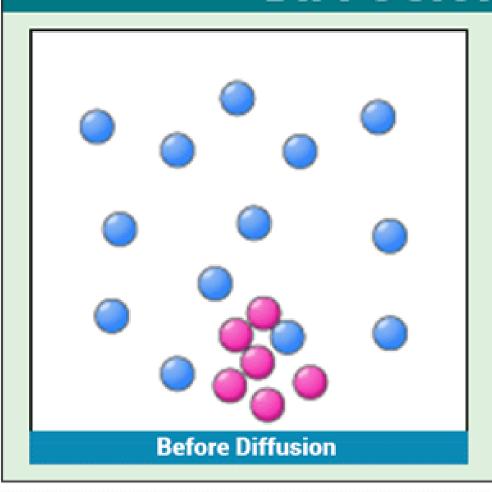
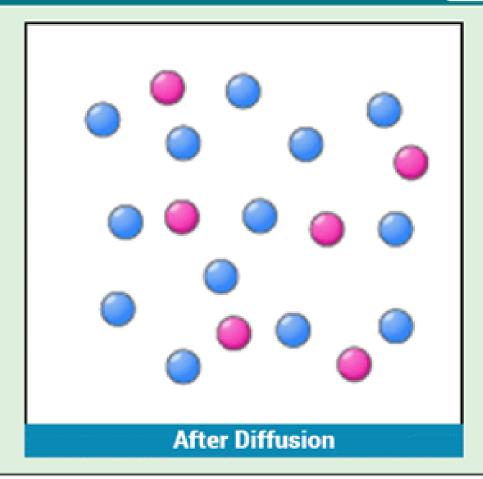
Diffusion & Viscosity:

Navier-Stokes Equation

Diffusion

DIFFUSION OF GASES





Diffusion Equation

Imagine a quantity C(x,t) representing a local property in a fluid, eg.

- thermal energy density
- concentration of a pollutant
- density of photons propagating diffusively through a scattering medium

For a fluid at rest, V=0, the diffusive transport of the quantity C in the fluid is described by the Diffusion Equation,

$$\frac{\partial C}{\partial t} = \vec{\nabla} \cdot D \, \vec{\nabla} C$$

In this expression, D is the diffusion coefficient,

$$D = \frac{v_{\sigma}\lambda}{3}$$

with v_{σ} the velocity of the diffusing particles, and λ the mean free path.

Navier-Stokes Equation

Viscous Force

- In general, the viscous force fvisc includes 2 different aspects, that of
 - shear viscosity n
 - bulk viscosity ζ

entailing the following full viscous force

$$\vec{f}^{visc} = \eta \nabla^2 \vec{v} + (\varsigma + \frac{1}{3}\eta) \vec{\nabla} (\vec{\nabla} \cdot \vec{v})$$

which for incompressible flow, $\nabla \cdot \vec{v} = 0$, is restricted to

$$\vec{f}^{visc} = \eta \nabla^2 \vec{v}$$

Navier-Stokes Equation

 For a fluid with (shear) viscosity n, the equation of motion is called the Navier-Stokes equation. In its most basic form, ie.for incompressible media

$$\rho \frac{\partial \vec{v}}{\partial t} + \rho \vec{v} \cdot \vec{\nabla} \vec{v} = -\vec{\nabla} p + \eta \nabla^2 \vec{v}$$

- Without any discussion, this is THE most important equation of hydrodynamics.
- While the Euler equation did still allow the description of many analytically tractable problems, the nonlinear viscosity term in the Navier-Stokes equation makes the solving of the NS equation very complicated.
- There are only a few situations that allow analytical solutions for the NS equation, the remainder needs to be solved numerically/computationally.

Navier-Stokes Equation

- The general and full Navier -Stokes equation, for a fluid with
 - shear viscosity n
 - bulk viscosity ζ

is given by

$$\rho \frac{\partial \vec{v}}{\partial t} + \rho \vec{v} \cdot \vec{\nabla} \vec{v} = -\vec{\nabla} p + \eta \nabla^2 \vec{v} + (\varsigma + \frac{1}{3} \eta) \vec{\nabla} (\vec{\nabla} \cdot \vec{v})$$

Reynolds Number

• The Reynolds number is the measure of the importance of viscous effects of a flow – hereby assumming the bulk viscosity ζ =0 – and is defined as

the ratio of the magnitude of the inertial force - magnitude of the viscous force

$$Re = \frac{magnitude \ inertial \ force}{magnitude \ viscous \ force} \equiv \frac{|\rho(\vec{v} \cdot \vec{\nabla})\vec{v}|}{|\eta \nabla^2 \vec{v}|}$$

 For large Reynolds number, the flow gets unstable, and finally becomes turbulent.

Reynolds Number

 The Reynolds number is the ratio of the magnitude of the inertial force to the magnitude of the viscous force

$$Re = \frac{magnitude \ inertial \ force}{magnitude \ viscous \ force} \equiv \frac{|\rho(\vec{v} \cdot \vec{\nabla})\vec{v}|}{|\eta \nabla^2 \vec{v}|}$$

We can find an order of magnitude rough estimate for the Reynolds number. With U the characteristic magnitude of the velocity in a system of characteristic size L, we have

$$|(\vec{v} \cdot \vec{\nabla})\vec{v}| \sim \frac{U^2}{L}$$

$$|\eta \nabla^2 \vec{v}| \sim \frac{\rho \nu U}{L^2}$$
Re $\sim \frac{UL}{\nu}$

Navier-Stokes Equation: analytical soln's

 Due to the high level of nonlinearity and complexity of the full compressible Navier-Stokes equations, there are hardly any analytical solutions known of the Navier-Stokes equation.

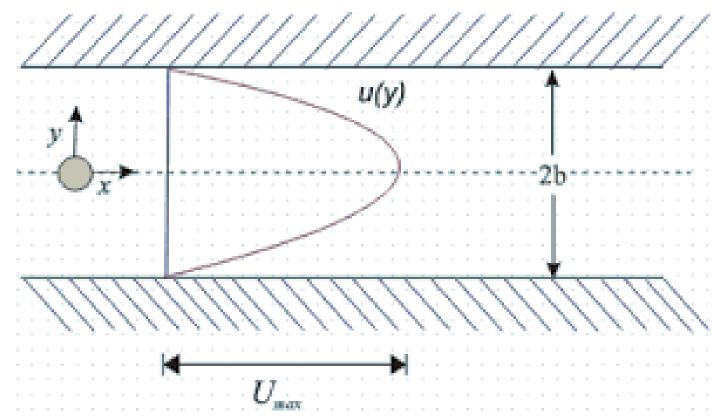
$$\rho \frac{\partial \vec{v}}{\partial t} + \rho \vec{v} \cdot \vec{\nabla} \vec{v} = -\vec{\nabla} p + \eta \nabla^2 \vec{v}$$

- 2-D configuration

- flow between plates

- One may try to find some specific configurations that would allow an analytical treatment. This involves simplifying the equations by making the following assumptions:
 - about the fluid
 - about the flow
 - geometry of the problem
- Typical assumptions are:
 - laminar flow
 - steady flow
 - incompressible flow
- Examples are:
 - parallel flow in a channel
 - Couette flow
 - Hagen-Poiseuille flow, ie. flow in a cylindrical pipe.

- Consider the following configuration:
 - flow of a fluid through a channel
 - steady flow
 - incompressible flow
 - axisymmetric geometry (2-D problem)



- the 2-D flow field is represented by a 2-D velocity field, with u the component in the x-direction, v in the y-direction

$$\vec{v} = \begin{bmatrix} u \\ v \end{bmatrix}$$

- the 2-D flow field is represented by a 2-D velocity field, with u the component in the x-direction, v in the y-direction
- the flow of the system is then described by the
 - (a) continuity equation
 - (b) Navier-Stokes equation

$$\rho \frac{\partial \vec{v}}{\partial t} + \rho \vec{v} \cdot \vec{\nabla} \vec{v} = -\vec{\nabla} p + \eta \nabla^2 \vec{v}$$

- which for the system at hand simplify to:

continuity equation: (notice: incompressibility)

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

x-momentum (NS):

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial x} + \eta \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)$$

y-momentum (NS):

$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial y} + \eta \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right)$$

- Boundary condition: the flow is constrained by flat parallel walls of the channel,

$$v_y = v = 0$$
 \downarrow

$$\frac{\partial v}{\partial y} = \frac{\partial v}{\partial x} = \frac{\partial^2 v}{\partial y^2} = \frac{\partial^2 v}{\partial x^2} = 0$$

- Continuity equation:

$$\frac{\partial u}{\partial x} = -\frac{\partial v}{\partial y} = 0; \qquad \frac{\partial^2 u}{\partial x^2} = 0$$

- Using these relations, we end up with the Navier-Stokes equations:

$$-\frac{1}{\rho}\frac{\partial p}{\partial x} + \eta \frac{\partial^2 u}{\partial y^2} = 0$$

$$-\frac{1}{\rho}\frac{\partial p}{\partial y} = 0$$

- Given that

$$\frac{\partial u}{\partial x} = 0$$

we immediately infer that u(x,y) must be independent of x. Hence

$$\eta \frac{\partial^2 u}{\partial y^2}$$

can only be a function of y, i.e u(x,y)=u(y). This implies, via the relation,

$$-\frac{1}{\rho}\frac{\partial p}{\partial x} + \eta \frac{\partial^2 u}{\partial y^2} = 0 \qquad \text{that,} \qquad \frac{\partial p}{\partial x} = \frac{dp}{dx} = cst.$$

and that the general solution for u(y) is given by

$$u(y) = \frac{1}{2} \frac{1}{\rho \eta} \frac{\partial p}{\partial x} y^2 + Ay + B$$

- The general solution for u(y) is given by

$$u(y) = \frac{1}{2} \frac{1}{\rho \eta} \frac{\partial p}{\partial x} y^2 + Ay + B$$

- Using the boundary conditions that the velocity u=0 at the border of the channel, ie. $u(\pm R)=0$, the constants A and B get fixed

$$A = 0; B = -\frac{1}{2} \frac{R^2}{\rho \eta} \frac{dp}{dx}$$

which yields the complete solution for the flow velocity u(y) through the channel:

$$u(y) = -\frac{1}{2} \frac{R^2}{\rho \eta} \frac{dp}{dx} \left[1 - \left(\frac{y}{R} \right)^2 \right]$$

$$u(y) = -\frac{1}{2} \frac{R^2}{\rho \eta} \frac{dp}{dx} \left[1 - \left(\frac{y}{R} \right)^2 \right]$$

- Flow through a channel thus displays a parabolic velocity distribution, summetric about the central axis. The maximum velocity u_{max} is attained along the central axis,

$$u_{\text{max}} = -\frac{1}{2} \frac{R^2}{\rho \eta} \frac{dp}{dx}$$

