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The main goal of this assignment is to get used to with the curvilinear co-ordinate systems. So, the
first problem is for revising the properties of coordinate transformations, differential vector operators and so
on so forth. Next two problems of this assignment are continuation of isentropic, non-viscid fluid flow from
previous problem set. In the fourth problem we see how Euler’s equation changes in the presence of magnetic
field and we derive a fundamental equation of MHD. Then we consider hydrostatics and it’s application to
stellar structure.

1 Vector analysis in curvilinear coordinates

In transforming from Cartesian coordinates (x, y, z) to a general coordinate (q1, q2, q3), the square of the
differential distance element can be written as:

ds2 = dr · dr = dr2 =
∑
ij

∂r

∂qi
· ∂r
∂qj

dqidqj =
∑
ij

gijdqidqj (1)

here gij is called metric which describes the transformation from Cartesian coordinates to another set of
coordinates q1, q2 and q3:

gij(q1, q2, q3) =
∂x

∂qi

∂x

∂qj
+
∂y

∂qi

∂y

∂qj
+
∂z

∂qi

∂z

∂qj
=
∂r

∂qi
· ∂r
∂qj

. (2)

We will only consider orthogonal systems, which means that the metric simplifies to a diagonal tensor gii:

gii =

(
∂x

∂qi

)2

+

(
∂y

∂qi

)2

+

(
∂z

∂qi

)2

. (3)

We further define the scale factors hi =
√
gii. Now we can write down a number of results for general

coordinate transformations of this form:

dr =
∑
i

hidqiq̂i (4)

ds2 =
∑
i

(hidqi)
2 (5)

dSij = hihjdqidqj (6)

dV = h1h2h3dq1dq2dq3 . (7)

In the transformed orthogonal curvilinear coordinate system the gradient, divergence, Laplacian and curl
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are written as:

∇φ =
∑
i

1

hi

∂φ

∂qi
q̂i (8)

∇ · V (q1, q2, q3) =
1

h1h2h3

[
∂

∂q1
(V1h2h3) +

∂

∂q2
(V2h3h1) +

∂

∂q3
(V3h1h2)

]
(9)

∇2φ(q1, q2, q3) =
1

h1h2h3

[
∂

∂q1

(h2h3
h1

∂φ

∂q1

)
+

∂

∂q2

(h3h1
h2

∂φ

∂q2

)
+

∂

∂q3

(h1h2
h3

∂φ

∂q3

)]
(10)

∇× V |i = εijk
1

hjhk

[
∂

∂qj
(hkVk)− ∂

∂qk
(hjVj)

]
q̂i . (11)

Determine the scale factors and write down the line element, surface element, volume element and vector
differential operators in these following two coordinate systems:

1. Circular cylindrical coordinates:

ρ =
√
x2 + y2 x = ρ cosφ (12)

φ = arctan
y

x
y = ρ sinφ (13)

z = z z = z , (14)

where (0 ≤ ρ <∞), (0 ≤ φ ≤ 2π) and (−∞ < z <∞).

2. Spherical polar coordinate system:

r =
√
x2 + y2 + z2 x = r sin θ cosφ (15)

θ = arccos
z√

x2 + y2 + z2
y = r sin θ sinφ (16)

φ = arctan
y

x
z = r cos θ , (17)

where (0 ≤ r <∞), (0 ≤ θ ≤ π) and (0 ≤ φ ≤ 2π).

2 Kelvin’s circulation theorem

The circulation Γ around a closed curve C is defined as follows:

Γ =

∮
C

u · dr (18)

1. If the curve C moves with the fluid (assumed to be inviscid and isentropic), show that Γ is a constant:

DΓ

Dt
= 0 (19)

This is known as “Kelvin’s circulation theorem”.

3 Rotating cylindrical fluid

1. This problem is about a smooth circular cylinder of radius a and height h that contains a fluid of
uniform density ρc, rotating uniformly with angular velocity Ω about its axis of symmetry. Compute
the vorticity ω.
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2. Show that in cylindrical polar coordinates, (ρ, φ, z), the velocity field given by

u =
(

0, ρΩ(t),
z

h

)
, (20)

applied for an appropriate time, describes a stretching of the cylinder to height of 2h while keeping
the density and rotation uniform.

For incompressible flow it is found that stretching vortex lines leads to an increase in their strength.
Use the vorticity equation to show that this is not the case here.

3. Show that the flow field given by

u =
(
−ρ
a
, ρΩ(t), 0

)
, (21)

applied for an appropriate time, describes decreasing the radius of the cylinder to a
2 while keeping the

density and the rotation uniform. Use the vorticity equation to show that in this case the vorticity
does change.

4 Magnetohydrodynamics: Cauchy momentum equation

Including the Lorentz force term J ×B, Euler’s equation in the presence of magnetic field becomes,

∂v

∂t
+ (v · ∇)v = −∇P

ρ
+ f +

J ×B

ρ
(22)

1. Using Maxwell’s equation show that (neglect displacement current) the above equation can be written
in the following form:

∂v

∂t
+ (v · ∇)v = f − 1

ρ
∇
(
P +

B2

2µ0

)
+

(B · ∇)B

µ0ρ
(23)

The term B2

2µ0
corresponds to magnetic pressure, introduced by the magnetic field. The last term above

is related to the tension along the magnetic field lines, that is, the magnetic field is associated to an
isotropic pressure and also to a tension along the field lines.

5 Hydrostatics: Stellar structure

This question gives some examples of static fluids (no velocities). In that case, Euler’s equation becomes

∇P = ρg , (24)

where P is the pressure of the fluid and ρg the force acting on the fluid.

1. Consider a very large, very massive fluid such that self-gravity becomes important (any idea what we
are talking about here?). The Poisson equation – familiar from mechanics, stellar dynamics and/or
stellar evolution courses – relates the gravitational potential φ to the density ρ

∇2φ(r) = 4πGNρ(r) , (25)

where GN is Newton’s constant. What is g in this scenario? Use the assumption of spherical symmetry
to find (one of) the equations of stellar structure

1

r2
d

dr

(
r2

ρ

dP

dr

)
= −4πGNρ . (26)

N.B. It’s not only in stars that this equation is used. Another example are clusters of galaxies. Then
ρ is the total matter density: baryonic (stellar, gas) and dark.
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2. In order to solve this, we need a relation between P and ρ, called the equation of state. Often this is
a polytropic relation

P ∝ ρ1+1/n , (27)

where n is called the polytropic index. Low mass white dwarf stars are well approximated as n = 1.5
polytropes, red giants with n = 3, the giant planets Jupiter and Saturn with n = 1 and the small
planets with a constant density (no relation between P and ρ). Assume a planet or a star has radius
R and mass M . The pressure at the center is Pc, and the pressure at the surface is PR = 0 (which in
fact can be used as a definition of the surface).

Show that for the gaseous planets, P = αρ2 the above differential equation turns into the following
form

1

r2
∂

∂r

(
r2
∂ρ

∂r

)
+ β2ρ = 0 . (28)

where β2 = 2πGN

α .

3. Derive an expression for the pressure P (r) in Mercury as function of radius in terms of M and R (and
G etc.). What is the central pressure?
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