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In this assignment and partly in the next assignment we will review vector analysis, curvilinear coordinates
and some of their applications in classical mechanics and classical electrodynamics. We will also derive some
identities that will be used later in the context of hydrodynamics.

1 Gradient, divergence and curl

Remember the vector differential operator ∇ = êi∂i? OK! Let’s review some definitions and vector identities.
In Cartesian coordinates, the gradient and Laplacian of a scalar field φ and the divergence and curl of a
vector field A are defined respectively by

grad(φ) = ∇φ = ∂iφêi (1)

∇2φ = ∇ ·∇φ = ∂2i φ (2)

div(A) = ∇ ·A = ∂kAk (3)

curl(A) = ∇×A = εijk∂jAkêi . (4)

The Einstein summation convention is used and εijk is the Levi-Civita symbol or permutation tensor (to be
discussed during tutorial if you aren’t familiar). Successive applications of ∇ lead us to the following results:

∇ · (A×B) = B · (∇×A)−A · (∇×B) (5)

∇× (A×B) = (B ·∇)A−B(∇ ·A)− (A ·∇)B + A(∇ ·B) (6)

∇(A ·B) = (A ·∇)B + (B ·∇)A + A× (∇×B) + B × (∇×A) (7)

∇× (∇φ) = 0 (8)

∇ · (∇×A) = 0 (9)

∇× (∇×A) = ∇(∇ ·A)−∇2A (10)

A divergence free vector field is also called as incompressible (in hydrodynamics) or solenoidal (in electrody-
namics) vector field and a curl free vector field is known as irrotational (in hydrodynamics) or conservative (in
classical mechanics) vector field. See textbooks (ref: Arfken, Spiegel) for derivation of the above identities.

1.1 Maxwell’s equations, Wave equation and Gauge transformation

Maxwell’s equations of classical electrodynamics (without media) in differential form can be written as follows
(hope you are familar with these):

∇ ·E =
1

ε0
ρ (11)

∇ ·B = 0 (12)

∇×E = −∂B
∂t

(13)

∇×B = µ0J + µ0ε0
∂E

∂t
. (14)
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where all notations are conventional (ref: D. J. Griffiths).

1. Using the vector identities given above, proof continuty equation,

∇ · J = −∂ρ
∂t

(15)

Try to give a physical interpretation of divergence from the above equation.

2. In a source free region in space (ρ = 0,J = 0), derive the wave equations for E and B,

∇2E = µ0ε0
∂2E
∂t2 (16)

∇2B = µ0ε0
∂2B
∂t2 . (17)

3. Let’s now consider the case when the electric charge density and current density are non-zero. From
the two homogeneous Maxwell’s equations, ∇ ·B = 0 and ∇×E = −∂B∂t show that, E and B can be
written in terms of vector and scalar potentials A and V respectively as follows:

E = −∇V − ∂A
∂t (18)

B = ∇×A . (19)

4. Now express the other two inhomogeneous Maxwell’s equations in terms of the vector and scalar
potential:

∇2V +
∂

∂t
(∇ ·A) = − 1

ε0
ρ (20)

(∇2A− µ0ε0
∂2A

∂t2
)−∇(∇ ·A + µ0ε0

∂V

∂t
) = −µ0J . (21)

5. Now using Lorentz gauge ∇ ·A = −µ0ε0
∂V
∂t , show that vector and scalar potentials follow the following

two inhomonegenous wave equations,

2V = − 1
ε0
ρ (22)

2A = −µ0J . (23)

where 2 = (∇2 − µ0ε0
∂2

∂t2 ) is d’Alembertian operator.

1.2 Classical Mechanics: Central Force motion

In classical mechanics central force is defined as, F = rf(r) where r is the position vector of the particle
from the origin.

1. Calculate the divergence of this field. Assume a general form f(r) = rn−1 and show that the divergence
is, (n+ 2)rn−1. Think about the inverse square law force field (e.g. gravitational or electrostatic force)
in the context of this result.

2. Show that central force field is conservative.

1.3 Continuum Mechanics: Convective operator and convective derivative

For a vector field the A convective operator is defined as (A · ∇). In fluid dynamics we often use the
Lagrangian description, where we follow the fluid elements when describing macroscopic properties of the
fluid. Instead of talking e.g. about a density ρEuler(x, t) at a fixed position x, we consider the density
ρLagrangian(x(t), t) of a specific fluid element that moves in the flow.
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When we want to take the time derivative of a macroscopic property of a fluid element, like the density,
we need to use the Lagrangian derivative:

D

Dt
=

∂

∂t
+ u ·∇ (24)

where u is the flow velocity.

1. Apply chain rule of partial derivative and derive the result. Interpret in the context of convection of a
property of the fluid, e.g. temperature.

2. Consider an accelerating fluid flow with a velocity field u = (U+cx)̂i+(U−cy)ĵ. Find the acceleration.

2 Vector integration, Gauss and Stokes theorem

Line integral of the tangential component of a vector field A along a curve C or work done (in mechanics):ˆ
C

A · dr (25)

Surface integral of the normal component of a vector field A over a surface S or flux or flow:¨
S

A · dS (26)

Volume integral of a vector field A over a volume V :˚
V

AdV (27)

In fluid dynamics, line integral of velocity field along a simple closed curve is denoted as circulation Γ:

Γ =

˛
C

v · dr (28)

Gauss’ Theorem: ‹
S

A · ds =

˚
V

∇ ·AdV (29)

Stokes’ Theorem: ˛
C

A · dr =

¨
S

(∇×A) · dS (30)

In fluid dynamics, circulation Γ can be related to vorticity ω = ∇× v using Stokes’ theorem:

Γ =

˛
C

v · dr =

¨
S

ω · dS (31)

2.1 Electrostatics, Magnetostatics, Electromagnetic Induction

Using Gauss’ and Stokes’ theorem Maxwell’s equations can be written in integral form as follows,‹
S

E · ds =
1

ε0

˚
V

ρdV (32)

‹
S

B · ds = 0 (33)

˛
C

E · dr = − d

dt

¨
S

B · dS (34)

˛
C

B · dr = µ0

¨
S

J · dS + ε0µ0
d

dt

¨
S

E · dS . (35)
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1. Let S be he closed urface that consists of the hemisphere x2 + y2 + z2 = 1, z ≥ 0 and its base
x2 + y2 ≤ 1, z = 0. Let E(x, y, z) = 2xî + 2yĵ + 2zk̂ be an electric field. Find the electric flux across
S.

2. Consider an infinitely long straight wire, carrying a steady current I. Find out the magnetic field as a
function of distance from the wire.

3. Also calculate the magnetic vector potential outside the wire A which is defined as B = ∇×A.

4. Now consider the same wire but this time the current is a slowly varying function of time, I(t). Consider
a rectangular Amperian loop and using quasi static approximation, determine the induced electric field
as a function of distance from the wire.

2.2 Classical Mechanics: Work done, Conservative force field, Potential

From Stokes’ theorem we get that the necessary and sufficient condition for
¸
C
F ·dr = 0 for any vector field

F for every simple closed curve C is ∇ × F = 0. So, F can be written as a gradient of a scalar potential
function, F = ∇φ.

1. If F = 2xy3z4î + 3x2y2z4ĵ + 4x2y3z3k̂, calculate
´
C
F · dr from (0, 0, 0) to (1, 1, 1) along the path

C : x = t, y = t2, z = t3.

2. Show that F is a conservative force field and find the corresponding potential function φ such that
F = ∇φ.
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