Diffusion & Viscosity:

Navier-Stokes Equation

Diffusion
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Diffusion Equation

Imagine a quantity C(x,t) representing a local property in a fluid, eg.

- thermal energy density

- concentration of a pollutant

- density of photons propagating diffusively
through a scattering medium

For a fluid at rest, V=0, the diffusive transport of the quantity C
in the fluid is described by the Diffusion Equation,
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In this expression, D is the diffusion coefficient,

with v, the velocity of the diffusing particles, and A the mean free path.




Navier-Stokes Equation

Viscous Force

* Ingeneral, the viscous force fVis¢ includes 2 different aspects, that of

- shear viscosity n
- bulk viscosity

entailing the following full viscous force

Fvi“:nv2\7+(g+§nﬁ(vv)

which for incompressible flow, V .y = (), is restricted to

.Fvisc _ 77V2\7
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Navier-Stokes Equation

For a fluid with (shear) viscosity n, the equation of motion is called the
Navier-Stokes equation. In its most basic form, ie.for incompressible
media

Without any discussion, this is THE most important equation of
hydrodynamics.

While the Euler equation did still allow the description of many analytically
tractable problems, the nonlinear viscosity term in the Navier-Stokes
equation makes the solving of the NS equation very complicated.

There are only a few situations that allow analytical solutions for the NS
equation, the remainder needs to be solved numerically/computationally.

Navier-Stokes Equation

* The general and full Navier -Stokes equation,
for a fluid with
- shear viscosity n
- bulk viscosity T
is given by
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Reynolds Number

+ The Reynolds number is the measure of the importance of viscous effects
of a flow - hereby assumming the bulk viscosity {=0 - and is defined as

the ratio of the magnitude of the inertial force -
magnitude of the viscous force

Re magnitude inertial force _ | p(V-V)V |
magnitude viscous force  |nV?V|

+ For large Reynolds number, the flow gets unstable, and finally becomes
turbulent.

Reynolds Number

« The Reynolds number is the ratio of the magnitude of
the inertial force to the magnitude of the viscous force

_ magnitude inertial force _ | p(V-V)V|
magnitude viscous force | V?V|
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We can find an order of magnitude rough estimate for the Reynolds
number. With U the characteristic magnitude of the velocity in a system of
characteristic size L, we have
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Navier-Stokes Equation: analytical soln's

+ Due to the high level of nonlinearity and complexity of the full

compressible Navier-Stokes equations , there are hardly any analytical
solutions known of the Navier-Stokes eq

—
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uation.

+ One may try to find some specific configurations that would allow an

analytical treatment. This involves simplifying the equations by making
the following assumptions:

- about the fluid
- about the flow

- geometry of the problem
+ Typical assumptions are:

- laminar flow - 2-D configuration
- steady flow

- flow between plates
- incompressible flow
+ Examples are:

- parallel flow in a channel
- Couette flow

- Hagen-Poiseuille flow, ie. flow in a cylindrical pipe.

Navier-Stokes Equation:

« Consider the following configuration:

- flow of a fluid through a channel
- steady flow

- incompressible flow
- axisymmetric geometry (2-D problem)

Channel flow
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- the 2-D flow field is represented by a 2-D velocity field, V =
with u the component in the x-direction, v in the y-direction vV

4/5/2018



Navier-Stokes Equation: Channel flow

- the 2-D flow field is represented by a 2-D velocity field,
with u the component in the x-direction, v in the y-direction

- the flow of the system is then described by the
(a) continuity equation
(b) Navier-Stokes equation
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ot
- which for the system at hand simplify to:
ou ov
continuity equation: &+5 =0

(notice: incompressibility)

x-momentum (NS): x oy b O n oy

o ov  1op o’v o
y-momentum (NS): U—+V—=———+n$ y+y

x oy poy

Navier-Stokes Equation: Channel flow

- Boundary condition:
the flow is constrained by flat parallel walls of the channel,

v, =v=0
U

N _ v v

oy ox oyt ox
- Continuity equation:
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- Using these relations, we end up with the Navier-Stokes equations:

pox oy’
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Navier-Stokes Equation: Channel flow

- Given that

M _g

OX

we immediately infer that u(x,y) must be independent of x. Hence
o’u

"o

can only be a function of y, i.e u(x,y)=u(y). This implies, via the

relation,
1 2 op d

_Lop ,78_[;120 that, —p=—p=CSt.
pOX oy ox dx

and that the general solution for u(y) is given by

u(y):lia—loy2 +Ay+B
2 pn oX

Navier-Stokes Equation: Channel flow

- The general solution for u(y) is given by

u(y):%Lap y’+Ay+B

pn x

- Using the boundary conditions that the velocity u=0 at the border
of the channel, ie. u(+R)=0, the constants A and B get fixed

A=0; SN L

which yields the complete solution for the flow velocity u(y)
through the channel:
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Navier-Stokes Equation: Channel flow

1 R d ’
u(y)=---——=> 1—(1]
pn dx
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- Flow through a channel thus displays a parabolic velocity
distribution, summetric about the central axis. The maximum
velocity un is attained along the central axis,

Stream Velocity
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Because of friction along the banks, flow velocity in a straight channel
is highest near the surface in the middle of the stream.
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