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In this assignment we will solve Laplace’s Partial Differential Equation (PDE) in spherical polar coor-
dinates using the method of separation of variables. These type of problems are known as boundary value
problems and arise in diverse areas of Physics, starting from Electrostatics to Quantum Mechanics. Then we
make use of plotting softwares like, matplotlib to visualize the solutions. Then we will look at sound waves,
gravity waves and waves in expanding fluids.

1 Streamlines of the Immersed Moving Sphere

In the previous exercise, we solved the flow v around a sphere with radius R moving with velocity u through
a fluid. The solution for the potential in the (average) restframe of the fluid was

Ψ = −1

2
R3r−2u cos θ , (1)

with θ the zenith or colatitude w.r.t. the direction of movement of the sphere and r the radial distance to
the sphere. In this exercise we will plot the streamlines of the fluid. This is best done in the restframe of
the sphere, with the fluid flowing around it. This means that the velocity of the fluid at infinity is −u and
the potential becomes

Ψ = −
(

1

2
R3r−2 + r

)
u cos θ . (2)

1. Streamlines are defined by the equation
dy

dx
=
vy
vx

(3)

or equivalently in spherical coordinates by

rdθ

dr
=
vθ
vr
. (4)

Give an expression for the streamlines in terms of r and θ, i.e. integrate eqn. (4).

2. Consider a streamline through the point (r = r0, θ = π/2), with r0 > R. Show this streamline obeys

sin2 θ =
r

r0

r30 −R3

r3 −R3
(5)

and argue that r ≥ r0.

3. Plot (using Python, Gnuplot, Matlab, Mathematica, or any other visualization software) the stream-
lines passing the sphere at e.g. r0 = {1.01R, 1.1R, 1.5R}. Please send me the plotting code and images
via email.
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2 Sound Waves

We will calculate the energy of sound in an adiabatic fluid.

1. Assume that ρ is the density of the fluid, e the internal energy per unit mass and v the speed of the
fluid. Give a general expression for the total energy E of a unit volume of the fluid.

2. Use the thermodynamic relation de = Tds−pdV and the assumption of an isentropic fluid to calculate

an expression for ∂
∂ρ (ρe) and ∂2

∂ρ2 (ρe)

(hint: note that the enthalpy h = e+ p
ρ and sound speed cs =

√(
∂p
∂ρ

)
s
).

3. Assume a small perturbation in the density, ρ = ρ0 + δρ, and the internal energy e = e0 + δe. Do a
Taylor expansion up to the 2nd order of ρe to ρ around ρ0 and write the equation from (1) with the
results from (2) to show that:

E ≈ ρ0e0 + h0δρ+
1

2
c2s
δρ2

ρ0
+

1

2
ρ0v

2. (6)

Assume that δρv2 can be neglected (it is a 3rd order term).

4. Why are the first term ρ0e0 and the second term h0δρ not relevant to our problem (of determining the
total energy of the entire wave)? The energy per unit volume of fluid can then be written as

E =
1

2
c2s
δρ2

ρ0
+

1

2
ρ0v

2. (7)

3 Gravity Waves

In this situation we assume a potential flow and that the vertical displacement ζ is very small. This give
rise to the equations

∇2Φ = 0 Poisson equation (8)(
∂Φ

∂z
+

1

g

∂2Φ

∂t2

)
z=ζ≈0

= 0 boundary condition (9)

1. The depth of the fluid is h and take the surface at z = 0. Which new boundary condition should we
impose on the fluid (and the potential)?

2. We (still) expect a simple periodic function in time as our solution:

Φ = f(z) cos(kx− ωt). (10)

Use Poisson’s equation to find the general solution for f(z).

3. Using the boundary condition in (1), show that

Φ = A cosh (kz + kh) cos (kx− ωt) (11)

for arbitrary A.

4. Use the old boundary condition in Eq. (9) to show that the relation between k and ω is

ω2 = gk tanh (kh) (12)

5. Calculate the velocity of propagation of the wave U = ∂ω
∂k and show that for the limiting case that

λ� h this is just

U =
1

2

√
g

k
(13)
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4 Waves in an expanding fluid

We will consider the equations of fluid dynamics in an expanding background, e.g. the universe.
The equations of motion of a perfect fluid are:

∂ρ

∂t
+ ∇ · (ρv) = 0 Continuity Equation, (14)

∂v

∂t
+ (v ·∇)v +

1

ρ
∇p+ ∇Φ = 0 Euler Equation, (15)

∇2Φ = 4πGρ Poisson’s Equation. (16)

We again assume an adiabatic fluid, with no spatial variations in the equation of state, so the sound
speed c is given by

c2 =
p

ρ
(17)

We consider small perturbations

ρ = ρ0 + ρ1, p = p0 + p1, v = v0 + v1, Φ = Φ0 + Φ1 (18)

1. Expansion

We have picked an arbitrary origin for our coordinate system and we write the expansion of the fluid
as

ρ0 = ρ00

(
R0

R

)3

(19)

v0 =
Ṙ

R
r = Hr (20)

where R(t) is governed by the Friedmann equations in case of the Universe.

Show that the perturbed solution of equations (14) - (16) are then given by

ρ̇1 + 3
Ṙ

R
ρ1 +

Ṙ

R
(r ·∇) ρ1 + ρ0∇ · v1 = 0 (21)

v̇1 +
Ṙ

R
v1 +

Ṙ

R
(r ·∇)v1 = −1

ρ 0

∇p1 −∇Φ1 (22)

∇2Φ1 = 4πGρ1 (23)

2. Expanding Wave

Since equations (21) to (23) are homogeneous we expect the perturbations to be (a superposition of)
plane-wave solutions. Take as ansatz

ρ1(r, t) = ρ1(t)e
ir·q
R (24)

and likewise for v1 and Φ1. q/R(t) replaces the usual wavenumber k because we anticipate that the
waves will be stretched by the expansion.

Show that equations (21) to (23) can be written as

ρ̇1 +
3Ṙ

R
ρ1 +

iρ0
R

q · v1 = 0 (25)

v̇1 +
Ṙ

R
v1 = − ic2

ρ0R
ρ1q−∇Φ1 (26)

∇Φ1 = −4πiGρ1R
q

q2
(27)
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