
Dynamics of Galaxies 2008-2009
Tuesday 13:15 – 15:00; Friday 13:15–15:00

Lectures will be given by Piet van der Kruit (PCK) on the basic isssues and
application to observations of spiral and elliptical galaxies.

Amina Helmi (AH) will treat a the problem of modeling numerically the evolution
of a (non-self-gravitating) satellite system orbiting in a spherical gravitational potential.

Tuesday Friday

PCK November 11 Fundamentals November 14 Practical work
PCK November 18 Timescales; stellar orbits November 21 Practical work
AH November 25 Numerical orbit integration November 28 Practical work
PCK December 2 Motions, instabilities, December 5 Practical work

velocity ellipsoid
PCK December 9 Self-consistency problem, December 12 Practical work

potential theory
PCK December 16 Measurements of structure December 19 .. of kinematics
PCK January 6 Application to spirals January 9 .. to ellipticals
AH January 13 The satellite on orbit January 16 Practical work

More informaton on the course is available at www.astro.rug.nl/∼vdkruit/#Dynamics
of galaxies.

The presentations of the lectures by Piet van der Kruit are available as .pdf files at
www.astro.rug.nl/∼vdkruit/jea3/homepage/dynamics0n.pdf, where 0n runs from 01 to
08.
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Practical Work I

1. The collisionless Boltzman equation in cartesian coordinates is

u
∂f

∂x
+ v

∂f

∂y
+ w

∂f

∂z
− ∂Φ

∂x

∂f

∂u
− ∂Φ

∂y

∂f

∂v
− ∂Φ

∂z

∂f

∂w
= 0.

where the distributiom function is f(x, y, z, u, v, w) and the potential Φ(x, y, z).
In cylindrical coordinates (R, z, VR, Vθ, Vz) and this becomes

Ṙ
∂f

∂R
+ θ̇

∂f

∂θ
+ ż

∂f

∂z
+ V̇R

∂f

∂VR
+ V̇θ
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∂Vθ

+ V̇z
∂f

∂Vz
= 0.

Assume axial symetry. In the radial direction the acceleration comes from both the radial
potential gradient and the centrifugal force and in the tangential direction we have conservation
of angular momentum.

R̈ − Rθ̇2 = −∂Φ

∂R
;

d

dt

(

R2θ̇
)

= 0

Use this to show that the collisionless Boltzmann equation then is

VR
∂f

∂R
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R
− ∂Φ

∂R
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= 0

Derive from this the moment or Jeans equation by multiplying by VR and integrating over
all velocities (write the integral of f over all velocities as ν)

∂

∂R
(ν〈V 2

R〉) +
ν

R
{〈V 2

R〉 − V 2
t − 〈(Vθ − Vt)

2〉} +
∂

∂z
(ν〈VRVz〉) = νKR

2. The second-order moment of the Boltzman equation is

∂

∂t
(ρv̄j) +

∂

∂xi

(ρvivj) + ρ
∂Φ

∂xj

= 0

The first order moment over spatial coordinates then is

∫

xk

∂ (ρv̄j)

∂t
d3x = −

∫

xk

∂

∂xi

(ρvivj) d3x −
∫

xkρ
∂Φ

∂xj

d3x

Define
moment of inertia tensor Ijk =

∫

ρxjxkd
3x

kinetic energy tensor Kkj = 1
2

∫

ρvkvjd
3x

motions tensor Tjk =
∫

ρv̄i.v̄jd
3x

velocity dispersion tensor Πjk =
∫

ρσ2
ijd

3x

potential energy tensor Wjk = − ∫

xj
∂Φ
∂xk

d3x

Show that this implies the virial equation

1
2

d2

dt2
Iij = 2Kij + Wij = 2Tij + Πij + Wij
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Practical Work II

The restricted three-body problem

This subject is important to understand the dynamics of stars in the case of a non-axisymmetrci
potential such as a bar. However, we do a much simpler porblem, namely that of the restricted
three-body problem, shich studies the equilibria in teh case of two primary masses orbiting each
other in circular orbit and a thrid bvody with negligible mass.

The full treatment is in a presentation that is available through my homepage at:
www.astro.rug.nl/∼vdkruit/jea3/homepage/three-body.pdf.

I will do give the presentation up to page 34. Briefly, it is shown that in a co-rotating frame
one can identify tive Lagrange libration points, three on the axis through the two primary masses
and two on equilateral trangles with it.

The stability of the points is treated as follows:
The equations of motion are

ẍ − 2ẏ = −∂φ

∂x
; ÿ + 2ẋ = −∂φ

∂y
; z̈ = −∂φ

∂z

We take coordinates

x = x◦ + ξ ; y = y◦ + η ; z = z◦ + ζ

Then
ξ̈ − 2η̇ = −ξΦxx − ηΦxy − ζΦxz

η̈ + 2ξ̇ = −ξΦyx − ηΦyy − ζΦyz

ζ̈ = −ξΦzx − ηΦzy − ζΦzz

with Φxy = ∂2Φ/∂x∂y, etc.
We have

Φ = 1
2 (x2 + y2) +

1 − µ
√

(x − x1)2 + y2 + z2
+

µ
√

(x − x2)2 + y2 + z2

Now define

α =
1 − µ

r3
1

+
µ

r3
2

; β =
1 − µ

r5
1

+
µ

r5
2
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This gives

Φxx = −1 + α − 3(1 − µ)
(x − x1)

2

r5
1

− 3µ
(x − x2)

2

r5
2

Φyy = −1 + α − 3y2β ; Φzz = α − 3z2β

Φxy = Φyx = −3xyβ ; Φxz = Φzx = −3zxβ ; Φyz = Φzy = −3yzβ

In the presentation I treated the stability for the points on the x-axis:
y = z = 0. Write x = x◦ so that r2

1 = (x◦ − x1)
2 and r2

2 = (x◦ − x2)
2, then

Φxx = −1 − 2α ; Φyy = −1 + α ; Φzz = α

Φxy = Φyx = Φxz = Φzx = Φyz = Φzy = 0

Then the equations of motion are

ξ̈ − 2η̇ = ξ(1 + 2α) (1)

η̈ + 2ξ̇ = η(1 − α) (2)

ζ̈ = −ζα (3)

Eqn. (3) is easily solved; it gives ζ ∝ e
√
−αt = ei

√
αt. Now α > 0, so

√
α is imaginary.

Remembering that e(a+ib)t = eat(cos bt + i sin bt) we see that if and only if the exponent is fully
imaginary (or a = 0) we will have an oscillating solution.
This is the case, so we have a harmonic oscillation and these libration points are stable in the
z-direction.

Say the solutions in the (x,y)-plane are ξ = Keλt and η = Leλt. Substitution, using ξ̇ =
λKeλt, ξ̈ = λ2Keλt, etc. in eqn. (1) and (2) gives

Kλ2 − 2Lλ = K(1 + 2α) ; Lλ2 + 2Kλ = L(1 − α)

Eliminate K and L:
K

L
=

2λ

λ2 − (1 + 2α)
=

λ2 − (1 − α)

−2λ

λ4 + (2 − α)λ2 + (1 + 2α)(1 − α) = 0

Regard this as a quadratic polynomial equation in λ2. We need for stability that λ is purely
imaginary so the two roots for λ2 should both be real and negative.
Then for their product1 we should have (1 + 2α)(1 − α) > 0, or (1 − α) > 0.

Go back to the energy integral equation

x◦ − (1 − µ)
x − x1

|x − x1|3
− µ

x − x2

|x − x2|3
= 0

With the definition of α we can write

x◦(1 − α) + (1 + µ)
x1

r3
1

+ µ
x2

r3
2

= 0

1For ax2 + bx + c = 0 the product of the roots is c/a.
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With x1 = µ and x2 = 1 − µ, this becomes

(1 − α) =
µ(1 − µ)

x◦

(

1

r3
1

− 1

r3
2

)

Now we have in the cases of the three points on the x-axis
L1: x◦ > x2 > 0 and r1 > r2 ⇒ (1 − α) < 0
L2: 0 < x◦ < x2 and r1 > r2 ⇒ (1 − α) < 0
L3: x◦ < x1 < 0 and r1 < r2 ⇒ (1 − α) < 0

Then we only have real solutions for λ. So all three Lagrangian points on the x-axis are
unstable.

The practical work is to finalise the problem by doing the same analysis for the triangular
points which have r1 = r2 = 1 and therefore

x = 1
2 (1 − 2µ) ; y = ±

√
3

2
; z = 0

I will use the last 15 minutes to complete the presentation and show what you should have
found.
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Practical Work III

Orbits in the Galactic disk and the third integral problem

This excescise concerns the problem that orbits of stars in the disk of the Galaxy appeared to
have an third isolating integral and the work we will study has been an important step towards
the description of dynamics using so-called Stäckel potentials, that I will discuss in Lecture 4.

For this you will need to download some early papers on the subject, namely

• The third integral of motion for low-velocity stars by H.C. van de Hulst,
Bull. Astr. Inst. Neth., Vol. 16, p. 235 (1962)
ADS: adsabs.harvard.edu/abs/1962BAN....16..235V

• Three-dimensional galactic stellar orbits by A. Ollongren,
Bull. Astr. Inst. Neth., Vol. 16, p. 241 (1962).
ADS: adsabs.harvard.edu/abs/1962BAN....16..241O.
This is a long paper (actually it is Ollongren’s Ph.D. thesis); you don’t have to print it
completely, since you need only section 18a and 18b (pages 277 – 286) and page 255.

• Theory of Stellar Orbits in the Galaxy by A. Ollongren,
Ann. Rev. Astron. Astroph., vol. 3, p. 113 (1965)
Available through the ADS at: adsabs.harvard.edu/abs/1965ARA%26A...3..113O.

First you should read the section Particle orbit theory in stellar dynamics in the review of
Ollongren (1965) on pages 113 –120. Most of this should be familiar from my lectures. It is not
necessary to try and redo the full algebra of the derivations of the equations; just see if you can
follow the arguments in the exposition.

Before we continue we look at the case of orbits with very small amplitudes. First remember
from Lecture 1:
In the case of the Galaxy near the plane (at small z) the potential is separable and the R- and
z-motions will then be decoupled

Φ(R, z) = Φ1(R) + Φ2(z)

Then the decoupled z-energy is a third integral of motion:

I3 = 1
2V 2

z + Φ2(z)

So far Lecture 1. Now we look at the case

Φ(x, y) = Φ(0, 0) + 1
2Px2 + 1

2Qx2

The equations of motion then are separated in x and y

d2x

dt2
= −Px ;

d2y

dt2
= −Qy

These equations can be solved independently:

x = A cos(
√

Pt + a) ; y = B cos(
√

Qt + b) (4)

What are the expressions for Vx and Vy? The energy in the x- and y-direction are integrals of
motion; their values depend of course on A and B; express them in A, B, P and Q. What is
the total energy?
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The solution (4) we have here is similar to the case of the two-dimensional harmonic oscillator
that I used in Lecture 1 to illustrate the concept of isolating integrals. What form do the zero-
velocity curves have. Make a sketch for the case that (in arbitrary units) P = 1 and Q = 2 (for
simplicity and without loss of generality, take Φ(0, 0) = 0) and A = 6, B = 2. Also draw the
rectangle where the star can go on the basis of the solutions (5). Compare to fig. 5 of Ollongren
(1962).

Then have a look at sections 18a and 18b of the thesis of Ollongren (1962) on a description
of his calculated orbits, in particular make yourself familiar with the orbits that he found by
looking carefully at the figures.

The final aim of all this is that I want you to understand the first three sections of the paper
by Henk van de Hulst (1962)2. Again you don’t have to do the full algebra of derivation of the
equations; I just want you to understand the basic line of the argument.

In the days of this paper it was normal usage to denote the radial coordinate that we now
usually denote by R, with the symbol ̟; it was pronounced as ‘curly pi’ or sometimes ‘pomega’.
My thesis supervisor Prof. Oort always used it. This peculiar custom has disappeared and I
don’t regret it.

First familiarise yourself with elliptic coordinates; look at fig. 1 and determine where the foci
are (what are the numerical values of k and c?). Note that ξ and η are dimensionless; dimensions
come in via eq. (2). In case you don’t have experience with hyperbolic functions, here are some
of their properties (I prefer to write ‘sinh’ rather than ‘sh’ as van de Hulst does):

sinh z =
ez − e−z

2
; cosh z =

ez + e−z

2
; tanh z =

sinh z

cosh z

sinh z = z +
z3

3!
+

z5

5!
+ ..... ; cosh z = 1 +

z2

2!
+

z4

4!
+ .....

Just for completeness: equivalently we have for geometric functions

sin z = z − z3

3!
+

z5

5!
− ..... ; cos z = 1 − z2

2!
+

z4

4!
− .....

Can you follow how van de Hulst arrived at eq. (5) (even without doing the full algebra of the
derivation)? If you followed Ollongren (1962), can you see how Ollongren’s eq. (14) corresponds
to eq. (6) of van de Hulst? Can you see how van de Hulst arrived at eq. (8)?

Van de Hulst uses a particular form for the potential, which is presented in his eq. (7):

2Φ(x, y) = Px2 + Qy2 − 2a

3
x3 − sbxy2 − dx2y2 (5)

Why are there not terms that are linear in x or y? Note that this is the case we did above but
now extended with higher order terms.

You can skip the rest of this section, except noting that eq. (13) as a result of his assumptions.

Then we proceed to section 3 in the paper of van de Hulst. Eq. (14) should be obvious.
Do you understand why eq. (15) arises and how you get eq. (16)? For this look again at eq.

2Of course if you wish you may also read section 4 on the oscillating periods of that paper, but that is more

involved.
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(2) and then follow van de Hulst’ remark below eq. (16) that you can understand eq. (15) by
adding the two and applying eq. (6).

Read the rest of this section to understand how α defines a boundary curve and β a box within
that, just as we had for the case above of small amplitudes of trajectories. Now the potential
has been separated in elliptic coordinates and the orbit can be described by a two-dimensional
oscillator in this new coordinate system.

Finally have a look at fig. 31 in Ollongren (1962). This has all the envelopes of his orbits
(see the previous figures). Can we use the theory of van de Hulst to reproduce this? For this try
to estimate where the foci of the elliptic coordinate system should be (what are the approximate
values of c and k?). Draw the elliptic coordinate system for the value of c you select (or some
other nearby values) for the range ξ = 0 (0.25) 1.5; ν = 0 (0.25) 1.5 and plot the coordinate
system on the scqle of fig. 31. For this I will provide you with a version of the figure on which
1 kpc is precisely 3 cm.

You might want to consult a further paper of Alex Ollongren:

• Construction of galactic stellar orbits similar to harmonic oscillators. I. by A. Ollongren,
Astron. J., Vol. 72, p. 436 (1967)
ADS: adsabs.harvard.edu/abs/1967AJ.....72..436O
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Practical Work IV

Rotation curve of an exponential disk

Download the following papers using ADS:

• On the distribution of matter within highly flattened galaxies by Alar Toomre,
Ap.J. 138, 385 (1963)

• On the disks of spiral and S0 galaxies by K.C. Freeman,
Ap.J. 160, 811 (1970)

• Rotation curve of the edge-on spiral galaxy NGC 5907: disc and halo masses by Stefano
Casertano,
Mon. Not. R.A.S. 203, 735 (1983)

For the rest of this exercise we need an equation that can give us the rotation curve of a disk
in a galaxy when the density distribution is known. Look for this at the three papers (without
trying to reproduce the algebra) and summarize for yourself in general terms what these papers
addressed and what the results are. Compare equations (9) of Toomre, eq.s (8) and (9) of
Freeman and eq. (4) of Casertano. We will continue with the last equation (of Casertano).

The vertical density distribution in a stellar disk can conveniently be approximated by an
exponential function (although the isothermal sheet or the sech-function are more realistic rep-
resentations) and the truncation with a change in radial scalelength

ρ(R, z) = ρ◦ exp (−R/h) exp (−|z|/z◦) for R < Rmax

ρ(R, z) = ρ′◦ exp (−R/αh) exp (−|z|/z◦) for R > Rmax

We require α < 1 for truncations and ρ′◦ has to be such that the two parts of the profile join at
Rmax. So, if we write ρ′◦ = Cρ◦, what is C? This is similar but somewhat different from the
approach of Casertano; see his equations (2) and (3).

How would you write a code to investigate the effect of varying values for z◦, Rmax and α?
In other words, what are the steps in such a code, what additional information do you need to
collect, how do you treat the elliptical integrals, how would you perform the integrations, etc.?

If you actually do write such a code (which you may of course but do not have to) you could
reproduce the results of Casertano in his fig.’s 2 and 3 and supplement it by studying the effect
of the sharpness of the truncation by taking different values for α.

Answer in any case the following question: Why do the curves for the cases of truncations
tend towards Keplerian curves more quickly and why is there a rise in the rotation curve just
before the truncation with respect to untruncated disks?
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