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1 Incompressible viscous flow

Consider fluid between two infinite flat plates separated by a distance L (direction of y). The lower plate is
stationary while the upper one is moving with a velocity U parallel to itself (direction of x). The plates are
also maintained at different temperatures. Neglect gravity and assume a steady flow in the x-direction, with
u = u(y), T = T (y). The governing equations are,

dp
dx − µ

d2u
dy2 = 0 (1)

k d
2T
dy2 + µ

(
du
dy

)2
= 0 (2)

1. Velocity profile

If we assume that pressure gradient is imposed externally so that dp/dx is a known constant, show
that the velocity profile is,

u(y) =
y

L
U − L2

2µ

dp

dx

y

L

(
1− y

L

)
(3)

[Hint: you have to use the boundary conditions: u = 0 at y = 0 and u = U at y = L.]

2. Couette flow

If no pressure gradient is imposed on the flow then, dp
dx = 0. Show that temperature profile T (y) in

this case turns out to be:
(T − T0)

(T1 − T0)
=
y

L
+

µ

2k

U2

(T1 − T0)

y

L

(
1− y

L

)
(4)

and maximum temperature occurs at

ym =
L

2
+
k(T1 − T0)

µU2
L (5)

where T = T0 at y = 0 and T = T1 at y = L.

3. Poiseuille flow

If the velocity of the upper plate is zero (U = 0) then the flow is driven solely by the pressure gradient.
Show that maximum velocity in this case occurs at the center, y = L/2 and it is

um =
L2

8µ

dp

dx
(6)

If mean velocity is defined by volume flow per unit area, show that in this case it is given by,

Ū =
1

L

∫ L

0

u(y)dy =
2

3
um (7)
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2 Taylor-Couette Flow

In this exercise we will calculate the (steady state) flow of a fluid between two rotating (hollow) cylinders.
The system is cylindrically symmetric and can be approximated as infinite in length. Therefore the best
coordinate system is cylindrical, r,φ,z. Assume the two cylinders have radii R1 and R2 with R2 > R1 and
angular velocities Ω1 and Ω2. Symmetry arguments lead us conclude that

vz = 0 (8)

vr = 0 (9)

vφ = vφ(r) ≡ Ωr (10)

P = P (r) (11)

The cylindrical Navier-Stokes equations are written as (Landau & Lifshitz p. 48)

∂vr
∂t

+ (v ·∇) vr −
v2φ
r

= −1

ρ

∂P

∂r
+ ν

(
∆vr −

2

r2
∂vφ
∂φ
− vr
r2

)
(12)

∂vφ
∂t

+ (v ·∇) vφ +
vφvr
r

= − 1

ρr

∂P

∂φ
+ ν

(
∆vφ −

2

r2
∂vr
∂φ
− vφ
r2

)
(13)

∂vz
∂t

+ (v ·∇) vz = −1

ρ

∂P

∂z
+ ν∆vz (14)

with ν the kinematic viscosity (ν = η/ρ).

1. Show that under the above cylindrical symmetry assumptions the Navier-Stokes equations reduce to

∂P

∂r
=

ρv2φ
r

(15)

∂2vφ
∂r2

+
1

r

∂vφ
∂r
− vφ
r2

= 0 (16)

(17)

2. Solve the latter equation by assuming a power law (vφ = Crn) and show that the general solution for
the velocity obeys

vφ = Ωr = Ar +
B

r
. (18)

A and B are given by boundary conditions, what are the boundary conditions? Derive expressions for
A and B.

Such flow becomes unstable to the formation of Taylor vortices if Ω1 � Ω2.

For low angular velocities the flow is steady and purely azimuthal. This basic state is known
as circular Couette flow, after Maurice Marie Alfred Couette who used this experimental device
as a means to measure viscosity. Sir Geoffrey Ingram Taylor investigated the stability of the
Couette flow in a ground-breaking paper which has been a cornerstone in the development of
hydrodynamic stability theory.

Taylor showed that when the angular velocity of the inner cylinder is increased above a cer-
tain threshold, Couette flow becomes unstable and a secondary steady state characterized by
axisymmetric toroidal vortices, known as Taylor vortex flow, emerges. Subsequently increasing
the angular speed of the cylinder the system undergoes a progression of instabilities which lead
to states with greater spatio-temporal complexity, with the next state being called as wavy vortex
flow. If the two cylinders rotate in opposite sense then spiral vortex flow arises. Beyond a certain
Reynolds number there is the onset of turbulence.
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We will examine a few cases of (in)stability in this flow in what follows.

3. The centrifugal force FC acting on the fluid particles is balanced by the pressure force FP . Calculate
the angular momentum µ of a fluid particle at position r and show that the centrifugal force FC = Ω2r
can be written as

FC(r) =
µ(r)2

mr3
. (19)

Hint: µ(r) = |p× r|.

4. Consider a particle initially at radial postion r = r0 is displaced by a very small fraction to r′ =
r0 + δr > r0. If we assume angular momentum conservation, the centrifugal force of the displaced
particle is

FC =
µ(r0)2

mr′3
≡ µ2

0

mr′3
, (20)

but the pressure force is the same as for the other particles at that distance given by

FP =
µ(r′)2

mr′3
≡ µ′2

mr′3
, (21)

Stability occurs when the forces on a the displaced particle will push it back, i.e. FP > FC . Therefore
stability occurs when µ′2 > µ2

0.

Use a Taylor expansion

f(x) =

∞∑
n=0

1

n!
f (n)(a)(x− a)n (22)

of µ(r′) around r0 to show that the criterion can be written as

µ
∂µ

∂r
> 0 (23)

Note that (r′ − r0) is a positive difference.

5. Evaluate this expression to (
Ω2R

2
2 − Ω1R

2
1

)
Ω > 0 (24)

(Ω = vφ/r).

Hint 1: evaluate ∂rΩ and ∂rµ.

Hint 2: always-positive terms are always positive.

6. Argue for each of the following cases whether the flow is stable or instable.

1. The cylinders rotate in a different direction

2. The cylinders rotate in the same direction

(a) The center cylinder is stationary

(b) The outer cylinder is stationary
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