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Origin of the concept

Lindblad! in 1925 argued that the Galaxy is made up of a set of
components with a continuous range of flattening.

Baade? in 1944 resolved red stars in the central regions of M32
and the elliptical companions and introduces the concept of two
stellar populations, mainly based on the characteristics of their H-R
diagrams. Population | is in the disk and has blue stars and

Population Il in the halo with globular cluster type H-R diagrams
with red stars the brightest.

!B. Lindblad, Arkiv. Mat. Astron. Fysik 19A, No. 21 (1925)
2W. Baade, Ap.J. 100, 137 and 147 (1944)
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THE RESOLUTION OF MESSIER 32, NGC 205, AND THE CENTRAL
REGION OF THE ANDROMEDA NEBULA*

W. Baane
Mount Wilson Observatory
Received A pril 27, 1944

ABSTRACT

Recent photographs on red-sensitive plates, taken with the 100-inch telescope, have for the first time
resolved into stars the two companions of the Andromeda nebula—Messier 32 and NGC 205—and the
central region of the Andromeda nebula itself. The brightest stars in all three systems have the photo-
graphic magnitude 21.3 and the mean color index +41.3 mag. Since the revised distance-modulus of the
%;_oup is ml; M = 22.4, the absolute photographic magnitude of the brightest stars in these systems is
Mpg = —1.1.

The Hertzsprung-Russell diagram of the stars in the early-type nebulae is shown to be closely related
to, if not identical with, that of the globular clusters. This leads to the further conclusion that the stellar
populations of the galaxies fall into two distinct groups, one represented by the well-known H-R diagram
of the stars in our solar neighborhood (the slow-moving stars), the other by that of the globular clusters.
Characteristic of the first group (type L) are highly luminous O- and B-type stars and open clusters; of
the second (type II), short-period Cepheids and globular clusters. Early-type nebulae (E-Sa) seem to
ha]\ie! populations of the pure type II. Both types seem to coexist in the intermediate and late-type
nebulae.

The two types of stellar populations had been recognized among the stars of our own galaxy by Qort
as early as 1926.
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F1c. 1.—Shaded areas: ordinary H-R diagram (type I). Hatched area: H-R diagram of stars in globu-
lar clusters (_t:fge 11).
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The Galaxy as consisting of two basic populations can be seen in
the distribution on the sky of globular (red) versus galactic clusters.
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and in the near-infrared image of the Galaxy with the DIRBE
experiment on board the Cosmic Background Explorer COBE.
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Vatican Symposium

In 1957 the Vatican Symposium on stellar populations defined five
stellar populations with a decreasing age, increasing flattening and
metal abundance.

Population |z] |Z| Typical members
(pc)  (km/s)
Extreme Pop. | 120 3 Gas, Young stars associated with spiral structure,

Supergiants, Cepheids, T Tauri stars, Galactic
Clusters of Trumpler's Class |

Older Pop. | 160 10 A-Type stars, Strong-line stars

Disk Population 400 17 Stars of galactic nucleus, Planetary Nebulae, no-
vae, RR Lyrae stars with periods below 0.4 days,
Weak-line stars

Interm. Pop. Il 700 25 “High-velocity stars” with z-velocities exceeding
30 km/sec, Long-period variables <M5e with pe-
riods below 250 days

Halo Pop. Il 2000 75 Subdwarfs, Globular clusters with high z-velocity,
RR Lyrae stars with periods longer than 0.4 days
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The current situation.

» Dark halo, presumably non-baryonic.
» Population II.
» Thick disk.

» Old disk, sometimes called thin disk.

v

Population I.
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frame
Definition by Hubble and later extensions

Classification systems have been described in detail by Allan
Sandage in Volume IX of “Stars and Stellar Systems”3.

The Hubble classification scheme starts with Hubble’'s scheme of
the 1920's (his well-known tuning fork).

ormo! spir’®
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x
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Originally the SO class was not included. Hubble introduced it in
the 1930's.

Here is a modern WWW-version of the Tuning Fork.
Hubble’s Tuning Fork Diagram

Sa Sh
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The Hubble Classification System has the following criteria:

» Ellipticals — EO to E7 depending on the apparent flattening
(En with n =10 x (a— b)/a).
> Spirals either with or without a bar S or SB) and subclasses a
to ¢ depending on
> Bulge-to-disk ratio
» Pitch angle of spiral arms
» Development of arms (“strength” of Hll regions)

» lIrregulars lrr
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A set of pictures of edge-on galaxies along the Hubble sequence.
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Correlations along the Hubble sequence

Hubble classification correlates with integrated colors* and relative
HI content®, so is apparantly related to the history of star
formation.

The colors of E-galaxies are about (B — V) ~ 0.9, (U— B) ~ 0.6
and those for late type galaxies (B — V) ~ 0.4, (U — B) ~ —0.3.

The HI content is expressed as the hydrogen mass to luminosity
ratio

“R.B. Larson & B.M. Tinsley, Ap.J. 219, 46 (1978)
5M.S. Roberts, A.J. 74, 859 (1969)
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The Hubble Atlas has normal galaxies; the Arp Atlas has disturbed
and interacting galaxies.
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It follows that the Hubble
sequence is one according to
the relative importance of the
two fundamental populations.
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Photographic surface photometry

Photographic surface photometry is mentioned only for historical
interest.

It relies on the possibility to derive an accurate characteristic curve
of the photographic plate.

This is done by taking on the same plate exposures of a set of
spots with known intensity ratios or a continuous wedge with
known intensity gradient.

This has to be done for about the same exposure time because of
low intensity reciprocity failure.
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The procedure of photographic surface photometry is:

>

Digitize the plate. You need a machine to accurately measure
the “photographic density” D over many pixels. Density is
minus the logarithm of the percentage of light coming
through the emulsion, so D = 0 means completely clear,

D =1 only 10%, etc.

Determine the characteristic curve. This is the relation
between D and the “exposure” E. This is the total amount of
light that fell onto the emulsion.

Fit the sky background. This is a polynomial fit to the density
of sky outside the object and in between stars.

Zero-point calibration of the magnitude scale. This must be
done separately from aperture photometry (usually from the
literature).
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The photographic plate is a-linear and has a limited dynamic range.
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Digital surface photometry.

Charge Coupled Devices (CCD's) are now the detectors used
almost exclusively.

Each pixel has a number of electrons proportional (or almost
equal) to the number of photons received.

The procedure of CCD surface photometry is:
» Bias subtraction. Even when not exposed, the CCD records
electrons. So, you have to take separate “bias-frames” with
the shutter closed.
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» Remove bad pixels. These are due to cosmic rays. In practice
the maximum exposure is of order half an hour. So, you take
separate frames and add these later.

» Flat-fielding. Correction for sensitivity changes between pixels.
For this you take an exposure on a uniformly illuminated
screen in the dome or an exposure of the twilight sky.

» Sky subtraction. Fit the background sky and subtract.

» Calibration. You take frames during the same night of
standard stars with known magnitudes.
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Photographic plates have a large size in terms of pixels and
a-linearity is not a fundamental problem.

The disadvantages of photographic plates that have been
overcome by digital techniques are:

e Need to digitize.

e Low quantum efficiency (no more than 15% or so, while CCD'’s
go up to close to 100%).

e Background non-uniformities cannot be corrected for.

e Limited dynamic range.

e Separate zero-point calibration required using aperture
photometry.
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Examples of surface photometry

(a.) Photographic.
This is NGC 42587.

The scale on the
azimuthally averaged
radial profile is in
magnitudes per square
arcsec.

For the sky this is about
22.5 at a dark site.

?P.C. van der Kruit,
A.&A Suppl. 38, 15 (1979)
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Surface photometry

(b.) CCD photometry.®

UGC 7901, contours at 19.0, 24.5, 0.5 R-mag arcsec™?
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UGC 8279, contours at 19.5, 24.5, 0.5 R-mag arcsec™?
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®R.S. de Jong & P.C. van der Kruit, A.&A.Suppl. 106, 451 (1994)
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Bulge luminosity laws
Reynolds’ made the first fit to the M31-bulge.
He used the function:

(x + 1)?y = constant

with x the radial distance and y the “light ratio” (relative surface
brightness on a linear scale).

He went out to only 6.9 arcmin (~ 1.4 kpc). At this radius the

surface brightness is 21 B-mag arcsec™2.

"H.H.Reynolds, MNRAS. 74, 132 (1913)
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Luminosity distributions in disks
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Light Curve of the Andromeda Nebula,

Hubble used this later in the form:
I(R) = Ip(R + a)™2

Piet van der Kruit, Kapteyn Astronomical Insti Observati of distributions



Outline
Stellar Populations
Surface photometry

Luminosity distributions [ElFe nmiiesy (R

Luminosity distributions in disks

The most commonly used fitting function is the so-called R'/*-law
found empirically by de Vaucouleurs®.

I(R R\ Y4
log (/) = —3.3307 (R) —1

R. = Effective radius
1(0) = pe + 8.3268

L = 7.2157/,R?(b/a)

8G. de Vaucouleurs, Ann. d'Astrophys. 11, 247 (1948)
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Luminosity distributions in disks

For this there is a numerical deprojection formula from Young®,
which has an approximation for large R (in Lg pc™3):

L(R) = 5219— ( — .
(R) *2 1% (Re>

(<]

R\ /4
> —7.67 | —
exp 6 <Ro>

If flattened R — « = \/R?(b/a)? + z°.

More physical rather than empirical are the King models®, which
work best for globular clusters and also better for elliptical galaxies

than bulges.
°P.J. Young, A.J. 81, 807 (1976)
9] King, A.J. 71, 64 (1966)
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Luminosity distributions in disks

They are based on isothermal distributions with upper limits on the
energy of the particles and are therefore isothermal spheres with a
tidal radius.

Jarvis & Freeman! introduce also rotation and study the effects of
the gravitational effects of the disk.

The starting point is a distribution function, which is a truncated
Maxwellian:

f(E,J) = af exp (—=BE) — exp (BEy)] exp (vJ)

E < Ej is the energy per unit mass and J the angular momentum
parallel to the symmetry axis.
For v = 0 we get the King models.

B, Jarvis & K.C. Freeman, Ap.J. 295, 314 and 324 (1986)
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Luminosity distributions

Jarvis and Freeman take a constant M/L and include effects of
disk potential, and are able to reproduce observations of both
isophotes and (stellar) kinematics.

NGC 7814
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The conclusion is that bulges
e are consistent with isotropic,

‘ oblate spheroids, flattened
mostly by rotation.
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Luminosity distributions in disks

De Vaucouleurs'? discovered that radial surface brightness profiles
of disks are exponential.

12G. de Vaucouleurs, Ap.J. 130, 728 (1959)
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Luminosity distributions in disks

A famous paper on exponential disks and the corresponding

dynamics is by Freeman!3.

The surface brightness is

I(R) = Iy exp (~R/h)
in linear units (Lo pc—?).
In magnitudes arcsec ™2 it is a straight line.

The total luminosity is
L =2rhl

13K.C. Freeman, Ap.J. 160, 811 (1970)
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Vertical distributions can (away from the dust lane) of the old disk
population be approximated with an isothermal sheet.

This is not unreasonable in view of o . .
the Age - Velocity dispersion

relation? of stars in the solar

neighborhood. -

%
Lkm/s]

Star older then a few Gyr have
dispersions of the order 50 km sec™ .

“R. Wielen, A.&A. 60, 263 (1977) i : J

0 5 4,010 years) 10
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300 -
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With the HIPPARCOS E ° -
astrometric satellite better 2 e
data are possible. =0
-300 : . ]
0.1 1 10
Here is a more recent version 200
of the relation.? _ 10
‘é 0
?H. J. Rocha-Pinto et al. A.&A. —
423, 517 (2004)
-200
-300 5|
0.1 1 10
age (Gyr)

Piet van der Kruit,

Increase of the u peculiar velocity with age, for uncorrected
and corrected chromospheric ages.
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The three-dimensional distribution of stars in disks was therefore
proposed!# (with the inclusion of a cut-off radius, so that

R < Rumax) as

L(R,z) = L(0,0) exp (—R/h) sech (z/z)
I(R) =22)L(0,0) exp (—R/h)

(V2) = 7 GI(R)z0(M/L)

V4

P C. van der Kruit & L. Searle, A.&A. 95, 105 (1981)
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Luminosity distributions in disks

For large z-distances:

z/zp>> 1 then sech?(z/z)) = 4 exp (—2z/z))
Near the plane:

z/zy < 1 then sech ?(z/z) = exp (—z*/z3)
For Ryax — 00:

I(R,z) = 2hL(0,0)(R/h)Ki(R/h) sech ?(z/zy)
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Luminosity distributions

Here is an isophote map of the pure disk, edge-on galaxy NGC
4244,

: Lo . ‘v--ﬁ‘“@ g}_m L
L INCH IV " SRR R R v L.

Piet van der Kruit, Kapteyn Astronomical Institute Observations of distributions



Bulge luminosity laws
Luminosity distributions in disks

Luminosity distributions

Z(kpc)
0 1 2

- NGC 4244 +

We fit profiles, averaged
symmetrically, in z at
various R and shifted in i
coincidence (left) and at
a radial profile at a
suitable z above the
dustlane. L
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| 1 1 L 1 1
0 40 80 0 200 400 600
Z(arcsec) R(arcsec)

Piet van der Kruit, Kapteyn Astronomical Institute Observations of distributions



Bulge luminosity laws
Luminosity distributions in disks

Luminosity distributions

Here is the fit in directions parallel to the major axis.
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And parallel to the minor axis.
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Luminosity distributions in disks

A closer look at a larger set of edge-on galaxies!® shows that the
constancy of the vertical scaleheight z, holds very well for late type
galaxies but not for early type galaxies.

%\ 0.2 :(al) I T T T T T I T I T T I Bl_t)lanld. :
~ o0t pP-bg g =
s L B St SR X ]
< E - Sy .5 ]
<] oL —é i "!""’-i—-a_'_‘l_‘
] C ]
2= Fr= 70 01086 ( iq .0007) T +I 0.0745 (i?‘OOSS) ]
Fq:_ E(bl) I I \ I T T I T T T T T T I II_I)Ia Id. E
£ 0L F=agedog 3
: T“‘*“*%%%a\hgj z
= 0L
el = il
o E 4
5 Coy= 70 0086 iq 0012 T + 0. 0741 (i(? 0055) 1
—0.1 L 1
72 [} 2 4 8 8

Revised Hubble Type (T)

®R. de Grijs & R.F. Peletier, A.&A. 320, L21 (1997)
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Luminosity distributions

It is unlikely that at moderate
and small distances above the
plane the stellar population is
isothermal.

Therefore a set of functions
was proposed to allow for this?

Zo

L(z) = L(0)27%/" sech /" <nz>

?P.C. van der Kruit, A.&A. 192,
117 (1988)
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This ranges from the

isothermal distribution for

n = 1 to an exponential for : ,
- I and K'-band data available

n = OO. l:‘ Only I-band data available

1 a 1 I Lt I,
Fits? give o]

2/n=0.54+0.20 g
in the K-band (2.2 ). ’
’R. de Grijs, R.F. Peletier & P.C. ’ g VA

van der Kruit, A.&A. 327, 966
(1997)
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Moderately inclined spirals

The usual assumption is to view the galaxy as built up of an
exponential disk and an RY/4-bulge.

Parameters of the fit then are:
» /i and R, for the bulge
» 10 and h for the disk

This is usually done with some least-squares procedure after a first
guess at parameters for the dominant component.

Test on artificial images'® show that this usually works well.

16J M. Schombert & G.D. Bothun, A.J. 92, 60 (1987)
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Here are some actual component separations form Schombert &
Bothun.

N295 | N2554 R N2875 R

was. /(1"

waa. /[

RADIUS

N2362 B

g /1
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A comparison'” of published scalelengths in the literature shows
large discrepancies.

The discrepancy d = (hy — h2)/(h) is plotted in the next figure as
a function of (h).

The average absolute discrepancy is 23%.

This is mainly due to differences in fitting algorithms.

7 J H. Knapen & P.C. van der Kruit, A.&A. 248, 57-(1991)
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Edge-on spirals

We now fit to a projected exponential, locally isothermal disk and
an R/ bulge.
Parameters of the fit now are:

> 19, h and zj for the disk

> /i, R. and b/a for the bulge

The fit is made first for the dominant component and this is
subtracted from the observed distribution.
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We look at two examples:
NGC 89118, This is an Sb in which the disk dominates the light.
NGC 7814%°. This is an Sa and the bulge dominates the light.

Byan der Kruit & Searle, A.&A. 95, 116 (1981)
9van der Kruit & Searle, A.&A. 110, 79 (1982
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NGC 891 (D = 9.5 Mpc)

DISK (old disk only):

L5(0,0) = 2.4 x 10~2Ly pc—3 BULGE:

h = 4.9 kpc R, ~ 2.3 kpc
7y = 0.99 kpc b/a~ 0.6

Rimax = 21 kpc Lp ~ 15 x10°Lg
L = 6.7 x 10°Le, (~82 % of (B— V) ~0.7 < 1.0 (6 < 2 kpc
total) minor axis)

(B—V)~08 (U—B) ~—0.1 0.4
(U—-B) ~0.1
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Moderately inclined spirals
Edge-on spirals

Component separation Disk truncations in face-on galaxies

First we need to “subtract” foreground stars by interpolating over
their image (or simply block them).
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Then we make a fit for the disk from composite R- and z-profiles.

Z(kpt) R(kpc)
0 2 4 6 0 10 20
T 1 T T T 1 T N T
NGCBY1 T -, Z=322 ~
"l : =15kpc
RY155"
1%
=
2
S i
a
E
v, T
"
i
[ 20 0 g o
-.|
1 1 T 1 1 1 1 1 RJ&GXI

100 150 0 100 200 300 400 500
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NGC 891
12=322)

These can be checked against
individual profiles. Note that
we now can only fit the u
vertical profiles near the plane
(but above the dustlane).

2+

26
py

Here profiles parallel to the u . !
major axis. I
26

" Lt
200 400 Rmax
Rlarcsec)

o
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And for profiles parallel to the minor axis.

NGC891()
22

Hy

uk

261

281

0 50 100 150
Z(arcsec)
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We then subtract the disk model and find the bulge brightness
distribution.
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N891-bulge
1/,
(Z - scale)

The minor axis profiles can be
fitted with R/* functions.

The slopes are different, so
there is a color gradient (outer
parts are bluer).

L L L | \|
20 40 60 90 120 160
Z(arcsec)
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In some galaxies the stellar disks show a warping in the outer parts,
such as in NGC 4565.

e =~ T I
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The minor axis profile cannot be fitted in this case with a single

R4 law.
Z{kpc) .
02 05 1 2 3 456
T T T T T T T T
2t N 4565 BULGE |
.
i T (2%-scale) |
13l .
24+ B
51 1
261 o measurement E
© Disk model
x “Bulge”
a7k 1
28+ B
1 i 1 ) L o Il 1
510 20 40 60 90 120

Z (arcsec)
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NGC 7814 (D = 15 Mpc),

DISK (old disk only):
BULGE: L5(0,0) ~ 6.6 x 10~4Ly pc3
Re = 2.2 kpc h ~ 8.4 kpc

bja =057 7y ~ 2.0 kpc

— 0
[_B = 16 X 101 L@ Rulﬂx ~ 182 kpc
(B-V)=05-13(13 <2 L =1.2x10°Ly (=7 % of total)
kpc along minor axis) (B-V)=~11

(U—-B)~0.3 0.6 (U—-B)~0.6
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The procedure now is to find a bulge model and subtract that from
the observations to reveal the disk.

Piet van der Kruit, Kapteyn Astronomical Institute Observations of distributions



Moderately inclined spirals
Edge-on spirals

Component separation Disk truncations in face-on galaxies

Note the bulge color gradient (bluer in the outer parts)?0 .

20See also Wainscoat, Freeman & Hyland, Ap.J. 337, 163-(1989)
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blarcsec)
20 40 100 200
P S — T T
E
; \, N7814
I \ Bulge on

R';scale

iy = 14.87 + 3.32p1/4
By op = 13.72 + 3.55b1/4

I

py = 13.08 + 3.75p1/4
up = 10.70 + 4.20p1/4
S fy = 9.19 + 4.36b"*
2 3
b (arcsec) Hg = 8.07 + 4.43[71/4
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Here are some radial profiles and the fits to them.

Rlarcmin) for J

H-Haky H=blsky
0 0
2 2
4 4
6 6
L L ) 1 L L L I L
0 2 4 0 2 4

Rlarcmin) for u' R{arcmin) for F
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Here is the analysis in the K-Band by Wainscoat et al.
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Disk truncations in face-on galaxies

In face-on or moderately inclined galaxies the disk truncations
occur at faint levels. However, they can be seen as a decreasing
spacing between the isophotes, as in NGC 62821

T
'y .

2P C. van der Kruit, A.&A. 192, 117 (1988)
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Distribution of parameters

Ken Freeman®? was the first to study the distribution of properties

of exponential disks.

His results are in the following two figures; the small range of
(extrapolated) face-on, central surface brightness is known as
“Freeman’s Law":

o = 21.67 £ 0.30 B — mag arcsec ™2

This has generated considerable discussion. The problem is that
samples need to be statistically complete and Freeman's sample
had serious selection effects.

22K.C. Freeman, Ap.J. 160, 811 (1970)

Piet van der Kruit, Kapteyn Astronomical Institute Observations of distributions



tribution of parameters

Selection effects and Freeman’s law

Photometric parameters

7 7
o s
- g 6 i
wl -
6753 5
Boc oms 1] meemm—ay
F.S 0 - ouen kpe \
2 Fano  0%0 Al o
2 ° 3k b
o o ¥ °
s . o .
° . " °
AR SR T B S
s o .
2 oo
W . 2L L.
o s °* o6 .
23 °
= oz
TE Suadun 2
own
o
24 ]
- s + s sb sc sd sm Im Type T s 1 s P S ) sm Im  Type

et van der Kruit, Kapteyn As



Distribution of parameters
Selection effects and Freeman’s law

Photometric parameters

Selection effects

3c273
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-25 |- —e %20

The selection was discussed
first by Arp °.
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The selection effects operating here are:

» For a particular luminosity and a faint o we get a large h, but
for the most part the object is fainter than sky.

» For the same luminosity and a bright o we get small h and
the object will appear starlike.

We will quantify this below.
First we will consider the V/V,,.x-test for completeness.

For this we need to know the selection criteria of the sample.
These could be for example all objects down to a certain angular
diameter (at some isophotal level) or integrated apparent
magnitude.
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Suppose that an object has a distance R. Now shift it in distance
untill it drops out of the sample due to the completeness limit and
call this distance Riax.

Then we have V as the volume corresponding to R and V.. as
the volume relating to Ryax.

Now, in case of a uniform space distribution each object has an
uniform chance to be actually located throughout the volume

Vmax -

In otherwords, the property V//Vi,.x calculated for all objects in
the sample should be distributed uniformly over the interval 0 to 1.
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Note that V//Vi,.x can usually be calculated without knowing the
actual distance.

In practice the test is to calculate (V//V,,.x). For a complete
sample it is required that

(V) Vinax) = 0.5.

The error in (V/Viax) is (12 n)*1/2.

This is so, because all numbers between 0 and 1 have an average
of 0.5 and a dispersion of /12.
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Selection and Freeman’s law

Mike Disney?3 suggested that Freeman's law is the result of sample
selection.

In the process he also addressed the equivalent for elliptical
galaxies, called Fish's law.

The analysis was later extended as in the following?*.

M .Disney, Nature 263, 573 (1975)
2*M. Disney & S. Phillipps, Mon.Not.R.A.S. 205, 1253 (1983); see also J.I.
Davies, Mon.Not.R.A.S. 244, 8 (1990)
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Assume luminosity-law (in linear units)

o(R) = 0o exp — (R/h)Y/?

b = 1: exponential disk
b = 4: RY* bulge or elliptical galaxy.

We then have for the integrated luminosity:

LLot:/ 27Ro(R)dR = (2b)!mo,h?
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a. Diameter selection.

Suppose that a sample is complete for a radius larger than 6y,
arcsec at an isophote of 1, magnitudes arcsec 2. For a radius R
and a distance d the angular diameter is = R/d radians.

For clarity we now do the derivation only for an exponential disk.

The disk has an apparent radius

@
Rapp = hln< ° )
Olim
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In magnitudes arcsec™2 this is

Rapp —=04In10 A (H]im - /1’0)

With L = 270, h? this becomes

0.4In10 [/ L\ Y2
Rapp = —F— () (Mtim — Ho)

27 0o

This can be rewritten as

TOlim 0.4In10_. 45
Rapb L — \/i 10 (

F1im —Ho) (M1im — o)

The square-root term on the lefthand side is a kind of fiducial
radius, that Disney and Phillipps write as Rr,.
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The case with 3 = 4 for elliptical galaxies is

Rapp  (0.4In10)* (o,
— 10 . (“’11111 NO) im — o 4
R Al (m fho)

In the following figure we see the behavior of R,;,/Ri, as a
function of the central surface brightness i, for the case of a
diameter selection at an isophote of 24 (B-)magnitudes arcsec™2.
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The apparent diameter for exponential disks (full line) peaks at a
central surface brightness of (14, — o) = 2.171; for elliptical
galaxies (dashed line) this occurs at (4, — o) = 8.686.
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Now when we express surface brightness 1 in magnitudes arcsec™
and distances (such as /o /L) in parsec we can derive

L — 1004(H|1m7M+5)

Olim
Then for the maximum distance for a galaxy to remain in the
sample d in parsec and angular radius limit )5, in arcsec we get

dsizc — 04In 10 plim = flo 100-2(1107M+5).

v 22 Hlim

For the general case the result is

(04 In 10)b (/L]im — /Lo)b 100.2(/107M+5)
7(2b)! B1im

dsize —
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The maximum of d occurs at

b

Ho,max = Mlim — m

b. Integrated magnitude selection

Now the sample is supposed complete up to a limiting integrated
apparent magnitude myy, within an isophote iy, -

Assume that the image is overexposed at isophote y; to allow for
photographic surveys and define

s =0.4In10(un — po) 3 p = 0.41n10(p1im — po)
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The maximum distance then comes out as

dlna‘gn = [ASO_S — Apc_p] 1/2 100-2(m1111]—/\/7+5)

with
n=2 SN n=2b—1 p"
h A — Ll
Z i p= D
n=0 n=0

The following figure below is for a limiting isophote of 24
magnitues arcsec™2 and a saturation isophote of 19 magnitudes
arcsec2.
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Again we see maxima as for diameter selection.

Note that both diameter and magnitude selection works in favor of
disks around Freeman's surface brightness and elliptical systems
near Fish's value.
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Some actual values: For Palomar Sky Survey:

im = 24 B-mag arcsec2: un =~ 19 B-mag arcsec 2
Diameter selection: d3 peaks at:
— 21.8 B-mag arcsec™2 for b = 1
— 15.3 B-mag arcsec™? for b = 4

Magnitude selection: d> peaks at:
— 18.5 B-mag arcsec™2 for b = 1
—12.0 B-mag arcsec™2 for b = 4

Observed:
b=1: 21.6 + 0.3 B-mag arcsec”2 (Freeman's law)
b=4: 14.8 4+ 0.9 B-mag arcsec 2 (Fish's law)
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In any catalogue each galaxies has a value for d according to the
selection criteria.

If both diameter and magnitude selection play a role the smalles of
the two values is the appropriate one.

We can then define the visibility as the value for d> for each
galaxy: in an unbiased sample and a uniform distribution a value of
(1o will occur at a frequency o< d>.

The equations for the visibility can of course also be used to
correct complete sample for the volumes over which galaxies are
sampled as a function of their properties in order te obtain space
densities as a function of parameters.
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It can be used to study the question of the origin of Freeman's law
and whether it results from selection effects.

Allen & Shu?® were the first to suggest that the selection only
works at the faint level and that there is only a real upper limit to
the central surface brightnesses.

%R.J. Allen & F.H. Shu, Ap.J. 227, 67, (1979)
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This is confirmed by Roelof de Jong?®, who also confirmed that
the faint surface brightness disks are all of late type®”.

H
[

S
L

E 3 E £
E 3 E 3
13 3 [ ]

I —
T ol 1 T ]
0 E i g E 3
2, E 5 3
< E ]
& o 4 S0k E
S S ;
% 10~ 4 5 10k -
105 i H] 10-5 L1 L - il

26 16 18 20 22
u, (B-mag arcsec?) 1h (K-mag arcsec-?)

%R.S. de Jong, A.&A. 313, 45 (1996)
2"P.C. van der Kruit, A.&A. 173, 59 (1987)
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This is related to the fact that late type galaxies generally have

fainter disks.

B ML o e o e e e I B o o e e O M e o
—22 = - F -
L * B L % K |
s b - 1 - F* HEE A 1
H
o [ s i 1 & 7*0 1, N
E—ZO* N . " E ] .
i [ NI I 10 [ o Y B ]
I - R - L .
- - - - L . L 4
= r be 9. i r . . 1
I : -20 |- . .
18 - . & i i
S PRI BAPUUI NI BRI PRI AV P TSI ORI U T YT O
0 2 4 6 8 10 0 2 4 6 8 10

Galaxy type

Piet van der Kruit, Kapteyn Astronomical Institute

Galaxy type

Observations of distributions




Distribution of parameters

Selection effects and Freeman'’s law

Photometric parameters

Data can be combined in bi-variate distribution functions.
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From a weighing with the total luminosity it can be estimated that
high surface brightness galaxies probably provide the majority of
the luminosity density in the universe.
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Luminosty distributions

Elliptical galaxies usually
conform to the R'/*-law
and look smooth and
regular.

NGC 3379 has been used as
a prototype and standard
for surface photometry?.

?G. de Vaucouleurs & M.
Capaccioli, Ap.J.Suppl. 40, 699
(1979)
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Detailed study shows that the isophotal structure of ellipticals is
usually much more complicated.

In particular there are isophote twists and deviations from
ellipticity.

The latter are described by parameters a(/).

These describe the deviations from pure ellipses in multiplicity i%8.
These are derived from Fourier analysis of the isophote shapes
relative to the best fitting ellipse.

By definition (because of the ellipse fit) a(i) = 0 for i = 0,1, 2.

%R, Bender, S. Débereiner & C. Mallenhoff, A.&A.Suppl.-74, 385 (1988)
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The most interesting is a(4),
which is negative for “boxy"
isophotes and positive for
“disky" isophotes.

Here are some examples of
non-zero parameters a(4).

Piet van der Kruit, Kapteyn Astronomical Institute
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We will now look at fits in a boxy galaxy.

s
NGC 5322

FIGURE 7. — R-image of NGC 5322, an elliptical galaxy with
box-shaped isophotes (a(4)/a ~ — 0.01).
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And here are fits a disky galaxy.

~ NGC 4660
FIGURE 6. — R-image of NGC 4660, an elliptical galaxy with a
disk-component in the isophotes (a(4)/a ~ + 0.03).
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The global a(4) parameter for a sample of galaxies does not
correlate with effective radius or integrated luminosity?°.

However, galaxies with strong radio emission or X-ray halo’s are
almost always boxy.

It has been suggested that “boxyness” results from interactions.

2R, Bender, P. Surma, S. Ddbereiner, C. Mdllenhoff & R. Madejsky, A.&A.
217, 35 (1989)
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Color gradients

Important for formation models is the correlation of color gradients
with structural and dynamical properties.

Color gradients usually are defined as the change in color index in
magnitudes per decade in radius or
V(B —V)=A(B—-V)/A(logr).
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The property (V,,/0)* is normalised to unity for an isotropic
oblate rotator.

» Ellipticals have significant color gradients. The light becomes
redder towards the center.

» However, dwarf spheroidals have inverse gradients. This may
be due to recent star formation.

» Anisotropic galaxies have smaller gradients.
» Also boxy galaxies tend to have smaller gradients.

» There is no strong correlation between the strength of the
color gradient and the luminosity or velocity dispersion.

Piet van der Kruit, Kapteyn Astronomical Institute Observations of distributions



Outline

Stellar Populations
Surface photometry
Luminosity distributions

eparation
arameters
Elliptical galaxies

Abundance gradients

Elliptical galaxies and bulges have color gradients (become bluer
with radius).

This is due to metallicity changes.

For a low [Fe/H] in an old population:
» The effective temperature of the giant branch is higher
» There is less line-blanketing

» The horizontal branch is more extended towards the blue.
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The relation between color and metallicity can be calibrated using
the integrated light of Galactic globular clusters.

The range in (U-B),(B-V) in bulges is roughly that in globular
clusters.

So the range in metallicity in bulges is 1 - 2 dex in [Fe/H]. }
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There is such a pronounced color gradient in the bulge of NGC

7814%
blarcsec )
o 1 1 — 20 40 100 200
o e e . 20F T o
D; . .~ il \ N7 14
) TR 4o by = 14.87 + 3.32b
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u' AN H2s
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0P C. van der Kruit & L. Searle, A.&A. 110, 79 (1982); R.J. Wainscoat,
A.R. Hyland & K.C. Freeman, Ap.J. 348, 85 (1990)
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