Diffusion & Viscosity:

Navier-Stokes Equation
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Diffusion Equation

Imagine a quantity C(x,t) representing a local property in a fluid, egq.

- thermal energy density

- concentration of a pollutant

- density of photons propagating diffusively
through a scattering medium

For a fluid at rest, V=0, the diffusive transport of the quantity C
in the fluid is described by the Diffusion Equation,
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In this expression, D is the diffusion coefficient,
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with v, the velocity of the diffusing particles, and A the mean free path.




Navier-Stokes Equation




Viscous Force

 Ingeneral, the viscous force f¥isc includes 2 different aspects, that of

- shear viscosity n
- bulk viscosity

entailing the following full viscous force

FViSC:nV2\7+(g+%77)§(§-\7)

which for incompressible flow, V .y = (), is restricted fo
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Navier-Stokes Equation

* For a fluid with (shear) viscosity n, the equation of motion is called the
Navier-Stokes equation. In its most basic form, ie.for incompressible
media

v . .
pgt - PV -VV =-Vp+n V¥

«  Without any discussion, this is THE most important equation of
hydrodynamics.

« While the Euler equation did still allow the description of many analytically
tractable problems, the nonlinear viscosity term in the Navier-Stokes
equation makes the solving of the NS equation very complicated.

* There are only a few situations that allow analytical solutions for the NS
equation, the remainder needs to be solved numerically/computationally.



Navier-Stokes Equation

* The general and full Navier -Stokes equation,

for a fluid with
- shear viscosity n
- bulk viscosity C

iS given by
8\7 — o — — 2 — 1 - =
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Reynolds Number

« The Reynolds number is the measure of the importance of viscous effects
of a flow - hereby assumming the bulk viscosity {=0 - and is defined as

the ratio of the magnitude of the inertial force -
magnitude of the viscous force

~ magnitude inertial force | p(V-V)V|

RGE : : —
magnitude viscous force nVV|

For large Reynolds number, the flow gets unstable, and finally becomes
turbulent.




Reynolds Number

« The Reynolds number is the ratio of the magnitude of

the inertial force to the magnitude of the viscous force

~ magnitude inertial force | p(V-V)V|

RGE : : —
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« We can find an order of magnitude rough estimate for the Reynolds

number. With U the characteristic magnitude of the velocity in a system of
characteristic size L, we have
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Navier-Stokes Equation: analytical soln’s

Due to the high level of nonlinearity and complexity of the full
compressible Navier-Stokes equations , there are hardly any analytical
solutions known of the Navier-Stokes equation.
N = = _
pa+pv VV =-Vp+nVV

« One may try to find some specific configurations that would allow an
analytical treatment. This involves simplifying the equations by making
the following assumptions:

- about the fluid
- about the flow
- geometry of the problem
 Typical assumptions are:
- laminar flow - 2-D configuration
- steady flow - flow between plates
- incompressible flow
« Examples are:
- parallel flow in a channel
- Couette flow
- Hagen-Poisedille flow, ie. flow in a cylindrical pipe.




Navier-Stokes Equation: Channel flow

 Consider the following configuration:
- flow of a fluid through a channel
- steady flow
- incompressible flow
- axisymmetric geometry (2-D problem)
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- the 2-D flow field is represented by a 2-D velocity field, V =
with u the component in the x-direction, v in the y-direction V



Navier-Stokes Equation: Channel flow

- the 2-D flow field is represented by a 2-D velocity field,
with u the component in the x-direction, v in the y-direction

- the flow of the system is then described by the

(a) continuity equation
(b) Navier-Stokes equation

pa—v+pv VV = —Vp+77V V
ot
- which for the system at hand simplify to:
ou av
continuity equation: ox 8y =0

(notice: incompressibility)

x-momentum (NS): U—+V—=———7"-+7]

y-momentum (NS): U—+V—=——"—"+7




Navier-Stokes Equation: Channel flow

- Boundary condition:
the flow is constrained by flat parallel walls of the channel,

vV, =v=0
U

6v_8v_62v_62v_0
oy oOx oy ox

- Continuity equation:
u_ v, du
ox oy Ox*

- Using these relations, we end up with the Navier-Stokes equations:
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Navier-Stokes Equation: Channel flow

- Given that
A _y
OX
we immediately infer that u(x,y) must be independent of x. Hence
o°u
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can only be a function of y, i.e u(x,y)=u(y). This implies, via the
relation,
1op, op _dp

__ZF = —=Csl.
p@x ay =0 that. ox dx

and that the general solution for u(y) is given by
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Navier-Stokes Equation: Channel flow

- The general solution for u(y) is given by

- Using the boundary conditions that the velocity u=0 at the border
of the channel, ie. u(+R)=0, the constants A and B get fixed

A=0; ="

which yields the complete solution for the flow velocity u(y)
through the channel:
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Navier-Stokes Equation: Channel flow

u(y) =~

1 R* dp (Y
2 pn dx R

- Flow through a channel thus displays a parabolic velocity
distribution, summetric about the central axis. The maximum
velocity u,, is attained along the central axis,

max

1R dp
2 pn dx

Stream Velocity

Because of friction along the banks, flow velocity in a straight channel
1s highest near the surface in the middle of the stream.




