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1 Star formation.

The discussion below assumes that we are considering a particular volume of a galaxy or a
cluster or galaxy as a whole. Although not mentioned explicitely, most properties therefore can
have the additional dimension pc−3 or so.

The number of stars formed with mass between M and M + dM at time t is

Ψ(t)Φ(M) (1)

with for example
Φ(M) = xMx

LM−(1+x) for ML ≤ M ≤ MU. (2)

For practicle purposes we may take MU = ∞. The total star formation at time t in mass per dt
is then

A(t) =
∫ ∞

0
MΨ(t)Φ(M) dM = Ψ(t)

x

x− 1
ML. (3)

Here Φ(M) is the Initial Mass Function (IMF) and Ψ(t) the Star Formation Rate (SFR).
A(t) is the total star formation.

2 Gas mass.

The gas mass Mg(t) evolves according to

dMg(t)
dt

= −A(t) + R(t) + f(t)− g(t). (4)

R(t) = mass returned to ISM from evolved stars.
f(t) = infow of gas with a certain abundance.
g(t) = outflow of gas with the current (ISM) abundance.
Each star resides on the main sequence for a time τM and then ejects all its mass, except for

a quantity MR. Thus, if Mt is the stellar mass for which τM = t,

R(t) =
∫ ∞

Mt

(M −MR)Ψ(t− τM)Φ(M) dM. (5)

In the case of the Instantaneous Recycling Approximation (IRA) we have τM = 0 for
M > Mt and τM = ∞ for M < Mt. Then

R(t) = Ψ(t)
∫ ∞

Mt

(M −MR)Φ(M) dM = A(t)R, (6)

where

R = (x− 1)Mx−1
L

(
M1−x

t

x− 1
− MR

x
M−x

t

)
. (7)

For each IMF and when MR is known (really as a function of the original stellar mass), R can
be calculated. For example, when ML = 0, Mt = 1M�, MR = 0.8M� and x = 1.35, we get
R ≈ 0.2.

So we have as fundamental equation

dMg(t)
dt

= −(1−R)A(t) + f(t)− g(t), (8)



or alternatively
dMg(t)

dt
= −dM∗(t)

dt
+ f(t)− g(t). (9)

M∗(t) is the total mass in stars and stellar remnants at time t.

3 Heavy elements in the gas.

Define the abundance of the gas at time t as Z(t). The the total amount of heavy elements
(metals) is

(MZ)g(t) = Mg(t)Z(t). (10)

Then it follows:

d(MZ)g(t)
dt

= −Z(t)A(t) +
∫ ∞

Mt

(M −MR)Z(t− τM)Φ(M)Ψ(t− τM) dM +

∫ ∞

Mt

PZ(M)MΦ(M)Ψ(t− τM) dM + Zff(t)− Z(t)g(t). (11)

Here PM is the fraction of the total mass of a star of mass M , that is being expelled in the form
of metals synthesized in that star.

In the case of the IRA we have as the second fundamental equation

d(MZ)g(t)
dt

=
d

dt
[Mg(t)Z(t)] = −(1−R)Z(t)A(t) + PZA(t) + Zff(t)− Z(t)g(t). (12)

Here
PZ =

x− 1
xML

∫ ∞

1
PZ(M)MΦ(M)dM. (13)

For realistic situations we have PZ = 0.005 - 0.05.
Often in use is also the so-called “yield”

y =
PZ

1−R
. (14)

Then the alternative equation reads

d(MZ)g(t)
dt

= −Z(t)
dM∗(t)

dt
+ y

dM∗(t)
dt

+ Zff(t)− Z(t)g(t). (15)

In most applications Zf = 0; for galactic disks it is reasonable to assume g(t) = 0.

4 Radio-active elements in the gas.

Element X has an abundance X(t), which is simply the equivalent to Z(t) for all metals. If
Zf = 0 and g(t) = 0 the form of eq. (12) for this element becomes

d(MX)g(t)
dt

=
d

dt
[X(t)Mg(t)] = −λX(MX)g(t)− (1−R)X(t)A(t) + PXA(t). (16)

Here λX is the decay-constant for that element. Now the number of atoms of X (in the volume
that we are considering), which each have atomic weight AX, is

NX =
(MX)g(t)
AXmH

=
X(t)Mg(T )

AXmH
. (17)
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Therefore
dNX

dt
= −λXNX(t)− 1−R

Mg(t)
NX(t)A(t) +

PX

AXmH
A(t)

= −λXNX(t)− ωg(t) + PA(t), (18)

where we have defined
ωg = A(t)

1−R

Mg(t)
(19)

and
P =

PX

AXmH
. (20)

Since we have
dMg(t)

dt
= −(1−R)A(t) + f(t), (21)

it follows that
ωg(t) = − 1

Mg(t)
dMg(t)

dt
+

f(t)
Mg(t)

. (22)

Thus
dNX

dt
= [−λX − ωg(t)]NX(t) + PA(t). (23)

This differential equation can be solved to give

NX(t) exp {λXt + ν(t)} = NX(0) + P

∫ t

0
A(t′) exp

{
λXt′ + ν(t′)

}
dt′, (24)

where

ν(t) =
∫ t

0
ωg(t′) dt′ = ln

Mg(0)
g(t)

+
∫ t

0

f(t′)
Mg(t′)

dt′. (25)

Now, if the solar system formed at time, say, t and if this was preceeded by a period ∆, in which
no further heavy elements were added to the gas cloud, then the abundance of the gas at the
time of the formation of the solar system must have been

Nx(t + ∆) = NX(t) exp (−λX∆)

= P exp {−λXt− ν(t)− λX∆}
[
NX(0)

P
+
∫ t

0
A(t′) exp {λXt′ + ν(t′)} dt′

]
. (26)

Write
A0 =

N0

P
(27)

and consider long-lived elements, such that λXt � 1 and therefore exp (λXt) = 1 + λXt when
terms of higher order are neglected. Then

NX(t + ∆) = P exp {−ν(t)−∆λX}(1− λXt)(A0 + D + λXDtν), (28)

where
D =

∫ t

0
A(t′) exp {ν(t′)} dt′ (29)

and
tν =

1
D

∫ t

0
A(t′)t′ exp {ν(t′)} dt′. (30)
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For two isotopes i and j,both with long decay-times, we can then measure

t̄ =
1

λi − λj
ln

[
Pi

Pj

Nj(t + ∆)
Ni(t + ∆)

]
−∆. (31)

The ratio Pi/Pj follows from the theory of nucleosynthesis (in practice we have to do with r-
process elements) and Nj/Ni must be measured by laboratory analysis of meteorites. ∆ can
be measured with the use of short-lived elements (≈ 108 years according to 129I and 244Pu,
but ≈ 2 × 106 years according to 26Al). The isotope combinations that are being used for this
cosmonucleochronology are (235U, 238U), (238U, 232Th) and (187Re, 187Os). The best answer at
present is ≈ (2− 4)× 109 years.

5 Age of the heavy elements.

The property t̄ that we found for two radio-active elements still needs to be interpreted in terms
of the synthesis history of the metals. This will be done in this section. We will find that t̄
equals the average age of the heavy elements.

Define p(τ, t) dτ as the fraction of metals present at time t and formed between τ and τ +dτ ,
where of course we have τ < t. Now we had eq. (12), which reads without the outflow and for
an inflow with unenriched gas

d

dt
[Mg(t)Z(t)] = −(1−R)Z(t)A(t) + PZA(t). (32)

The equivalent of this for the heavy elements only is

d

dt
[MZ(t)p(τ, t)] = −(1−R)Z(t)A(t)p(τ, t) + PZA(t)δ(t− τ). (33)

From these two equation it follows that

dp(τ, t)
dt

=
PZA(t)

Mg(t)Z(t)
[δ(t− τ)− p(τ, t)]. (34)

Integrate this over time from τ to t and then differentiate with respect to t:

dp(τ, t)
dt

= − PZA(t)
Mg(t)Z(t)

p(τ, t) (35)

and

p(τ, τ) =

[
PZA(t)

Mg(t)Z(t)

]
t=τ

. (36)

Before we proceed we first need to search for a solution for Z(t). According to eq. (8) and (12)
we may write

dZ(t)
dt

Mg(t) = PZA(t)− Z(t)f(t), (37)

or
dZ(t)

dt
+

Z(t)f(t)
Mg(t)

=
PZA(t)
Mg(t)

=
PZωg(t)
1−R

. (38)

This is the same differential equation as we had above, so the solution is

Z(t) = Z0 exp {−θ(t)}+
PZ

1−R
exp {−θ(t)}φ(t), (39)
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where

θ(t) =
∫ t

0

f(t′)
Mg(t′)

dt′ (40)

and
φ(t) =

∫ t

0
ωg(t′) exp {θ(t′)} dt′. (41)

Now
dp(τ, t)

dt
= − PZA(t)

Mg(t)Z(t)
p(τ, t) = − PZωg(t)

(1−R)Z(t)
p(τ, t). (42)

Thus
dp(τ, t)
p(τ, t)

= − PZωg(t)
(1−R)Z(t)

dt (43)

and

p(τ, t) = p(τ, τ) exp
{∫ t

τ

PZωg(t′)
(1−R)Z(t′)

dt′
}

. (44)

Now also
PZωg(t)

(1−R)Z(t)
=

PZωg(t) exp {θ(t)}
(1−R)Z0 + PZφ(t)

. (45)

Integrate this with φ(t) as variable, then∫ t

τ

PZωg(t′)
(1−R)Z(t′)

dt′ = − ln
[
(1−R)Z0

PZ
+ φ(t′)

]t′=t

t′=τ
. (46)

The solution then is
p(τ, t) =

PZωg(t) exp {θ(τ)}
(1−R)Z0 + PZφ(t)

. (47)

The average epoch of formation of the heavy elements is by definition

tZ ≡
∫ t

0
τp(τ, t) dτ. (48)

So

tZ =
[
(1−R)Z0

PZ
+ φ(t)

]−1 ∫ t

0
τωg(τ) exp {θ(τ)} dτ. (49)

To find ωg(t) we first need A(t) and Mg(t). Now

dMg(t)
dt

= −(1−R)A(t) + f(t), (50)

so that
1

Mg(t)
=

ωg(t)
A(t)(1−R)

= ωg(t)
[
f(t)− dMg(t)

dt

]−1

, (51)

or

−dMg(t)
Mg(t)

=

[
− f(t)

Mg(t)
+ ωg(t)

]
dt. (52)

Integrate this over time from 0 to t:

− lnMg(t) = −
∫ t

0

f(t′)
Mg(t′)

dt′ +
∫ t

0
ωg(t′) dt′ = −θ(t) + ν(t). (53)
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Then
Mg(t) = Mg(0) exp {θ(t)− ν(t)} (54)

and
A(t) =

Mg(0)
1−R

ωg(t) exp {θ(t)− ν(t)}. (55)

The property D, defined in eq. (29), then is

D =
∫ t

0
A(t′) exp {ν(t′)} dt′ =

Mg(0)
1−R

φ(t). (56)

Then the final result for τν , defined in eq. (30), is

τν =
1
D

∫ t

0
t′A(t′) exp {ν(t′)} dt′ =

1
φ(t)

∫ t

0
t′ωg(t′) exp {θ(t′)} dt′. (57)

For the radio-active elements we have written

A0 =
NXZ0

P

and equivalently we write

A0 =
Mg(0)Z0

PZ
, (58)

so that
φ(t) =

Z0(1−R)D
PZA0

. (59)

Then
(1−R)Z0

PZ
+ φ(t) =

ωg(0)
A0

(A0 + D) =
1−R

Mg(0)
(A0 + D) = (A0 + D)

φ(t)
D

. (60)

So eq. (49) becomes

tZ =
1

φ(t)

(
1 +

A0

D

)−1 ∫ t

0
τωg(τ) exp {θ(τ)} dτ (61)

and therefore

tZ = tν

(
1 +

A0

D

)−1

. (62)

If the time is T�, then it follows from the definition of tZ that the average age at that time is
equal to T� − tZ. With the definition of t̄ in eq. (31) and with eq. (28) it is easily found that,
for ∆ small, we get

t̄ = T� − tν

(
1 +

A0

D

)−1

. (63)

So we see that t̄ = T�− tZ is the average age of the heavy elements. Of course we measure that
t̄ for which T� is the time of formation of the solar system.
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6 Summary.

♠ Evolution of the gas mass:
This is eq. (8):

dMg(t)
dt

= −(1−R)A(t) + f(t)− g(t). (64)

♠ Evolution of the abundance:
This is eq. (12):

d(MZ)g(t)
dt

=
d

dt
[Mg(t)Z(t)] = −(1−R)Z(t)A(t) + PZA(t) + Zff(t)− Z(t)g(t). (65)

♠ Average age of the heavy elements:
This is eq. (63):

t̄ = T� − tν

(
1 +

A0

D

)−1

, (66)

where

tν =
1
D

∫ T�

0
A(t)t exp {ν(t)} dt, (67)

D =
∫ T�

0
A(t) exp {ν(t)} dt, (68)

ν(t) =
∫ t

0
ωg(t′) dt′, (69)

ωg(t) = A(t)
1−R

Mg(t)
, (70)

A0 =
Mg(0)Z0

PZ
. (71)

♠ Mass in stars and stellar remnants:

dM∗(t)
dt

= (1−R)A(t). (72)

♠ “Yield” of heavy elements:

y =
PZ

1−R
. (73)
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