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h lAstrophysical
Fluid Dynamics

What is a Fluid ?
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I.1 The Fluid approximation:
The fluid is an idealized concept in which the matter is described as a
continuous medium with certain macroscopic properties that vary as

I.  What is a fluid ?

u u m um w m p p p y
continuous function of position (e.g., density, pressure, velocity,
entropy).

That is, one assumes that the scales l over which these
quantities are defined is much larger than the mean free path l of the
individual particles that constitute the fluid,

4

Where n is the number density of particles in the fluid and σ is a
typical interaction cross section.

1;l
n

λ λ
σ

=

Furthermore, the concept of local fluid quantities is only useful if the 
scale l on which they are defined is much smaller than the typical 
macroscopic lengthscales L on which fluid properties vary. Thus to use the 

I. What is a fluid ?

equations of fluid dynamics we require

Astrophysical circumstances are often such that strictly speaking not 
all criteria are fulfilled.  

L l λ

4
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Astrophysical circumstances are often such that strictly speaking not 
all fluid criteria are fulfilled. 

M n f  p th st ph si l fl ids  (t mp t  T  d nsit  n):

I. What is a fluid ?

Mean free path astrophysical fluids  (temperature T, density n):

1) Sun (centre): 
fluid approximation very good

( )6 210 /T n cmλ

7 10 3 610 , 10 10T K n cm cmλ− −⇒ ∼
107 10R cmλ = ×

4

f u  appr mat n ry g

2) Solar wind:
fluid approximation does not  
apply,  plasma physics

3)  Cluster:     
fluid approximation marginal     

5 3 1510 , 10 10T K n cm cmλ− ⇒ ∼
131.5 10AU cmλ = ×

7 3 3 243 10 , 10 10T K n cm cmλ− −× ⇒ ∼
1 Mpcλ ∼

Solid vs. Fluid

A B A B A B

By definition, a fluid cannot withstand any tendency for applied forces 
to deform it, in such a way that volume is left unchanged. Such 
deformation may be resisted, but no prevented. 

C D

Solid

Before
application

of shear

C D

Shear force

C D

After shear force
is removed

5

A B

C D

Fluid

of shear
A B

C D

A B

C D
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Mathematical
Preliminaries 

Mathematical preliminaries

6

Gauss's Law Stoke's Theorem

S V
F dS F dV⋅ = ∇ ⋅∫ ∫

C S
F dl F dS⋅ = ∇× ⋅∫ ∫
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Lagrangian  vs.  Eulerian View

There is a range of different ways in which we can follow the evolution of 
a fluid. The two most useful and best known ones are:

1) Eulerian view
Consider the system properties Q – density, flow velocity, 
temperature, pressure – at fixed locations. The temporal 
changes of these quantities is therefore followed by 
partial time derivative:

2) Lagrangian view

Q
t

∂
∂

) g g
Follow the changing system properties Q as you flow along 
with a fluid element. In a way, this “particle” approach is 
in the spirit of Newtonian dynamics, where you follow the 
body under the action of external force(s).

The temporal change of the quantities is followed by means 
of the “convective” or “Lagrangian” derivative 

DQ
Dt

Lagrangian  vs.  Eulerian View

Consider the change of a fluid quantity               at a location 

1) Eulerian view:
change in quantity Q  in interval dt, 

( , )Q r t

( , ) ( , )Q Q r t t Q r tδ∂ + −
=

r

at location    :

2) Lagrangian view:
change in quantity Q in time interval dt, 
while fluid element moves from      

to 

( , ) ( , )DQ Q r r t t Q r t
Dt t

Q v Q
t

δ δ
δ

+ + −
=

∂
= + ⋅∇
∂

t tδ
=

∂r

r r rδ+

D v
Dt t

∂
= + ⋅∇
∂

Convective/   
Lagrangian 
Derivative 
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Basic
Fluid  Equations  

Conservation Equations
To describe a continuous fluid flow field, the first step is to evaluate the development 
of essential properties of the mean flow field . To this end we evaluate the first 3 moment of the 
phase space distribution function               , corresponding to five quantities, ( , )f r v

For a gas or fluid consisting of particles with mass m, these are 

1)    mass density 

2)    momentum density 

3)    (kinetic) energy density

( )
2

, ,

/ 2

m
u mv f r v t dv

m v u

ρ
ρ
ρε

⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ −⎝ ⎠

∫

Note that we use     to denote the bulk velocity at location r, and      for the particle velocity.  The 
velocity of a particle is therefore the sum of the bulk velocity and a “random” component     ,    

In principle, to follow the evolution of the (moment) quantities, we have to follow the 
evolution of the phase space density              . The Boltzmann equation describes this 
Evolution.

( , )f r v

u v
w

v u w= +
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Boltzmann Equation
In principle, to follow the evolution of these (moment) quantities, we have to follow the 
evolution of the phase space density              . This means we should solve the 
Boltzmann equation, 

( , )f r v

The righthand collisional term is given by 

c

f fv f f
t t

δ
δ

∂ ⎛ ⎞+ ⋅∇ −∇Φ⋅∇ = ⎜ ⎟∂ ⎝ ⎠

( ) ( ) ( ) ( ) ( )2 2 2 2
f v v f v f v f v f v d dv
t

δ σ
δ

⎛ ⎞ ′ ′⎡ ⎤= − Ω − Ω⎜ ⎟ ⎣ ⎦⎝ ⎠ ∫
in which

is the angle W-dependent elastic collision cross section.

On the lefthand side, we find the gravitational potential term, which according to the Poisson 
equation

is generated by selfgravity as well as the external mass distribution                  .  

ctδ⎝ ⎠

( ) ( )2 2, ,v v v vσ σ ′ ′Ω =

2 4 ( )extGπ ρ ρ∇ Φ= +
( ),ext x tρ

To follow the evolution of a fluid at a particular location x, we follow the evolution of a quantity 
c(x,v) as described by the Boltzmann equation. To this end, we integrate over the full velocity 
range, 

f f f fδ⎛ ⎞∂ ∂ ∂Φ ∂ ⎛ ⎞

Boltzmann Equation

If  the quantity                is a conserved quantity in a collision, then the righthand side of the 
equation equals zero.  For elastic collisions, these are mass, momentum and (kinetic) energy of a 
particle. Thus,  for these quantities we have,

( , )x vχ

k
ck k k

f f f fv dv dv
t x x v t

δχ χ χ χ
δ

⎛ ⎞∂ ∂ ∂Φ ∂ ⎛ ⎞+ − =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ⎝ ⎠⎝ ⎠
∫ ∫

0
c

f dv
t

δχ
δ

⎛ ⎞ =⎜ ⎟
⎝ ⎠∫

The above result expresses mathematically the simple notion that collisions can not contribute to 
the time rate change of any quantity whose total is conserved in the collisional process.

For elastic collisions involving short-range forces in the nonrelativistic regime, there exist exactly 
five independent quantities which are conserved:     
mass, momentum and (kinetic) energy of a particle, 

2; ;
2i
mm mv vχ χ χ= = =
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When we define an average local quantity, 

1Q n Q f dv−= ∫

Boltzmann Moment Equations

for  a quantity Q, then on the basis of the velocity integral of the Boltzmann equation, we get the 
following evolution equations for the conserved quantities c, 

For the five quantities 

( ) ( ) 0k
k k k

n n v n
t x x v

χχ χ∂ ∂ ∂Φ ∂
+ + =

∂ ∂ ∂ ∂

2; ;
2i
mm mv vχ χ χ= = =

the resulting conservation equations are known as the 

1)    mass density                                continuity equation
2)    momentum density                       Euler equation
3)    energy density                             energy equation

In the sequel we follow – for reasons of insight – a slightly more heuristic path towards inferring 
the continuity equation and the Euler equation. 

To infer the continuity equation, we consider the 
conservation of mass contained in a volume V

n

n

Continuity equation

conservation of mass contained in a volume V
which is fixed in space and enclosed by a 
surface S.

The mass M is  

The change of mass M in the volume V is equal to 
the flux of mass through the surface S, 

V

S

V
M dVρ= ∫

Where     is the outward pointing normal vector.

V S

d dV u n dS
dt

ρ ρ= − ⋅∫ ∫

n

V V

d dV dV
dt t

ρρ ∂
=

∂∫ ∫

( )
S V

u dS u dVρ ρ⋅ = ∇ ⋅∫ ∫

LHS:

RHS, 
using the divergence theorem (Green’s formula): 
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Continuity equation

nn
Since this holds for every volume, this 
relation is equivalent to

∂

V

S

The continuity equation expresses 
- mass conservation 
AND 
- fluid flow occurring in a 

continuous fashion !!!!! 

( ) 0 ( .1)u I
t
ρ ρ∂
+∇ ⋅ =

∂

One can also define the mass flux density as                  

which shows that eqn. I.1 is actually a 
continuity equation

0 ( .2)j I
t
ρ∂
+∇ ⋅ =

∂
j uρ=

Continuity Equation & Compressibility

n

From the continuity equation, 

( ) 0uρ ρ∂
+∇ ⋅ =

∂
we find directly that , 

Of course, the first two terms define the Lagrangian derivative, so that for a moving fluid 
element we find that its density changes according to 

( )
t

ρ
∂

0u u
t
ρ ρ ρ∂
+ ⋅∇ + ∇⋅ =

∂

element we find that its density changes according to 

In other words, the density of the fluid element changes as the divergence of the velocity flow. 
If the density of the fluid cannot change, we call it an incompressible fluid , for which             .

1 D u
Dt
ρ

ρ
= −∇ ⋅

0u∇⋅ =
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Momentum Conservation
When considering the fluid momentum,               , via the Boltzmann moment equation,

( ) ( ) 0χχ χ∂ ∂ ∂Φ ∂
+ +

imvχ =

we obtain the equation of momentum conservation,

Decomposing the velocity v into the bulk velocity u and the random component w  

( ) ( ) 0k
k k k

n n v n
t x x v

χχ χ+ + =
∂ ∂ ∂ ∂

( ) ( ) 0i i k
k i

v v v
t x x
ρ ρ ρ∂ ∂ ∂Φ

+ + =
∂ ∂ ∂

Decomposing the velocity vi into the bulk velocity ui and the random component wi, 
we have

By separating out the trace of the symmetric dyadic  wiwk,  we write   

i k i k i kv v u u w w= +

i k ik ikw w pρ δ π= −

Momentum Conservation
By separating out the trace of the symmetric dyadic  wiwk,  we write

w w pρ δ π=

where   

P is the “gas pressure”

pik  is the “viscous stress tensor” 

i k ik ikw w pρ δ π= −

21
3

p wρ≡

21
3ik ik i kw w wπ ρ δ≡ −

we obtain the momentum equation, in its conservation form, 

( ) ( )i i k ik ik
k i

u u u p
t x x
ρ ρ δ π ρ∂ ∂ ∂Φ

+ + − = −
∂ ∂ ∂
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Momentum Conservation
Momentum Equation

Describes the change of the momentum density          in the i-direction:

The flux of the i-th component of momentum in the k-th direction  consists of the sum of

( ) ( )i i k ik ik
k i

u u u p
t x x
ρ ρ δ π ρ∂ ∂ ∂Φ

+ + − = −
∂ ∂ ∂

iuρ

1)  a mean part: 

2)  random part I, isotropic pressure part:

3)  random part II, nonisotropic viscous part:                      

i ku uρ

ikpδ

ikπ−

Force Equation
Momentum Equation

By invoking the continuity equation, we may also manipulate the momentum equation so that 
it becomes the force equation

( ) ( )i i k ik ik
k i

u u u p
t x x
ρ ρ δ π ρ∂ ∂ ∂Φ

+ + − = −
∂ ∂ ∂

Du p
Dt

ρ ρ ρ π= − ∇Φ − ∇ +∇⋅
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Viscous Stress
A note on the viscous stress term     : ikπ

For Newtonian fluids:

Hooke’s Law  
states that the viscous stress      is linearly proportional to the rate of strain                 ,

where       is the shear deformation tensor,   

/i ku x∂ ∂ikπ

( )2ik ik ikuπ μ β δ= Σ + ∇⋅

ikΣ

The parameters m and b are called the shear and bulk coefficients of viscosity. 

( )1 1
2 3

i k
ik ik

k i

u u u
x x

δ
⎧ ⎫∂ ∂

Σ = + − ∇⋅⎨ ⎬∂ ∂⎩ ⎭

In the absence of viscous terms, we may easily derive the equation  for the conservation of 

momentum on the basis of macroscopic considerations.  This yields the Euler equation. 

Euler equation

As in the case for mass conservation, consider an arbitrary volume V, fixed in space, and 
bounded by a surface S, with an outward normal    .
Inside V,  the total momentum  for a fluid with density        and flow velocity      is

The momentum inside V changes as a result of three factors:

1) External (volume) force,

n

V
u d Vρ∫

ρ u

a well known example is the gravitational force when V embedded in gravity field.

2) The pressure (surface) force over de surface S of the volume.
(at this stage we'll ignore other stress tensor terms that can either be caused by
viscosity, electromagnetic stress tensor, etc.):

3)  The net transport of momentum by in- and outflow of fluid into and out of V
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1) External (volume) forces,:

V
f d Vρ∫

Euler equation

where          is the force per unit mass, known as the body force.  An example is the 
gravitational force when the volume V is embeddded in a gravitational field. 

2) The pressure (surface) force is the integral of the pressure (force per unit area) over
the surface S, 

3) The momentum transport over the surface area can be inferred by considering at each 
S

p n d S− ∫

V∫
f

surface  point the slanted cylinder of fluid swept out by the area element dS in time dt, 
where dS starts on the  surface S and moves with the fluid, ie. with velocity       .  The 
momentum transported through the slanted cylinder is 

so that the total transported monetum through the surface S is:

u

( ) ( )
S

u u u n d Sδ ρ ρ= − ⋅∫

( ) ( )u u u n t Sδ ρ ρ δ δ= − ⋅

Taking into account all three factors, the total rate of change of momentum is  given by

( )d u d V f d V p n d S u u n d Sρ ρ ρ= − − ⋅∫ ∫ ∫ ∫

Euler equation

The most convenient way to evaluate this integral is by restricting oneself to the i-component 
of the velocity field, 

Note that we use the Einstein summation convention for repeated indices  

( )
V V S S

u d V f d V p n d S u u n d S
d t

ρ ρ ρ= − − ⋅∫ ∫ ∫ ∫

i i i i j jV V S S

d u d V f d V p n d S u u n d S
d t

ρ ρ ρ= − −∫ ∫ ∫ ∫
Note that we use the Einstein summation convention for repeated indices. 

Volume V is fixed, so that

Furthermore, V is arbitrary. Hence,  

V V

d
d t t

∂
=

∂∫ ∫

( ) ( )i i j i
j i

pu u u f
t x x
ρ ρ ρ∂ ∂ ∂

+ = − +
∂ ∂ ∂
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Reordering some terms of the lefthand side of  the last equation, 

( ) ( )i i j i
pu u u f

t x x
ρ ρ ρ∂ ∂ ∂

+ = − +
∂ ∂ ∂

Euler equation

leads  to the following equation:

From the continuity equation, we know that the second term on the LHS is zero. Subsequently, 
returning to vector notation, we find the usual exprssion for the Euler equation,

j it x x∂ ∂ ∂

( )
j

i i
j i j i

j i

u u pu u u f
t x t x x

ρρ ρ ρ
⎧ ⎫ ⎧ ⎫∂ ∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪+ + + = − +⎨ ⎬ ⎨ ⎬
∂ ∂ ∂ ∂ ∂⎪ ⎪⎪ ⎪ ⎩ ⎭⎩ ⎭

Returning to vector notation, and using the we find the usual expression for the Euler equation:

( ) ( . 4 )u u u p f I
t

ρ ρ∂⎛ ⎞+ ⋅ ∇ = − ∇ +⎜ ⎟∂⎝ ⎠

An slightly alternative expression for the Euler equation is 

Euler equation

In this discussion we ignored energy dissipation processes which may occur as a result of
internal friction within the medium and heat exchange between its parts (conduction). This
type of fluids are called ideal fluids.

( ) ( . 5 )u pu u f I
t ρ

∂ ∇
+ ⋅ ∇ = − +

∂

For gravity the force per unit mass is given by where the 
Poisson equation relates the gravitational potential j to the density r:

Gravity:

f φ= − ∇

2 4 Gφ π ρ∇ =
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From  eqn. (I.4) 

( ) ( 4 )u u u p f Iρ ρ∂⎛ ⎞+ ∇ ∇ +⎜ ⎟

Euler equation

we see that the LHS involves the Lagrangian derivative, so that the Euler equation can 
be written as

( ) ( .4 )u u p f I
t

ρ ρ+ ⋅ ∇ = − ∇ +⎜ ⎟∂⎝ ⎠

( 6 )D u p f Iρ ρ∇ +

In this form it can be recognized as a statement of Newton’s 2nd law for an inviscid
(frictionless) fluid.  It says that, for an infinitesimal volume of fluid, 
mass times acceleration = total force on the same volume, 
namely force due to pressure gradient plus whatever body forces are being exerted.  

( . 6 )p f I
D t

ρ ρ= − ∇ +

Energy Conservation
In terms of  bulk velocity       and random velocity      the (kinetic) energy of a particle is,u w

2 2

The Boltzmann moment equation for energy conservation 

becomes 

2 2
2 2( )

2 2 2 2
m m mu mwv u w mw uχ = = + = + ⋅ +

( ) ( ) 0k
k k k

n n v n
t x x v

χχ χ∂ ∂ ∂Φ ∂
+ + =

∂ ∂ ∂ ∂

Expanding the  term inside the spatial divergence, we get 

� �( ) ( )( )222

2 2 k k i i k
k k

u w u w u w u
t x x

ρ ρ ρ∂ ∂ ∂Φ⎡ ⎤ ⎡ ⎤+ + + + +⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦

( )( )2 2 2 22k k i i k i i k k ku w u w u u u w w u w w w+ + = + + +
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Defining the following energy-related quantities:

Energy Conservation

1)   specific internal energy: 

2) “gas pressure”

3) conduction   heat  flux 

21 3
2 2

w Pρε ρ= =

21
3

P wρ=

21
k kF w wρ=3) conduction   heat  flux 

4) viscous  stress   tensor

� �
2k kF w wρ

21
3ik ik i kw w wπ ρ δ= −

The total energy equation for energy conservation in its conservation form is 

( )2 2ρ ρ∂ ∂ ∂Φ⎛ ⎞ ⎡ ⎤

Energy Conservation

This equation states that the total fluid energy density is the sum of a part due to 
bulk motion     and a part due to random motions    .  

The flux of fluid energy in the k-th direction consists of 

1)    the translation of the bulk kinetic energy at the k-th component of the mean velocity, 

( )2 2

2 2 k i ik ik k k k
k k

u u u u P u F u
t x x

ρ ρρε δ π ρε ρ∂ ∂ ∂Φ⎛ ⎞ ⎡ ⎤+ + + − + + = −⎜ ⎟ ⎢ ⎥∂ ∂ ∂⎝ ⎠ ⎣ ⎦

( )2 / 2

u w

2)    plus the enthalpy – sum of internal energy and pressure – flux,

3) plus the viscous contribution  

4) plus the conductive flux kF

( )2 / 2 ku uρ

( ) kP uρε +

i ikuπ−
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Work Equation 
Internal Energy  Equation

For  several  purposes it is convenient to express energy conservation in a form that involves
only the internal energy and a form that only involves the global PdV work.

The work equation follows from the full energy equation by using the Euler equation,
by multiplying it by      and using the continuity equation: 

Subtracting the work equation from the full energy equation, yields the 
internal energy equation  for the internal energy 

2 2

2 2
ik

k i i i
k i i k

Pu u u u u u
t x x x x

πρ ρ ρ ∂∂ ∂ ∂Φ ∂⎛ ⎞ ⎛ ⎞+ = − − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

iu

εgy q gy

where Y is the rate of viscous dissipation
evoked by the viscosity stress 

( ) ( ) k k
k

k k k

u Fu P
t x x x
ρε ρε ∂ ∂∂ ∂

+ = − − +Ψ
∂ ∂ ∂ ∂

i
ik

k

u
x

π ∂
Ψ=

∂

ε

ikπ

Internal energy equation

If we use the continuity equation, we may also write the internal energy equation in the form of 
the first law of thermodynamics, the first law of thermodynamics, 

in which we recognize 

cond
D P u F
Dt
ερ = − ∇⋅ −∇ ⋅ +Ψ

1DP u P
Dt
ρρ

−⎡ ⎤
− ∇ ⋅ = − ⎢ ⎥

⎣ ⎦
as the rate of doing   PdV work, and 

as the time rate of adding heat (through heat conduction and the viscous conversion of ordered
energy in differential fluid motions to disordered energy in random particle motions).

Dt⎣ ⎦

condF−∇⋅ +Ψ



5/20/2011

18

Energy Equation
On the basis of the kinetic equation for energy conservation

( )2 2u u u u P u F u gρ ρρε δ π ρε ρ∂ ∂⎛ ⎞ ⎡ ⎤+ + + + + =⎜ ⎟ ⎢ ⎥

we may understand that the time rate of the change of the total fluid energy in 
a volume V (with surface area A), i.e. the kinetic energy of fluid motion plus internal energy, 
should equal the sum of 

1) minus the surface integral of the energy flux  (kinetic + internal)

( )
2 2 k i ik ik k k k k

k

u u u u P u F u g
t x

ρε δ π ρε ρ+ + + − + + =⎜ ⎟ ⎢ ⎥∂ ∂⎝ ⎠ ⎣ ⎦

2) plus surface integral of doing work by the internal stresses  Pik

3) volume integral of the rate of doing work by local body forces (e.g. gravitational)

4) minus the heat loss by conduction across the surface A 

5) plus volumetric gain minus volumetric losses of energy 
due to local sources and sinks (e.g. radiation)  

Energy Equation
The total expression for the time rate of total fluid energy is therefore 

1 1d ⎡ ⎤⎛ ⎞ ⎛ ⎞

æ Pik is the force per unit area exerted by the outside on the inside in the ith

( )

2 21 1 ˆ
2 2

ˆ

V A

i ik kA V

condA V

d u dV u u ndA
dt

u P n dA u g dV

F ndA dV

ρ ρε ρ ρε

ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞+ =− + ⋅ +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

+ + ⋅ −

− ⋅ + Γ −Λ

∫ ∫

∫ ∫
∫ ∫

æ Pik is the force per unit area exerted by the outside on the inside in the i
direction across a face whose normal is oriented in the kth direction. 
For a dilute gas this is

æ G is the energy gain per volume, as a result of energy  generating  processes.
æ L is the energy loss per volume due to local sinks (such as e.g. radiation)

ik i k ik ikP w w pρ δ π= − = −
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Energy Equation

By applying the divergence theorem, we obtain the total energy equation: 

2 21 1
2 2 i ik k

k

u u u P F g u
t x
ρ ε ρ ε ρ⎡ ⎤ ⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞+ + + − + = ⋅ + Γ −Λ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

Heat Equation
Implicit to the fluid formulation, is the concept of local thermal equilibrium. This allows us 
to identify the trace of the stress tensor Pik with the thermodynamic pressure p, 

δ
Such that it is related to the internal energy per unit mass of the fluid,    , 
and the specific entropy s, by the fundamental law of thermodynamics 

Applying this thermodynamic equation and subtracting the work equation (see relevant slide 64), 
we obtain the Heat Equation,

ik ik ikP pδ π= − +
ε

( )1d Tds pdV Tds pdε ρ−= − = −

where Y equals the rate of viscous dissipation, 

cond
DsT F
Dt

ρ = −∇⋅ +Ψ +Γ −Λ

i
ik

k

u
x

π ∂
Ψ=

∂
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Fluid  Flow
Visualization  

Fluid flow is characterized by a velocity vector field in 3-D space. 
There are various distinct types of curves/lines commonly used when visualizing fluid motion:  
streamlines, pathlines and streaklines. 

Flow Visualization: 
Streamlines, Pathlines & Streaklines

re a

These only differ when the flow changes in time, ie. when the flow is not steady !  If the flow 
is not steady, streamlines and streaklines will change.

1) Streamlines

Family of curves that are instantaneously tangent to the velocity
vector        They show the direction a fluid element will travel at uvector     .   They show the direction a fluid element will travel at 
any point in time. 

If we parameterize one particular streamline             , with                             ,
then  streamlines are defined as                        

u

( )Sl s 0( 0 )Sl s x= =

( ) 0S
S

d l u l
d s

× =
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Definition Streamlines:

Flow Visualization: 
Streamlines 

Illustrations of streamlines … 

( ) 0S
S

d l u l
d

× =

re a

If the components of the 
streamline can be written as

and 
( , , )d l d x d y d z=

( , , )Sl x y z=

d s

then 

( , , )x y zu u u u=

x y z

d x d y d z
u u u

= =

2) Pathlines

Pathlines are the trajectories that individual fluid particles follow. These can be thought 
f   " di " f h  h  fl id l  i  h  fl  k    i  i d  

Flow Visualization: 
Pathlines 

re a

of as a "recording" of the path a fluid element in the flow takes over a certain period. 

The direction the path takes will be 
determined by the streamlines of 
the fluid at each moment in time.

Pathlines           are defined by( )Pl t

where the suffix P indicates we are following the path of particle P.  Note that at location     
the curve is parallel to velocity vector      , where the velocity vector       is evaluated at 
location      at time t.        

0 0

( , )

( )

P
P

P P

dl u l t
dt

l t x

⎧
=⎪

⎨
⎪ =⎩

Pl u
Pl
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3)  Streaklines

Streaklines are are the locus of points of all the fluid particles that have passed 
i l  h h  i l  i l i  i  h   

Flow Visualization: 
Streaklines 

re a

continuously through a particular spatial point in the past. 

Dye steadily injected into the fluid 
at a fixed point extends along a 
streakline. In other words, it is 
like the plume from a chimney. 

Streaklines can be expressed as TlStreaklines can be expressed as 

where                is the velocity at location     at time t. The parameter      
parameterizes the streakline and                   with t0  time of interest.               

Tl
0

( , )

( )

T
T

T T T

dl u l t
dt

l xτ

⎧
=⎪

⎨
⎪ =⎩

Tl

( , )Tu l t Tτ

( ),T Tl t τ 00 T tτ≤ ≤

The following example illustrates the different concepts of 
streamlines, pathlines and streaklines:

Flow Visualization: 
Streamlines, Pathlines, Streaklines 

re a

æ red:   pathline
æ blue:  streakline

æ short-dashed:
evolving streamlines 
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Steady flow
Steady flow is a flow in which the velocity, density and the other fields

do not depend explicitly on time, namely / 0t∂ ∂ =

In steady flow streamlines and streaklines do not vary with time and coincide with 
the pathlines. 

Kinematics
of Fluid Flow  
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Stokes’ Flow Theorem 
Stokes’ flow theorem:
The most general differential motion of a fluid element corresponds to a 

1)     uniform translation  
2)     uniform expansion/contraction                                  divergence term
3)     uniform rotation                                                        vorticity term
4)     distortion (without change volume)                            shear term

The fluid velocity            at a point Q displaced by a small amount     from a point P will 
differ by a small amount, and includes the components listed above:

( ) ( )u Q u P HR D R+ +∇ +Ω×

( )u Q R

( ) ( )u Q u P HR D R= + +∇ +Ω×

uniform translation

Divergence
uniform 

expansion/contraction

Vorticity
uniform rotation

Shear term
distortion 

Stokes’ Flow Theorem 
Stokes’ flow theorem:
the terms of the relative motion wrt. point P are:

2)     Divergence term:

uniform expansion/contraction   

3)     Shear term:

uniform distortion

:   shear deformation scalar

1
3

H u= ∇⋅

( )

1
2

1 1

ik i kS R R

u u

= Σ

⎧ ⎫∂ ∂S :   shear deformation scalar

:  shear tensor

4)     Vorticity Term:

uniform rotation

( )1 1
2 3

i k
ik ik

k i

u u u
x x

δ
⎧ ⎫∂ ∂

Σ = + − ∇⋅⎨ ⎬∂ ∂⎩ ⎭

S

ikΣ

1 1
2 2

u

u

ω

ω

Ω = ∇× =

= ∇×
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Stokes’ Flow Theorem 
Stokes’ flow theorem:
One may easily understand the components of the fluid flow around a point P by 
a simple Taylor expansion of the velocity field           around the point P:( )u x

∂

Subsequently, it is insightful to write the rate-of-strain tensor                 in 
terms of its symmetric and antisymmetric parts:

( , ) ( , ) i
i i i k

k

uu u x R t u x t R
x

δ ∂
= + − =

∂
/i ku x∂ ∂

1 1
2 2

i i k i k

k k i k i

u u u u u
x x x x x

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂
= + + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

The symmetric part of this tensor is the deformation tensor, and it is convenient 
-and insightful – to write it in terms of a diagonal trace part and the traceless 
shear tensor       ,  i kΣ

( )1
3

i
i k i k i k

k

u u
x

δ ω∂
= ∇ ⋅ + Σ +

∂

Stokes’ Flow Theorem 

where 

1) the symmetric (and traceless) shear tensor        is defined as Σ1) the symmetric (and traceless) shear tensor        is defined as 

2) the antisymmetric tensor        as

i kΣ

i kω

( )1 1
2 3

i k
i k i k

k i

u u u
x x

δ
⎛ ⎞∂ ∂

Σ = + − ∇ ⋅⎜ ⎟∂ ∂⎝ ⎠

1 i ku uω
⎛ ⎞∂ ∂
⎜ ⎟

3) the trace of the rate-of-strain tensor is proportional to the velocity divergence term,

2
i k

i k
k ix x

ω = −⎜ ⎟∂ ∂⎝ ⎠

( ) 31 2

1 2 3

1 1
3 3i k i k

uu uu
x x x

δ δ
⎛ ⎞∂∂ ∂

∇ ⋅ = + +⎜ ⎟∂ ∂ ∂⎝ ⎠
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Stokes’ Flow Theorem 
Divergence Term

( ) 31 21 1 uu uu δ δ
⎛ ⎞∂∂ ∂

∇ + +⎜ ⎟

We know from the Lagrangian continuity equation, 

that the term represents the uniform expansion or contraction of the fluid 

( ) 31 2

1 2 33 3i k i ku
x x x

δ δ∇ ⋅ = + +⎜ ⎟∂ ∂ ∂⎝ ⎠

D u
D t
ρ

= ∇ ⋅

that the term represents the uniform expansion or contraction of the fluid 
element. 

Stokes’ Flow Theorem 
Shear Term
The traceless symmetric shear term, 

represents the anisotropic deformation of the fluid element. As it concerns a 
traceless deformation, it preserves the volume of the fluid element (the 
volume-changing deformation is represented via the divergence term). 

( )1 1
2 3

i k
i k i k

k i

u u u
x x

δ
⎛ ⎞∂ ∂

Σ = + − ∇ ⋅⎜ ⎟∂ ∂⎝ ⎠

intention is for the volume of the sphere 
and the ellipsoid to be equal
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Stokes’ Flow Theorem 
Shear Term
Note that we can associate a quadratic form – ie. an ellipsoid – with the shear 
tensor, the shear deformation scalar S, 

1

such that the corresponding shear velocity contribution is given by 

We may also define a related quadratic form by incorporating the divergence term, 

1
2 ik i kS R R= Σ

,i ik k
i

Su R
R

δ Σ
∂

= = Σ
∂

( )1 1 1
2 2 3v mk m k mk mk m kD R R u R Rδ⎧ ⎫Φ = = Σ + ∇⋅⎨ ⎬

⎩ ⎭

Evidently, this represents the irrotational part of the velocity field. For this reason, 
we call      the velocity potential:  

( )2 2 3

1
2

v i k
k

i k i

u u R
R x x

⎩ ⎭
⎧ ⎫∂Φ ∂ ∂

= +⎨ ⎬∂ ∂ ∂⎩ ⎭

vΦ

0vu u= ∇Φ ⇒ ∇× =

Vorticity Term
The antisymmetric term, 

Stokes’ Flow Theorem 

1 u u⎛ ⎞∂ ∂

represents the rotational component of the fluid element’s motion, the vorticity. 

With the antisymmetric we can associate a (pseudo)vector, the vorticity vector 

1
2

i k
i k

k i

u u
x x

ω
⎛ ⎞∂ ∂

= −⎜ ⎟∂ ∂⎝ ⎠

i kω

uω = ∇ ×
where the coordinates of the vorticity vector,                                , are related to
the vorticity tensor via

where         is the Levi-Cevita tensor, which fulfils the useful identity   

2k i k
m m i k i k k i m m

i k i

u u u
x x x

ω ε ω ε ω∂ ∂ ∂
= ⇔ = − =

∂ ∂ ∂

1 2 3( , , )ω ω ω ω=

k i mε
k i m m p s k p i s k s i pε ε δ δ δ δ= −
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Vorticity Term
The contribution of the antisymmetric part of the differential velocity 
therefore reads, 

Stokes’ Flow Theorem 

The last expression in the eqn. above equals the i-th component of the rotational  
velocity 1

2
uΩ = ∇ ×

,
1 1
2 2

i k
i k k i m m k k i m m k

k i

u uu R R R
x xωδ ε ω ε

⎛ ⎞∂ ∂
= − = = Ω⎜ ⎟∂ ∂⎝ ⎠

r o tv R= Ω ×
of the fluid element wrt to its center of mass, so that the vorticity vector can 
be identified with one-half the angular velocity of the fluid element,  

The linear momentum     of a fluid element equal the fluid velocity           integrated 
over the mass of the element,  

Linear Momentum Fluid Element  

( )p u Q d m= ∫

( )u Qp

Substituting this into the equation for the fluid flow around P,

we obtain:

If P is the center of mass of the fluid element  then the 2nd and 3rd terms on the RHS 

( )p u Q d m∫

( ) ( )u Q u P HR D R= + +∇ +Ω×

( )p u P d m R d m H R d m D d m= + Ω × + + ∇∫ ∫ ∫ ∫
If P is the center of mass of the fluid element, then the 2nd and 3rd terms on the RHS 
vanish as 

Moreover, for the 4th term we can also use this fact to arrive at, 

0R dm =∫

0i ik k ik kD dm R dm R dm∇ = Σ = Σ =∫ ∫ ∫
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Linear Momentum Fluid Element  

Hence,  for a fluid element, the linear momentum equals the mass times the 
center-of-mass velocity,  

( ) ( )p u Q d m m u P= =∫∫

With respect to the center-of-mass P, the instantaneous angular momentum of a 
fluid element equals  

Angular Momentum Fluid Element  

( )J R u Q d m⎡ ⎤≡ ×⎣ ⎦∫
We rotate the coordinate axes to the eigenvector coordinate system of the 
deformation tensor            (or, equivalently, the shear tensor         ), in which 
the symmetric deformation tensor is diagonal 

and all strains          are extensional

( )J R u Q d m⎡ ⎤≡ ×⎣ ⎦∫
m kD m kΣ

( )2 2 2
11 1 22 2 33 3

1 1
2 2v mk m kD R R D R D R D R′ ′ ′ ′ ′ ′ ′ ′ ′Φ = = + +

Dand all strains          are extensional,

Then  

m kD

31 2
11 22 33

1 2 3

; ; uu uD D D
x x x

′′ ′ ∂∂ ∂′ ′ ′= = =
′ ′ ′∂ ∂ ∂

[ ]1 2 3 3 2( ) ( )J R u Q R u Q d m′ ′ ′ ′ ′= −∫
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In the eigenvalue coordinate system, the angular momentum in the 1-direction is 

Angular Momentum Fluid Element  

[ ]1 2 3 3 2( ) ( )J R u Q R u Q d m′ ′ ′ ′ ′= −∫
where

with                               and             evaluated at the center-of-mass P. After some
algebra we obtain m kD/ 2uΩ = ∇ ×

[ ]∫

( )
( )

3 3 1 2 2 1 3 3 3

2 2 3 1 1 3 2 2 2

( ) ( )

( ) ( )

u Q u P R R D R

u Q u P R R D R

′ ′ ′ ′ ′ ′ ′ ′= + Ω − Ω +

′ ′ ′ ′ ′ ′ ′ ′= + Ω − Ω +

where       is the moment of inertia tensor  

Notice that       is not diagonal in the primed frame unless the principal axes of  
happen to coincide with those of          .    

( )1 1 1 1 2 2 2 3 3 3 2 3 2 2 3 3J I I I I D D′ ′ ′ ′ ′ ′ ′ ′ ′ ′= Ω + Ω + Ω + −

( )2

j l j l j lI R R R d mδ′ ′ ′ ′≡ −∫
j lI ′

j lI ′
m kD

j lI

Using the simple observation that the difference

since the isotropic part of       does not enter in the difference, 

Angular Momentum Fluid Element  

j lI ′

2 2 3 3 2 2 3 3D D′ ′ ′ ′− = Σ − Σ

p p f ff ,
we find for all 3 angular momentum components 

with a summation over the repeated l’s.

( )
( )
( )

1 1 2 3 2 2 3 3

2 2 3 1 3 3 1 1

3 3 1 2 1 1 2 2

l l

l l

l l

J I I

J I I

J I I

′ ′ ′ ′ ′ ′= Ω + Σ − Σ

′ ′ ′ ′ ′ ′= Ω + Σ − Σ

′ ′ ′ ′ ′ ′= Ω + Σ − Σ

j l

with a summation over the repeated l s.

Note that for a solid body we would have

For a fluid an extra contribution arises from the extensional strain if the principal 
axes of the moment-of-inertia tensor do not coincide with those of        . 

Notice, in particular, that a fluid element can have angular momentum wrt. its 
center of  mass without possesing spinning motion, ie. even if                                      ! 

j j l lJ I′ ′ ′= Ω

i kD

/ 2 0uΩ = ∇ × =
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Inviscid Barotropic
Flow  

Inviscid Barotropic Flow
In this chapter we are going to study the flow of fluids in which we ignore
the effects of viscosity . 

In addition, we suppose that the energetics of the flow processes are 
such that we have a barotropic equation of state

Such a replacement considerably simplifies many dynamical discussions, and 
its formal justification can arise in many ways. 

One specific example is when heat transport can be ignored, so that we 
have adiabatic flow, 

( , ) ( )P P S Pρ ρ= =

with  s the specific entropy per mass unit. Such a flow is called an isentropic flow. 
However, barotropic flow is more general than isentropic flow. There are also
various other thermodynamic circumstances where the barotropic hypothesis 
is valid.  

( ) 0D s s v s
D t t

∂
= + ⋅ ∇ =

∂
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Inviscid Barotropic Flow

For a barotropic flow, the specific enthalpy h

d h T d V d

becomes  simply 

and 

d h T d s V d p= +

d pd h V d p
ρ

= =

d ph
ρ

= ∫

Kelvin Circulation Theorem
Assume a fluid embedded in a uniform gravitational field, i.e. with an external 
force 

so that – ignoring the influence of viscous stresses and radiative forces - the 

f g=
so that ignoring the influence of viscous stresses and radiative forces the 
flow proceeds according to the Euler equation,

To proceed, we use a relevant vector identity

( )u pu u g
t ρ

∂ ∇
+ ⋅ ∇ = −

∂

( ) ( ) 21u u u u u⎛ ⎞∇ = × ∇ × + ∇ ⎜ ⎟
which you can most easily check by working out the expressions for each of the
3 components. 
The resulting expression for the Euler equation is then 

( ) ( ) 2
u u u u u⋅ ∇ = × ∇ × + ∇ ⎜ ⎟

⎝ ⎠

( )21
2

u pu u u g
t ρ

∂ ∇⎛ ⎞+ ∇ + ∇ × × = −⎜ ⎟∂ ⎝ ⎠
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Kelvin Circulation Theorem
If we take the curl of equation 

 bt i

( )21
2

u pu u u g
t ρ

∂ ∇⎛ ⎞+ ∇ + ∇ × × = −⎜ ⎟∂ ⎝ ⎠
we obtain

where       is the vorticity vector, 

and we have used the fact that the curl of the gradient of any function equals 
zero, 

( ) 2u g p
t
ω ρω

ρ
∂ ∇

+ ∇ × × = ∇ × + × ∇
∂

uω = ∇ ×
ω

1⎛ ⎞

Also, a classical gravitational field                    satisfies this property,

so that gravitational fields cannot contribute to the generation or destruction 
of vorticity.   

( )21 0 ; 0
2

u p⎛ ⎞∇ × ∇ = ∇ × ∇ =⎜ ⎟
⎝ ⎠

g φ= − ∇

0g∇ × =

Vorticity  Equation
In the case of barotropic flow, ie. if   

( ) pp p pρ ρ
ρ

⎛ ⎞∂
= ⇒ ∇ = ∇⎜ ⎟∂⎝ ⎠

so that also the 2nd term on the RHS of the vorticity equation disappears,  

The resulting expression for the vorticity equation for barotropic flow 
in a conservative gravitational field is therefore, 

2 2

1 1 0ppρ ρ ρ
ρ ρ ρ

⎛ ⎞∂
∇ × ∇ = ∇ × ∇ =⎜ ⎟∂⎝ ⎠

which we know as the Vorticity Equation.

( ) 0u
t
ω ω∂

+ ∇ × × =
∂
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Kelvin Circulation Theorem
Interpretation of the vorticity equation: 

( ) 0u
t
ω ω∂

+ ∇ × × =
∂

Compare to magnetostatics, where we may associate  the value of      
with a certain number of magnetic field lines per unit area. 

With such a picture in mind, we may give the following geometric 
interpretation of magnetic field lines per unit area. With such a 
Picture, we may give the following geometric interpretation of 
the vorticity equation, which will be the physical essence of the 

B
t∂

Kelvin Circulation Theorem
The number of vortex lines that thread any element of area, that 

moves with the fluid , remains unchanged in time for 
inviscid barotropic flow.

Kelvin Circulation Theorem
To prove Kelvin’s circulation theorem, we define the circulation G around a 
circuit C by the line integral, 

∫
Transforming the line integral to a surface integral over the enclosed area A
by Stokes’ theorem, 

 bt i  

C
u d lΓ = ⋅∫

( )
A

u n d AΓ = ∇ × ⋅∫
we obtain 

This equation states that the circulation G of the circuit C can be calculated 
as the number of vortex lines that thread the enclosed area A. 

A
n d AωΓ = ⋅∫
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Time  rate of change of G
Subsequently, we investigate the time  rate of change of G if every point on 
C moves at the local fluid velocity     .u

Kelvin Circulation Theorem

Take the time derivative of the surface integral in the last equation. 
It has 2 contributions:

where     is the unit normal vector to the surface area.   
The time rate of change of area  can be expressed mathematically with the help of 
h  fi  ill i  h  h  f   A i  l ll  i h fl id l i      

( )ˆ
A

d n d A t im e r a t e o f c h a n g e o f a r e a
d t t

ω ωΓ ∂
= ⋅ + ⋅

∂∫ ∫

n̂

the figure illustrating the change of an area A moving locally with fluid velocity    . 
On the basis of this, we may write, 

We then interchange the cross and dot in the triple scalar product 

( )ˆ
A C

d n d A u d l
d t t

ω ωΓ ∂
= ⋅ + ⋅ ×

∂∫ ∫

( ) ( )u d l u d lω ω⋅ × = × ⋅

u

Time  rate of change of G
Using Stokes’ theorem to convert the resulting line integral 

Kelvin Circulation Theorem

to a surface integral, we obtain:

( )ˆ
A C

d n d A u d l
d t t

ω ωΓ ∂
= ⋅ + × ⋅

∂∫ ∫

( ) ˆ
A

d u n d A
d t t

ω ωΓ ∂⎡ ⎤= + ∇ × × ⋅⎢ ⎥∂⎣ ⎦∫

The vorticity equation tells us that the integrand on the right-hand side equals zero, 
so that we have the geometric interpretation of Kelvin’s circulation theorem, 

0d
d t
Γ

=
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Time  rate of change of G
Using Stokes’ theorem to convert the resulting line integral 

Kelvin Circulation Theorem

to a surface integral, we obtain:

( )ˆ
A C

d n d A u d l
d t t

ω ωΓ ∂
= ⋅ + × ⋅

∂∫ ∫

( ) ˆ
A

d u n d A
d t t

ω ωΓ ∂⎡ ⎤= + ∇ × × ⋅⎢ ⎥∂⎣ ⎦∫

The vorticity equation tells us that the integrand on the right-hand side equals zero, 
so that we have the geometric interpretation of Kelvin’s circulation theorem, 

0d
d t
Γ

=

the Bernoulli Theorem
Closely related to Kelvin’s circulation theorem we find Bernoulli’s theorem. 

It concerns a flow which is steady and barotropic, i.e.
u∂

and

Again, using the vector identity, 

we may write the Euler equation for a steady flow in a gravitational field f

0u
t

∂
=

∂

( )p p ρ=

( ) ( ) 21
2

u u u u u⎛ ⎞⋅ ∇ = × ∇ × + ∇ ⎜ ⎟
⎝ ⎠

y q f y f g f f

( ) ( )

( )21
2

u pu u u u
t

pu u u

φ
ρ

φ
ρ

∂ ∇
+ ⋅ ∇ = ⋅ ∇ = − ∇ −

∂

⇓

∇⎛ ⎞∇ + ∇ × × = − ∇ −⎜ ⎟
⎝ ⎠
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the Bernoulli Theorem
The Euler equation thus implies that 

21
2

u u hω φ⎛ ⎞× = − ∇ − ∇ − ∇⎜ ⎟
⎝ ⎠

where  h is the specific enthalpy, equal to

for which 

2
φ⎜ ⎟

⎝ ⎠

d ph
ρ

= ∫

ph ∇
− ∇ = −

We thus find that the Euler equation implies that 

h
ρ

∇

21
2

u u hω φ⎛ ⎞× = − ∇ + +⎜ ⎟
⎝ ⎠

the Bernoulli Theorem
The Euler equation thus implies that 

21
2

u u hω φ⎛ ⎞× = − ∇ − ∇ − ∇⎜ ⎟
⎝ ⎠

where  h is the specific enthalpy, equal to

for which 

2
φ⎜ ⎟

⎝ ⎠

d ph
ρ

= ∫

ph ∇
− ∇ = −

We thus find that the Euler equation implies that 

h
ρ

∇

21
2

u u hω φ⎛ ⎞× = − ∇ + +⎜ ⎟
⎝ ⎠
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the Bernoulli Theorem
Defining the Bernoulli function B

hi h h  di i  f   it  Th  E l  ti  

21
2

B u hφ= + +

which has dimensions of energy per unit mass. The Euler equation 
thus becomes 

Now we consider two situations, the scalar product of the equation with and 
and   , 

1) B is constant along streamlines        

0u Bω × + ∇ =

u ω

( ) 0u B⋅ ∇ =1) B is constant along streamlines        
this is 
Bernoulli’s streamline theorem

2) B is constant along vortex lines
ie. along integral curves 

* vortex lines are curves tangent to the vector field 

( ) 0u B∇ =

( ) 0Bω ⋅ ∇ =
( )xω

( )xω


