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Herschel and Kapteyn

Our Galaxy can
be seen on the sky
as the Milky Way,
a band of faint
light.

Distribution of stars in the Milky Way Galaxy
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The earliest attempts to study the structure of the Milky Way
Galaxy (the Sidereal System; really the whole universe) on a global
scale were based on star counts.

William Herschel (1738 — 1822) performed such “star gauges” and
assumed that (1) all stars have equal intrinsic luminostities and (2)
he could see stars out ot the edges of the system.
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The luminosity distribution in the Galaxy

Then the distance to the edge of the system in any direction is
proportional to the square-root of the number of stars per square
degree.

It can be shown by comparing to current star counts that Herschel
counted stars down to about visual magnitude 14.51.
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= Counted down to a~ 15 V-mag.

'P.C. van der Kruit, A.&A. 157, 244 (1986)
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Herschel and Kapteyn
Shapley and Hubble

From “Equalisation of

starlight” -experiments Herschel
estimated his “Space-penetrating
powers” :

Unaided eye: 12 times Sirius

20-ft telescope: 75 times unaided eye

= 14.8 mag fainter than brightest
stars.
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The luminosity distribution in the Galaxy

Jacobus C. Kapteyn (1851 — 1922) improved upon this by
determining locally the luminosity function ®(M), that is the
frequency distribution of stars as a function of their absolute
magnitudes.

The observed distribution of stars /\;,, in a given direction as a
function of apparent magnitude m relates to the space density of
stars A(p) at distance p as

ge.e

dan
= 0.9696 / P2 A(p)®(m — 5log p)dp
J0O

dm

Kapteyn proceeded to investigate (numerical) methods to invert
this integral equation in order to solve it.
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Kapteyn suspected that interstellar absorption was present and
even predicted that it would give rise to reddening?.

But he found that the reddening was small (0.031 4+ 0.006 mag
per kpc in modern units) and chose to ignore it.

Under Kapteyn's leadership an international project on Selected
Areas over the whole sky to determine star counts (and eventually
spectral types and velocities) in a systematic way was started.

2J.C. Kapteyn, Ap.J. 29, 46 & 30, 284/398 (1909)
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Towards the end of his life he used star counts to construct what
became known as the Kapteyn Universe3:
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The Sun is near the center.

That was suspicious and later was found to result from the neglect
of instersteller absorption.

3J.C Kapteyn & P.J. van Rhijn, Ap.J. 52, 23 (1920); J.C. Kapteyn, o.J. 55,
302 (1922)
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Astronomers like Jan H. Oort (1900 — 1992) found that absorption
reconciled the two models.

Y™ o0 g guoy e o e [

Dr. Oort’s diagram van het melkwegstelsel
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An important step was made
by Edwin Hubble (1889-1953),
who showed, using Cepheids,
that the Andromeda Nebula is

an ‘Island Universe’, a separate
stellar system outside the
Galaxy.
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Hubble* found a distance of 275 kpc. The current value is 780 kpc.

*E. Hubble, Ap.J. 69, 103 (1929)
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The luminosity distribution in the Galaxy Shapley and Hubble

So the Galaxy is one of very many, seen edge-on.
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Pioneer 10 photometry

Luminosity distribution in the
Galaxy
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Modern views of the Milky Way

Here is a composite picture® covering the full sky at 36" pixel .

®A. Mellinger, P.A.S.P. 121, 1180 (2009); also Astronomy Picture of the
Day for 2009 November 25: antwrp.gsfc.nasa.gov/apod/ap091125.html
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Here is a plot of all stars in the Guide Star Catalogue of the
Hubble Space Telescope down to about magnitude 16.

Jmage ¢ 1583 540

HET £5C Stors Date c T892 AURA

Piet van der Kruit, Kapteyn Astronomical Institute Distribution of stars in the Milky Way Galaxy



Outline
introduction

Modern views of the Milky Way

The luminosity distribution in the Galaxy Richeepiphotouety)

The Cosmic Background Explorer (COBE) satellite did see the
Milky Way in the near-infrared as follows:
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Modern views of the Milky Way

Pioneer 10 photometry

Direct measurements of the surface brightness of the Galaxy are
difficult due to other contributions:

The sky contributions in the visual with some comparisons are as

follows:
SioMMeav.v V-mag arcsec ™
Disk of sun ~ 1017 ~ -15
Daylight ~ 3 x 101 ~ -1
Full moon ~ 10 0.5
Airglow 50 235
Zodiacal light (ecliptic) 180 22.0
Zodiacal light (pole) 80 23.0
Bright stars (my < 6) 20 24.5
Integrated starlight (plane) 300 21.5
Integrated starlight (pole) 30 24.0
Diffuse Galactic light (plane) 50 235
Diffuse Galactic light (pole) 2 27.0
Cosmic background ~1 ~ 28.0

The property Sio(V/)qav,) denotes the equivalent number of
G2V-stars in the A-band per square degree that have magnitude 10
in the V-band.
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Pioneer 10 photometry

The zodiacal light is the biggest problem when studying the
background distribution of starlight.

The problem is the reverse for people interested in studying
zodiacal light.

The satellite Pioneer 10 was launched in March 1972 and reached
Jupiter in December 1973.

During its trip in the asteroid belt and beyond it swept the skies
and made a map of the background starlight free of zodiacal light.
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Modern views of the Milky Way

Pioneer 10 photometry

The luminosity distribution in the Galaxy

Pioneer 10

Pioneer 10
Blue

Piet van der Krui



STRUCTURE AND DYNAMICS OF GALAXIES
2. Kinematics of the Milky Way

Piet van der Kruit
Kapteyn Astronomical Institute

University of Groningen, the Netherlands
www. astro.rug.nl/~vdkruit

Beijing. September 2011

Piet van der Kruit, Kapteyn Astronomical Institute Kinematics of the Milky Way



Outline
Differential rotation

Rotation curves and mass distributions

Outline

Differential rotation
Relative motions
Local approximations and Oort constants

Rotation curves and mass distributions

Piet van der Kruit, Kapteyn Astronomical Institute Kinematics of the Milky Way



Outline
Differential rotation
Rotation curves and mass distributions

Relative motions

Local approximations and Oort constants

Differential rotation

Kapteyn Astronomical Institute nematics of the Milky Way



Relative motions
Local approximations and Oort constants

Differential rotation

Relative motions

The Galaxy does not rotate like a solid wheel. The period of
revolution varies with distance from the center. This is called
differential rotation.
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Each part moves with respect to those parts that do not happen to
be at the same galactocentric distance.

Piet van der Kruit, Kapteyn Astronomical Institute

Kinematics of the Milky Way



Outline
Differential rotation

Relative motions

. DA Local approximations and Oort constants
Rotation curves and mass distributions

Say, the rotation speed is
V(R) and in the solar
neighborhood it is V5.

If the Sun Z is at a distance
R, from the center C,

then an object at distance r
from the Sun at Galactic
longitude /

has a radial velocity w.r.t. the
Sun V;.q and a tangential
velocity T.
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Differential rotation

Viad = Ve(R) = Vi(0) = V(R)sin(/ + ) — Vi, sin |

T=T(R)— T(0)= V(R)cos(/ +6) — V,cos |/

Rsin(/ 4+ 0) = Rysin/

Rcos(/4+60) = Rycos| —r
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Rotation curves and mass distributions

Substitute this and we get

Visa = Ro (L2 = 2 ) sin! @
T=R, (‘@-f‘é) cos/—%V(R) (2)

So, if we would know the rotation curve V(R) we can calculate the
distance R from observations of V,,q. From this follows r with an
ambiguity symmetric with the sub-central point.

The latter is that point along the line-of-sight that is closest to the
Galactic Center.

V(R) can be deduced in each direction / by taking the largest
observed radial velocity. This will be the rotation velocity at the
sub-central point.
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Rotation curves and mass distributions

With the 21-cm line of HI, the distribution of hydrogen in the
Galaxy has been mapped!. This was the first indication that the
Galaxy is a spiral galaxy.

1K.K. Kwee, C.A. Muller & G. Westerhout, Bull. Astron. Inst. Neth. 12,
211 (1954); J.H. Oort, F.J. Kerr & G. Westerhout, Mon.Not.R.A.S. 118, 379
(1958) and J.H. Oort, I.A.U. Symp. 8, 409 (1959)
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Local approximations and Oort constants
We now make local approximations; that is r < R,.

Change to angular velocities w(R) = V(R)/R and w, = V, /R,
and make a Tayler expansion
df(a) 1 2c/2f( )

da 3 2" T d2a -

f(a+x)=f(a)+x

for the angular rotation velocity

oM = (7R () +hR =R ()
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The cosine-rule gives

r\? 2r
R=R, 1+<> — —cos/

Make a Tayler expansion for this expression and ignore terms of
higher order than (r/R.)>.

1 2
R =R, 1/__gocos/+2<Rro> (1 — cos? /)

2

R— R, = —rcos/+ %(1—cos2 1)

N —

(R— R,)? = r?cos®/
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Substitute this in the equation for w

2
w(R) = Wo+<duj) R chos/Jr;<Rr) (1cos2/)]

dR
1 [ d*w r\?
- e R2 2/
C (&), R (e e

or in linear velocity
2
dw R? dc
Viad = <Rr> (R)RO;Sin//;<<;’;))RO R2sin I cos |
2,
(&), 2+ (), 7
dR? ) .

sin | cos® |
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Use 2sin / cos | = sin 2/ and ignore terms with (r/R.)? and higher
orders. Then

dw _ .
Viad = —2Rs <dR> rsin2/ = Arsin?2/

So, stars at the same distance r will show a systematic pattern in
the magnitude of their radial velocities accross the sky with
Galactic longitude.

For stars at Galactic latitude b we have to use the projection of the
velocities onto the Galactic plane:

V;ad = Arsin 2/ cos b
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For the tangential velocities we make a change to proper motions
. In equivalent way we then find

T dc dw
- =474y = —wo,+ g <d;>RO rcos/ — <C”(:>>RO R, cos® |

- dw I
dR ) r.

= % + % cos 2/ and ignore all terms (r/R,) and

r

2R

+

Now use cos? /

higher order.

dw dw
s _wo_%(dR) "o (dR) ol
Ro

B + Acos?2/
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Now the distance dependence has of course disappeared. Agian for
higher Galactic latitude the right-hand side will have to be
multiplied by cos b.

The constants A and B are the Oort constants. Oort first made
the derivation above (in 1927) and used this to deduce the rotation
of the Galaxy from observations of the proper motions of stars.

The Oort constanten can also be written as
11|V, Vv
A l|Ye (dV

2 | R, dR R

g L[V, (av
" 2|R " \dR /g
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Furthermore

dv Vo
A+B=—-|— ; A—-B=—
B (dR>RO , Ro

Current best values are

R, ~8.5 kpc A ~13 km s kpc™?
Vo ~ 220 km st B ~-13 km st kpc™!
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Rotation curves and mass distributions

The rotation curve V(R) is difficult to derive beyond R, and this
can only be done with objects of known distance such as HIl
regions).

In a circular orbit around a point mass M we have M = V?R/G
(as in the Solar System). This is called a Keplerian rotation curve.

One expects that the rotation curve of the Galaxy tends to such a
behavior as one moves beyond the boundaries of the disk.
However, we do see a flat rotation curve.
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Rotation curves and mass distributions

One determination of the Galactic rotation curve:
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Rotation curves and mass distributions

We see that up to large distances from the center the rotation
velocity does not drop.

We also see this in other galaxies. It shows that more matter must
be present than what we observe in stars, gas and dust and this is
called dark matter.

With the formula estimate the mass within R, as ~ 9.6 x 100 Mg.

At the end of the measured rotation curve this enclosed mass
becomes ~ 102 M.

Piet van der Kruit, Kapteyn Astronomical Institute Kinematics of the Milky Way
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Origin of the concept

Lindblad® in 1925 argued that the Galaxy is made up of a set of
components with a continuous range of flattening.

Baade? in 1944 resolved red stars in the central regions of M32
and the elliptical companions and introduces the concept of two
stellar populations, mainly based on the characteristics of their H-R
diagrams. Population | is in the disk and has blue stars and

Population Il in the halo with globular cluster type H-R diagrams
with red stars the brightest.

!B. Lindblad, Arkiv. Mat. Astron. Fysik 19A, No. 21 (1925)
2W. Baade, Ap.J. 100, 137 and 147 (1944)
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The current situation

THE RESOLUTION OF MESSIER 32, NGC 205, AND THE CENTRAL
REGION OF THE ANDROMEDA NEBULA*

W. BaApe

Mount Wilson Cbservatory
Received April 27, 1949

ABSTRACT

Recent photographs on red-sensitive plates, taken with the 100-inch telescope, have for the first time
resolved into stars the two companions of the Andromeda nebula—Messier 32 and NGC 205-—and the
central région of the Andromeda nebula itself, The brightest stars in all three systems have the photo-
graphic magnitude 21.3 and the mean color index +1.3 mag. Since the revised distance-modulus of the
group is m — M = 22.4, the absolute photographic magnitude of the brightest stars in these systems is
Mpg = —1.1.

The Hertzsprung-Russell diagram of the stars in the early-type nebulae is shown to be closely related
to, if not identical with, that of the globular clusters. This leads to the further conclusion that the stellar
populations of the galaxies fall into two distinct groups, one represented by the well-known H-R diagram
of the stars in our solar neighborhood (the slow-meving stars), the other by that of the globular clusters.
Characteristic of the first group (type I) are highly luminous O- and B-type stars and open clusters; of
the second (type IT}, short-period Cepheids and globular clusters. Early-type nebulae (E-Sa) seem to
haﬁe! populations of the pure type II. Both types seem to coexist in the intermediate and late-type
nebulae.

The two types of stellar populations had been recognized among the stars of our own galazy by Oort
as early as 1926.
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The current situation
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Fr1c. 1.—Shaded areas; ordinary H-R diagram (type I). Hatched area: H-R diagram of stars in globu-
far clusters (type IT).
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Origin of the concept
Stellar Populations Vatican Symposium
The current situation

The Galaxy as consisting of two basic populations can be seen in
the distribution on the sky of globular (red) versus galactic clusters.

Center of Milky Way Galasy
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and in the near-infrared image of the Galaxy with the DIRBE
experiment on board the Cosmic Background Explorer COBE.
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Vatican Symposium

In 1957 the Vatican Symposium on stellar populations defined five
stellar populations with a decreasing age, increasing flattening and
increasing metal abundance.

Population |z] [ V2| Typical members
(pc)  (km/s)

Extreme Pop. | 120 3 Gas, Young stars associated with spiral structure,
Supergiants, Cepheids, T Tauri stars, Galactic
Clusters of Trumpler's Class |

Older Pop. | 160 10 A-Type stars, Strong-line stars

Disk Population 400 17 Stars of galactic nucleus, Planetary Nebulae, no-
vae, RR Lyrae stars with periods below 0.4 days,
Weak-line stars

Interm. Pop. Il 700 25 “High-velocity stars” with z-velocities exceeding
30 km/sec, Long-period variables <M5e with pe-
riods below 250 days

Halo Pop. Il 2000 75 Subdwarfs, Globular clusters with high z-velocity,

RR Lyrae stars with periods longer than 0.4 days
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The current situation.

» Dark halo, presumably non-baryonic.
» Population II.

» Thick disk.

» Old disk, sometimes called thin disk.

» Population I.

Piet van der Kruit, Kapteyn Astronomical Institute Stellar Populations, classifi
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Definition by Hubble and later extensions

Classification systems have been described in detail by Allan
Sandage in Volume IX of “Stars and Stellar Systems"”3.

The Hubble classification scheme starts with Hubble's scheme of
the 1920's (his well-known tuning fork).

Is
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3Available at http://nedwww.ipac.caltech.edu/level5/Sandage/frames. html
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Definition by Hubble and later extensions

e . orrelations along the Hubble sequence
Classification © g g

Originally the SO class was not included. Hubble introduced it in
the 1930's.

Here is a modern WWW-version of the Tuning Fork.

Hubble’s Tuning Fork Diagram

Sa Sh
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Definition by Hubble and later extensions

Correlations along the Hubble sequence

The Hubble Classification System has the following criteria:

» Ellipticals — EO to E7 depending on the apparent flattening
(En with n =10 x (a — b)/a).
» Spirals either with or without a bar (S or SB) and subclasses a
to ¢ depending on
» Bulge-to-disk ratio
» Pitch angle of spiral arms
» Development of arms (“strength” of HIl regions)

» lrregulars Irr

The following figures from Sandage's paper illustrate the system.
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Definition by Hubble and later extensions

e . Correlations along the Hubble sequence
Classification along a

SO and Sa with thin arms.
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Definition by Hubble and later extensions

Classification Correlations along the Hubble sequence

Sb and Sc with thin arms.
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Outline
Stellar Populations

Definition by Hubble and later extensions

Classification Correlations along the Hubble sequence

Sa to Sc with heavy arms.
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Outline
Stellar Populations

Definition by Hubble and later extensions

Classification Correlations along the Hubble sequence

Irregulars Irr , later called Sd and Sm.
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Definition by Hubble and later extensions

e . Correlations along the Hubble sequence
Classification along a

Spirals with small bars (SAB).

NGC 4088
NG 925

NGL 4578
NGC 3504
NGE 951
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Outline
Stellar Populations

Definition by Hubble and later extensions

Classification Correlations along the Hubble sequence

Spirals with heavy bars (SB).
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Definition by Hubble and later extensions

e . Correlations along the Hubble sequence
Classification along a

It is not possible to classify interacting galaxies.
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Definition by Hubble and later extensions
Correlations along the Hubble sequence

Some pictures of galaxies with modern telescopes.
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Definition by Hubble and later extensions
Correlations along the Hubble sequence

A set of pictures of edge-on galaxies along the Hubble sequence.

Piet van der Kruit, Kapteyn Astronomical Institute Stellar Populations, classification of galaxies



Definition by Hubble and later extensions

Correlations along the Hubble sequence

De Vaucouleurs later introduced Sd and Im (“Magellanic
irregulars) to replace many of the Irr. Also he used the
intermediate classification SAB.

He also introduced the varieties r (arms begin from an internal
ring, often at the end of a bar) and s (no internal ring).
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Correlations along the Hubble sequence

Classification

Correlations along the Hubble sequence

Hubble classification correlates with integrated colors* and relative
HI content®, so is apparently related to the history of star
formation.

The colors of E-galaxies are about (B — V) ~ 0.9, (U— B) ~ 0.6
and those for late type galaxies (B — V) ~ 0.4, (U — B) ~ —0.3.

The HI content is expressed as the hydrogen mass to luminosity
ratio

“R.B. Larson & B.M. Tinsley, Ap.J. 219, 46 (1978)
5M.S. Roberts, A.J. 74, 859 (1969)
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Definition by Hubble and later extensions

Classification Correlations along the Hubble sequence

The Hubble Atlas has normal galaxies; the Arp Atlas has disturbed
and interacting galaxies.
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Classification

Note that both the colors and
these HI/L ratios are distance
independent, since both are
ratios of fluxes.

It follows that the Hubble
sequence is one according to
the relative importance of the
two fundamental populations.
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Definition by Hubble and later extensions

Correlations along the Hubble sequence
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STRUCTURE AND DYNAMICS OF GALAXIES

4. Galactic dynamics: Fundamental equations

Piet van der Kruit
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The collisionless Boltzmann
equation
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Hydrodynamic equations
Jeans equations

Studies of galactic dynamics start with two fundamental equations.
The first is the continuity equation, also called the Liouville or
collisionless Boltzmann equation.

It states that in any element of phase space the time derivative of
the distribution function equals the number of stars entering it
minus that leaving it, if no stars are created or destroyed.

Write the distribution function in phase space as
f(x,y,z,u,v,w,t) and the potential as ®(x, y, z, t).

Now look first for the one-dimensional case at a position x, u.
After a time interval dt the stars at x — dx have taken the place of
the stars at x, where dx = udt.
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Hydrodynamic equations
Jeans equations

So the change in the distribution function is

df (x,u) = f(x — udt, u) — f(x, u)

ar B B df (x, u)
dr dt . dx S

df  f(x—udt,u) —f(x,u) f(x—dx,u)— f(x,u)

For the velocity replace the positional coordinate with the velocity
x with v and the velocity v with the acceleration du/dt. But
according to Newton's law we can relate that to the force or the

potential. So we get

df _ df(x,u)du _ df(u,x)d®

E: du dt du  dx
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The total derivative of the distribution function then is

Of(x,u)  Of(x,u) of (x,u) 0®
ot " ox YT o ox

In three dimensions this becomes

of N of N of N of 0090f 0dIf 0 Of 0
—+u Vet W—— = —— — — — — — — =
ot 0x oy 0z Ox0Ou Oydv 0z dw
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Usually dynamical systems are assumed to be in equilibrium so
that we have
of orf of 9% of 0dOf 0P Of

v w2 Y R (1)
u(?x+v(’)y+w(’)z Ox du Jdy dv 0z dw

This is the collisionless Boltzmann equation
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Usually (especially in disk galaxies) we work in cylindrical
coordinates.

The distribution function then is (R, 0, z, Vg, Vp, V., t) and the
collisonless Boltzmann equation becomes

Ror TR0 T 7oz T\ R " 9R) o
VeVy 100\ 0f 00 oF
R "Ro0)ov, dzov,

of  Vpof v of (\/92 B 0<D) of
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For axial symmetry this reduces to

Yk OR R

Ty, . )
0R+ 0z 0

of of (09 VZ\ Of VgV Of 0 Of
GVR R d\/g {“)zﬁvzi

For spherical symmetry this reduces further to

of oo VZ\ of
Veor “\9r ~ R

OR R e

OVrR

Here the velocity Vj corresponds to the angular momentum of the
system.
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The second fundamental equation is Poisson’s equation, which says
that the gravitational potential derives from the combined
gravitational forces of all the matter.

It can be written as

e o 9P

_ o2
— q> = 4 )
52 - 3,2 T 552 \Y wGp(x,y, z)

In cylindrical coordinates

9% N 100 . 1 a2¢ 9%
OR2  ROR R2 802 022

=47Gp(R,0,z).
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For the axisymmetric case

OKn Kn 0K,
IR +F+ 57 = —4nGp(R, z)

the spherical case

1 0 200
R2OR <R ()R>—47TG,O(R).

and the plane-parallel case
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The collissionless Boltzmann and Poisson equations together
completely describe the dynamics of a system.

The Poisson equation always refers to the total mass density
distribution p. In the Boltzmann equation we may be looking at
the distribution function of a sub-component, for which the mass
density then is denoted by v.

In a self-gravitating system of course p and v are the same.
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In practice we never observe full distribution functions, but only
the first three moments of it in the form of density, systematic
motion and amount of random motion of velocity dispersion.

The hydrodynamic, moment or Jeans equations are obtained from
the collissionless Boltzmann equation by multiplication by a
velocity to some power followed by integration over all velocities
(as in calculating moments for a distribution).
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The Boltzman equation was

OF _Of  OF _090F 900F 000F
Y ox V@y Yoz " ox ou dy ov 0z ow

First we change to the often used notation to write this as

of  Of(X, V) 09 If(X,7)

V:

& tvi OX,' B aX,' 0V,'

Implicit is that we sum over all the values for i = 1,2, 3.
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Next we take the convention [ [ [* dvidvodvs = [ d°v

Then the zeroth, first and second order moments in velocity

become
/f d3v =v
1
= [ vuf v =y
V/v v={(v)

17
/v,-vjf d®v = (viv})
v

From now on | write f = f(X, V).
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Zeroth order moment of the Boltzmann equation

COf Of 0% [ Of
5t? Yt | Vigx, v ax | Bv;

This can be rewritten as

()il/v,-f d3v/ vi)]> d2v¢,-:O

fvi) >, =0 = %Jr%(u(v,-))zo

ov
ot

Then
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First order moment of the Boltzmann equation

of o0 [ of
/Vfdaw/ Yok o | e Y =

Now

SO
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Second order moment of the Boltzmann equation

Similarly we find
Nyy) , \O(vy) | O(v(vivj)) =~ 0P
O TR i i v

This equation is often rewritten using the velocity dispersion
tensor:

7% = (v = (W) x (= () = (vivy) = (Vi) () = 7% — 7.
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So we can write the second order Bolzmann equation as

a{v;) Oy Oved) o
9t + v{v;) Bx; + Ox; +1/0Xj—0

So we see that the zeroth, first and second order Boltzmann
equations describe relations between the density distribution of a
component v, the mean motions (v;) and the random motions
(vivj) or oj; with the potential ®.

Densities, mean and random motions are in principle observables.
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These moment equations are also called Jeans equations and are
usually applied in equilibrium when f is not a function of time.

In the practical case the velocity dispersion tensor is assumed to
have a diagonal form, i.e. there is a velocity ellipsoid with
semi-major axes 011,022,033 and all cross-terms equal to zero.

In general the Jeans equation cannot be solved without additional
assumptions.

And in practice we measure only surface density distributions
projected onto the plane of the sky and velocities and velocity
dispersion projected onto the line-of-sight.
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In the axi-symmetric case the Jeans equations are derived in the
same way.

For the radial direction we find:

D AVEN+ L LR~ V2~ {(Vo— AP e (V4 = v

By assumption we have taken here V; = (V) and

(WR) = (V,) =0.
This can be rewritten as:
2 _ 2
—Kr = LRL—<VIQ{> daR(lny<VR>) ;{I—W}} +

<VRV>(;9 (In v{(VR V,))
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The last term reduces in the symmetry plane to

0 0
<VR'VZ>07(111 v(WRV,)) = 57

(VR V)
and may then be assumed zero.

For the azimuthal direction the moment equation is seldom used,
because it only contains cross-terms of the velocity tensor. It reads

2 (ViVo) + A (v V) (Vi) = 0
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In the vertical direction the moment equation becomes

v + ARV O v = vk,

For spherical symmetry we have velocities Vi, Vy and Vj

05

2 RN+ L4208 — V2~ (Vo — WP) — (V) = vk

In plane-parallel layers the Jeans equation reduces to
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5. Galactic dynamics: Virial equations, integrals of motion
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Outline Moment of inertia tensor
Virial equations Kinetic energy tensor

Integrals of motion Potential energy tensor

The virial equations are derived from the first-order moment Jeans
equation for a self-gravitating system (so v = p) by taking its first
order moment over spatial coordinates.

2()\7-)+i( Vivj) + o®
()tll OX,-p'J p(?xj_

0

So we get

‘ a(PVj) 3 / 0 —\ 3 o® 3
Xp——=d’x = — | xk=— (pVivj) d°x — /xkpd X
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Outline Moment of inertia tensor
Virial equations Kinetic energy tensor

Integrals of motion Potential energy tensor

Moment of inertia tensor

Look at the term on the left

/Xka (é)tvj) d3X

and define the moment of inertia tensor

lik :/pijkd3x

Take the first derivative of this tensor.
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s of motion Potential energy tensor

d ap

Ejk a XJXkd3

Now recall the zeroth-order moment Jeans equation:
dp 0
N =0
ot T o Pi))

Then we can write

3
Xjxjcd>x

¢y [ 200

dr Ik~ ox;
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This reduces to

d

Jp ik = /P\7i (Sijxk + Sixxj) d>x = /P(ijlﬂL Viex;) d°x

and 5 . .

d . — i ~ 3

2 k= / {Xkﬁt (p¥) + x5, (pXk)] d’x
The moment of inertia tensor should be symmetric with respect to
the coordinates, so

d? 0 B
72 (30) = Xk 57 (P7)) d*x
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Integrals of motion Potential energy tensor

Kinetic energy tensor

Now take the first term on the right and use integration by parts.

"0 ' 0x "0
— /Xké)x(p‘/i\/j) R /pv,-vjalfd?’x— » (xkpViv;) d3x

/ 5/!(/)

= /pvkvjd x — 0= 2K

s

15)

v,vJ d Xk By — / Olkax, (kav,vj)d3x

where we have defined the kinetic energy tensor.
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s of motion Potential energy tensor

We can distinguish between the ordered and random motions using
— = = 2
VkVj = Vg.Vj + Okj

This gives rize to a motions tensor Tj, and a velocity dispersion
tensor I,

Ky = /p\7,-.\7jd3x+§/pai2jd3x

Tj+ 3M;
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Outline Moment of inertia tensor
Virial equations Kinetic energy tensor

Integrals of motion Potential energy tensor

Potential energy tensor

Finally the second term on the right. This we define as the
potential energy tensor.

()CD

d3
OXk

Wik = —

This finally gives

1 d2

The trace of the tensors give the total energies, so the trace of the
last equation reduces for the static case to

2T +MN=2K=-W
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Outline Isolating integrals of motion
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Integrals of motion Jeans’ theorem

Recall the collisonless Boltzmanmn equation

of of of of 09 0f 0PIf 0P Of
u——+v _
)X

ot " Yox TVay "oz oxou dyov  dzow

Now consider the equations of motion of an individual star:

dx Qi dz du 0P dv 00 dw 0P

v aT v w® MR e & oy &t oz
Fill this in and we get

of dxof dydf dzof dudf dvof dwof _ Df

9t diox  dtoy didz dedu deov . dt ow - Dt
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Integrals of motion Jeans’ theorem

So along the path of any star in phase space the total derivative of
the distribution function Df /Dt is zero.

The density in phase space is constant along the path of any star
and the flow of stars in phase space is incompressible.

The equations of motion of a star can be rearranged as:

dt:%:ﬂf% du dv dw

U v w  —0b/ox  —00Jdy —0®/0z

These are 6 independent ordinary differential equations which yield
6 integration constants for each orbit.
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Integrals of motion Jeans’ theorem

These integration constants thus correspond to a set of 6
independent properties with each combination of values related to
a particular stellar orbits.

The distribution function 7 then simply tells which of these orbits
are actually populated, so the general solution of the Boltzmann
equation can be written as

f(x,y,z,u,viw) = F(lh,bh,....ls)
The I's are called the integrals of motion.

The question is then to what physical properties (if any!) these
integrals of motion correspond.
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Integrals of motion Jeans’ theorem

Summarizing we have:

—

> Integrals of motion are functions /;(7, v, t) that are constant
along an orbit (or D/ /Dt = 0).

» In phase space there are surfaces /;(7, v, t) = constant and the
orbit is the intersection of these surfaces.

» There cannot be more than 6 integrals of motion.
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Virial equations Non-isolating integrals of motion

Integrals of motion Jeans’ theorem

Isolating integrals of motion

We see that the distribution function depends only on the integrals
of motion. So what are these?

One can be identified as the energy, which is always conserved
along an orbit:

h=E= %(u2 + v + w?) + d(x, y, z) = constant

This is called an isolating integral of motion, because for
particular values it isolates hyper-surfaces in phase space.

The others in general are non-isolating and are only implicit in the
numerical integration of an orbit.
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Outline Isolating integrals of motion
Virial equations Non-isolating integrals of motion

Integrals of motion Jeans’ theorem

In an axisymmetric potential there is a second isolating integral:
the angular momentum in the direction of the symmetry axis z is
also conserved along an orbit.

h=J=RVy

Then we have
f(R,z, Vg, Vy, V) = F(E,J)

Actually, in a spherically symmetric potential all three components
of the angular momentum are isolating intergals.
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Integrals of motion Jeans’ theorem

In the case of the Galaxy near the plane (at small z) the potential
is separable and the R- and z-motions will then be decoupled

®(R,z) = P1(R) + P2(2)

Then the decoupled z-energy is a third integral of motion:

I3 = %\/2 aF q)z(Z)

V4

| will have much more to say later about the so-called third
integral problem, which is related to this.
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Integrals of motion Jeans’ theorem

In general any symmetry in the potential or any coordinate system
in which the potential can be separated gives rise to integrals of
motion.

The integrals that | mentioned for these specific cases restrict the
orbit of a star to certain regions of 6-dimensional phase space.

That is why they are called isolating integrals of motion.

But not all integrals of motion have this property and they are
called non-isolating integrals and are not of much use.

The concept isolating versus non-isolating will be illustrated next
with a simple example.
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Non-isolating integrals of motion

Consider the two-dimensional harmonic oscillator with different
periods. The equations of motion are

x=Xsina(t—t) ; y=Ysing(t—t,)

Obviously when «/[3 is rational the orbit is periodic and has a
single path.

What are the integrals of motion? First realise that

d
d—); = Xacosa(t — ty)
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Integrals of motion Jeans’ theorem

From x and dx/dt we can form a time-independent parameter:

e\ 2
I = ((;) + a?x? = X%(a? + 1) = constant

This then is an integral of motion and confines x to the interval
(—X < x < X).

Similarly we have

d 2
b= (di) +0%y% = Y3(82 +1)

Together these integrals then confine the orbit to the area
(X <x<X,-Y<y<Y).
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Integrals of motion Jeans’ theorem

There is a third time-independent quantity that we can derive as
follows.

Eliminate t from the two equations of motion; then we get

| 1 . (X) 0 1 . ()/) ; .
= —arcsin | — —arcsin (= ) = t, —
3T o X J6) Y 7

This can be re-arranged as

x = Xsin {(};/3 — % arcsin ({/)}

Now arcsin(y/Y') repeats every interval 27 and therefore the
second term repeats every interval 2o /3.
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Integrals of motion Jeans’ theorem

If a/3 is rational we then get for any value of y a finite number of
values for x between —X and X and therefore the orbit is periodic.
Then /5 can also assume a finite number of values and therefore is
an isolating integral of motion.

But if /(3 is irrational, the second term can assume an infinity of
values and x also is not constrained and /3 can have an infinite
number of values and does not constrain the orbit within the area
(X <x<X,-Y<y<Y).

Then /5 is a non-isolating integral of motion and of no practicle
value.
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Integrals of motion Jeans’ theorem

So we see that:

» The number of isolating integrals of motion depend on both
the potential and the particular orbit and

» For a particular potential some orbits can have more isolating
integrals than others.
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Integrals of motion Jeans’ theorem

A further illustration of non-isolating integrals of motions is phase
mixing®.

Assume that stars move in a potential ®(7) and have closed orbits
on (7, V). One integral of motion is the total energy of a star

E= %v2 + ¢(7)
The orbital period T(E) depends on E. Take for the starting
position 5.
Then the orbital phase angle ¢ of the star at time t is

B(E,7) = (E, 75) + sz(tE)

!K.C. Freeman, Stars & Stellar Sytems IX, 409 (1975)
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Integrals of motion Jeans’ theorem

Therefore

W(E, ) =y(E,F)— 2w
is another integral of motion.

So the distribution function can be written as f(E,¢) — 27t/ T)
and we can follow f in the (E,)-plane.

Say, it intially starts as a distribution limited by values of E and .
Then since T is a function of E we find a development as in the
following schematic figure.
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Integrals of motion Jeans’ theorem

o

,,
> 0

(c) (d)
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Integrals of motion Jeans’ theorem

Although initially confined to a small range AEA), the
distribution function evolves to a distribution over all phases.

So the distribution function looses its dependence on phase angle
and the second integral is non-isolating.

The only isolating integral is the energy.

In general, it may be stated that the non-isolating integrals do
define surfaces in phase space, they come close in phase space to
any point allowed by the isolating integrals and therefore provide
no further constraints on the properties of the orbits.
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Integrals of motion Jeans’ theorem

Jeans’ theorem

Jeans' theorem is:
Any arbitrary function of the integrals of motions satisfies the
collisionless Boltzmann equation

This is so because the distribution function is constant along the
path of an orbit, Df /Dt = 0. If f is any function of /;..../,.

Df ~ofdl
Dt pa ol; Ot .

However, in order to make a self-consistent system as a solution
that resembles a real galaxy, we also need to satisfy the Poisson
equation. This is referred to as the self-consistency problem.
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Integrals of motion Jeans’ theorem

Now, the integral of f(/;) over all integrals /; at any position is the
local density and this must be single valued.

But in general we only know the (single valued) isolating integrals.

Lynden-Bell? inferred from this that the distribution function can
be completely defined by the isolating integrals only.

E.g. in a system that is spherical in all its properties (so it must
depend on the magnitude of the angular momentum, but not its
direction) the distribution function is f = f(E, L?).

Lynden-Bell® showed that it is possible for rotating systems to be
spherical, while intuitively one expects it to be always oblate.

2D. Lynden-Bell, MNRAS 123, 1 (1962)
3D. Lynden-Bell, MNRAS 120, 240 (1960)
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6. Galactic dynamics: Timescales
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There are a few timescales that are important.

» Crossing time, which is simply the radius divided by the
velocity R/ V.
For a galaxy we take some charactristic radius and typical
velocity.
Note that for a uniform sphere with mass M and radius R we
have for the typical velocity the circular speed and then

y_.JeM 3o 3
VR T axrs T\ anGp
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» For a galaxy the crossing time is of the order of 10° years.

» Hubble time, which is an estimate of the age of the Universe
and therefore of galaxies. It is of the order of 10'° years.

» The fact that the crossing time is much less than the Hubble
time the suggests that we may take the system in dynamical
equilibrium.

» Two-body relaxation. This is important for two reasons:

» Collisions between stars are extremely rare, so collissional
pressure is unimportant (contrary to a gas), and

» Two-body encounters are able to virialize a galaxy so that the
kinetic energy of the stars acts as a pressure to stabilize the
system, balancing the potential energy.
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Two-body encounters provide processes for a galaxy to come into
equilibrium and “virialize”, which means that the stellar velocity
distribution randomizes.

We will now estimate this relaxation time.

Suppose that we have a cluster of radius R and mass M, made up
of N\ stars with mass m, moving with a mean velocity V.

If two stars pass at a distance r, the acceleration is about Gm/r2.

Say, that it lasts for the period when the stars are less than the
distance r from the closest approach and therefore for a time 2r/ V.
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The total change in V2 is then (acceleration times time)

2Gm 2
AVZ ~
&)

The largest possible value of r is obviously R.

For the smallest, we may take r = ryin, where AVZ?is equal to V2
itself, since then the approximation breaks down. It is not critical,
since we will need the logarithm of the ratio R/ryy.

So we have
2Gm

Fmin = V2
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The density of stars is 3V /47 R> and the surface density N /7R?.

The number of stars with impact parameter r is then the surface
density times 27rdr.

After crossing the cluster once the star has encountered all others.
We can calculate the total change in V/? by integrating over all r

R 2 2
2Gm\ “ 2Nr 2Gm
(AV2)L01 :/ ( Y, > ?dr: (R\/> 2N In A
r

min

where A = R/ ryin.
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The relaxation time is equal to the number of crossing times it
takes for (AV/?);, to be become equal to /2.

Since a crossing time is of order R/V and since the virial theorem
tells us that V2 ~ GNm/R, we find

, RN R3N\Y? 1
e IVATY Gm 8InA

With the expression above for ry,i, we find

R RV? GNm N

f— ~ ~ — ~ N
fmin  2Gm  2GRm 2

A=
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The final expression for the two-body relaxation time then is
RE\? N
trelax ~ | =17
el (GM) 8In N

This ranges from about 10° years for globular clusters to 10*? years
for clusters of galaxies.

Within galaxies encounters are unimportant and they can be
treated as collisionless systems.
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If galaxies are relaxed systems another mechanism must be at
work. This is violent relaxation?.

This occurs when the potential changes on timescales comparable
to the dynamical timescale.

If E(V,t) = 1v2 + &(X, t) then

dE dEdv d® _dv d®

at dvdt Tt Var T dt
orov  o0d 0o dr
“ator Tor Tora
0o
ot

ID. Lynden-Bell, MNRAS 136,101 (1967)
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Thus a star can change its energy in a collisonless system by a
time-dependent potential, such as during the collapse of a galaxy.

The timescale associated with violent relaxation is, according to
Lynden-Bell '
(DZ
tor ~ ()
So the timescale of violent relaxation is of the order of that of the
change of the potential.

A very important aspect is that the change in a star’s energy is
independent of its mass, contrary to other relaxaton mechanisms,
such as two-body encounters, which give rise to mass segregation.
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Also some of the information on the initial condition will get lost.

Van Albada? was the first to numerically simulate violent
relaxation.

He found some remarkable things:

» If the collapse factor was large, irregular initial conditions gave
rise to an R'/*-law? surface density distribution, as observed
in elliptical galaxies over a range of up to 12 magnitudes.

» The binding energy of particles before and after collapse
correlate, showing that some information on the initial state is
not wiped out.

2T.S. van Albada, MNRAS 201, 939 (1982)
Slog I(r) = log I, — 3.33(r/ro)Y/*.
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Piet van der Krui

Violent relaxation

togr

Figure 4, Density distribution in final equilibtium model compared with that for the #** law (solid line;
Young 1976), for models U and Al. Scaling: equilibrium models and 7/ law model have same half-mass
radius p, and same total mass. Short vertical dashes along p(r) for r* law model indicate radii containing
10, 50 and 99 per cent of the total mass. Density and radius of starting model are indicated by short
straight lines.
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As a star moves through a background of other stars, the small
deflections will give a small overdensity behind the star and
consequently induce a drag.

Suppose that a body of mass m moves in a circular orbit with
radius R through a background of bodies with mass M at a speed
V. and assume that the background is an isothermal sphere* with
V. the circular speed (and V. /2 the velocity dispersion).

*An isothermal sphere is a distribution where everywhere the velocity

dispersion is constant and isotropic and that is in equilibirium with its own
gravity; see later.
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Then the loss of angular momentum is about

dJ -
where
. R(J V(‘2
G(m+ M)

R. is the core radius of the isothermal sphere (the typical
lengthscale of the background density distribution).

The timescale of dynamical friction for the body to spiral into the
center is then

; RV

T GminA

This timescale is large and only relevant for globular clusters in the
inner halo or for galaxies in the central parts of clusters.

Galactic dynamics: Timescales
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7. Galactic dynamics: Stellar orbits

Piet van der Kruit
Kapteyn Astronomical Institute

University of Groningen, the Netherlands
www.astro.rug.nl/~vdkruit

Beijing, September 2011

Piet van der Kruit, Kapteyn Astronomical Institute Galactic dynamics: stellar orbits



Outline
Orbits in symmetric potentials

Third integral
Surface of section
Rotating non-axisymmetric potentials

Outline

Orbits in symmetric potentials
Spherical potentials
The harmonic oscillator
The Keplerian potential
Axisymmetric potentials

Third integral
Surface of section

Rotating non-axisymmetric potentials

Piet van der Kruit, Kapteyn Astronomical Institute Galactic dynami

: stellar orbits



Outline

Orbits in symmetric potentials

Third integral

Surface of section

Rotating non-axisymmetric potentials

Spherical potentials
The harmonic oscillator

The Keplerian potential
Axisymmetric potentials

Orbits in symmetric potentials

Kapteyn Astronomical Institute Galactic dynam stellar orbits



Outline
Orbits in symmetric potentials

Spherical potentials

The harmonic oscillator
The Keplerian potential
Axisymmetric potentials

Third integral
Surface of section

Rotating non-axisymmetric potentials

Spherical potentials

The equation of motion in a spherical potential is in vector

notation
do

*EQR

The angular momentum is

RxR=1L

This is constant and the orbit therefore is in a plane.
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Third integral
Surface of section

Rotating non-axisymmetric potentials

We then use polar coordinates in this plane these two equations
become

Integrating this we get
2

2 1L
1p2 —
3R+ S TOR) = E

The energy E is constant.

Piet van der Kruit, Kapteyn Astronomical Institute Galactic dynamics: stellar orbits



Outline

Orbits in symmetric potentials

Third integral

Surface of section

Rotating non-axisymmetric potentials

Spherical potentials
The harmonic oscillator

The Keplerian potential
Axisymmetric potentials

If E < 0 then the star is bound between radii Ryax and Ruin,
which are the roots of
112
—— +P(R)=E

The radial period is the interval between the times the star is at
Ruin and Ri.x and back.

"R, Runa
max max dR
Tr = 2 / dt =2 / o
Rmin JR R

min

2/‘Rmax dR
Rmin  {2[E — ®(R)] — L2/R2}1/2
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Spherical potentials
The harmonic oscillator

The Keplerian potential
Axisymmetric potentials

In the azimuthal direction the angle ¢ changes in the time Ty by

r dp ‘TR /| \ dR
NG = “ZdR =2 —
/0 dR /0 <R2) R

This can be evaluated further in terms of Tr, which depends upon
the particular potential.

The orbit is closed if m
NG =27 —
n

with m and n integers.

This is not generally true and the orbit then has the form of a
rosette and can the star visit every point within (Ryin, Rimax)-
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Axisymmetric potentials

Orbits in symmetric potentials

Even in the simple case of a
spherical potential, the
equation of motion of the orbit
must be integrated
numerically.

The Rosette orbit can be
closed by observing it from a
rotating frame (see below
under resonances), when it is
rotating at an angular velocity
of

(A0 — 27)

%=

We will treat two special cases which can be solved analytically.
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The harmonic oscillator

This concerns the potential of a uniform sphere
_102p2
S = SQ°R".

Then we take cartesian coordinates x = rcosf, y = rsinf and
then 5 5

d x d

—— — (%% - Y _ @2

dt? dt?

Then
x = Xcos(Qt +aco) ; y=Ycos(Qt+ay,)

The orbits are closed ellipses centered on the origin and A¢f is
equal to 7 in TR.
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Rotating non-axisymmetric potentials

The Keplerian potential

The potential now is that of a point source in the center and this
is the well-known two-body problem?:

The orbits are closed ellipses with one focus at the origin:

B a(l — e?)
~ {1 +cos(6 —6,)}

There is a complete derivation of the two-body problem available at
(http://www.astro.rug.nl/~vdkruit/jea3/homepage/two-body.pdf).
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Here semi-major axis a and excentricity e are related to £ and L by
L2 GM

a= " ; E=——"

GM(1 — e?)

Rmax-/ Rmin — a(]- + e)

33
Tr=Ty)=2 — = Tr(E
R=To=2m\| = r(E)

Now A = 27 in TR.

Galaxies have mass distributions somewhere between these two
extremes, so we may expect that A6 is in the range 7 to 27 in Tg.
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Axisymmetric potentials

We now have a potential ® = ®(R, z), that may be applicable to
disk galaxies. The equations of motion are

. . L)
R—R?=——
OR
d .
—(R%0) =0
dt( )
Pz oo
dr2 Oz

Integration of middle one of these equations gives

L, = R%0
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The motion in the meridional plane then can be described by an

effective potential
A

OR
B OP gt
0z

where
L2

Pt = O(R,2) + 55

R =

e

The energy of the orbit is

E=1R?+ 1224 oe(R, 2)

Galactic dynamics: stellar orbits
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Rotating non-axisymmetric potentials

The orbit is trapped inside the appropriate contour £ = ®g,
which is called the zero-velocity curve.

Only orbits with low L, can approach the z-axis.

The minimum in ®.g occurs for Vo g = 0, or at z = 0 and where
ov L2
OR R3

This corresponds to the circular orbit with L = L,.

It is the highest angular momentum orbit that is possible for a
given E, or in other words, it has all its kinetic energy in #-motion.
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As an example we take the logarithmic potential

Here are countours of @ for
the case g = 0.5 and L, = 0.2.

R N U

The minimum in ®.¢ occurs
where VO g = 0 that is in the -
plane (z = 0).

S s e B L B B B AL |

il
S
T
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R
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Orbits in symmetric potentials

If E and L, were the only two isolating integrals the orbits would
be able to visit all points within their zero-velocity curves.

In simulations this is often not the case and there must be a third
integral.

Here is the case of actual simulated 2
orbits in a slightly flattened
logarithmic potential. We show the
motion in the meridional plane,
rotating along with the angular
momentum of the orbit.

L B B R IR L BRI

A
=]
S S B S L AL L B B IR

Lo b b |

The blue line is the zero-velocity
curve corresponding to this orbit.

ol b b L 1
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R
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Recall that for small deviations from the symmetry plane the
energy in the z-direction was a third isolating integral.

Here are two diagrams from an early study by Ollongren®. We have
either periodic or non-periodic orbits.

(b)

Z=0 —

2A. Ollongren, B.A.N. 16, 241 (1962)
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Ollongren did numerical
integrations using the potential
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Third integral

He also found that the most general separable case was in elliptical
coordinates, in which a third integral is quadratic in the velocitiesS.

T — T

ORBIT 10

-

H-2

t A 5\6 7 8

! L L L L

9 ke 10 @
1 I

Orbit 1o, low, special, frequency ratio near 14 : 17. In revolution 5 the fundamental
point D is approached closely, after which the previous path is nearly retraced back
to the starting point (& =@, , 2=0).

3See also H.C. van de Hulst, B.A.N. 16, 235 (1962)
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ORBIT 19

W

RS 23S

—

4 5 6 7 8 9 ke 10 T
L 1 L L

Orbit 19, intermediate. ITn revolution 11 the fundamental point A is approached
closely. Motion of orbital plane is shown in Figure 33.
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5 6 7 8 we w9

we T 9 Orbit 6, high, special. Sense of rotation of all revolutions drawn

L is clockwise, except for revolution 11, which is of the switching
Orbit 30, intermediate, close to orbit 3. The trajectory departs  type. Region within the boundary for |z| > 2.75 enlarged in
only slowly from the trajectory of orbit 3. Figure 28.
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Summarizing:

» If E and L, are the only two isolating integrals, the orbit
would visit all points within the zero-velocity curves.

» In practice it was found that there are limiting surfaces that
seem to forbid the orbit to fill the whole volume within the
zero-velocity curves.

» This behaviour is very common for orbits in axisymmetric
potentials, when the combination (E, L,) is not too far from
that of a circular orbit. A third integral is present, although in
general its form cannot be explicitly written down.
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For each orbit the energy E(R, z, R, z) is an integral, so only three
of the four coordinates can be independent, say R, z and R.

The orbit can visit every point in (R, z, R)-space as far as allowed
by E.

Now take a slice through (R, z, R)-space, e.g. at z = 0. This is
called a surface of section.

The orbits’ successive crossings of z = 0 generate a set of points
inside the region £ = 1R? + ®.4(R,0).
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Hénon & Heiles* did a famous study of third integrals and surfaces
of section. They used a convenient analytical potential in
coordinates (x, y):

W(x,y) = L(x® + y2 +2x%y — 2y?)

The figure shows consecutive

crossings of the surface of section ot ]
(v, ).

0.l o
After an infinite time the full curve ol ]
will be filled.

=0.1+ -
This is a signature of a third isolating ol |
integral; the orbit is constrained S —

InS|de the Zero_ve|0City curve. F16. 3. A typical set of points P;; £=0.08333.
*M. Hénon & C. Heiles, A.J. 69, 73 (1964)
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Here are some orbits for £ = 0.08333. All have a third integral.

y E=0.0833
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Surface of section

Here are orbits for E = 0.125. Now some orbits have no third
integral.

E=0.12500
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Surface of section

For E = 0.16667 almost no orbits have a third integral.

Vo
0. E7OI6667

TL05 Z04 03 02 =01 0 . 0l 02 03 04 05 06 07 08 09 y
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Surface of section

Hénon & Heiles divised a of E
method to derive the fraction il
of orbits that have a thrid g
integral for each energy. ¥
For E < 0.11 all orbits have a af
third integral, but for E > 0.17 af
almost none do. A
I ®
o .0.2 0‘4 ,0_‘6 ,0‘8 i a2 .|‘4 16 18

ENERGY
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If there is no other integral then these points fill the whole region.

If there is another integral, then its surface /r(R, z, R) cuts the
plane in a curve Ig(R,0, R) = constant.

A periodic orbit is a point or a set of points on the (R, R) surface
of section.

Such curves and points are called invariant, because they are
invariant under the mapping of the surface of section onto itself
generated by the orbit.

Invariant points often have closed invariant curves around them on
the surface of section. These represent stable periodic orbits. Ones
where invariant curves cross are unstable periodic orbits.
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Surface of section

This diagram (taken from Ken Freeman) summarizes the points.

O I

o 1 2 3 4 5
R

nearly circ R
orbit
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Rotating non-axisymmetric
potentials
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In cases of bars or some elliptical galaxies we may consider a
potential that rotates with a rigid angular velocity 2.

Then the equation of motion is
Fr=—-VV-2Q2xr)—Qx(Qxr)

The second term on the right is the Coriolis force and the third
one the centrifugal force.

Then we can define an effective potential, so that

F= VW —2(2 xr)
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Rotating non-axisymmetric potentials

Such a potential has
equipotential curves in the

z = 0 plane that show neutral
points.

Li and Ly are saddle points
and are unstable.

L3 is a minimum and is stable.

L4 and Ls are maxima that can
either be stable or unstable.
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Galactic dynamics: stellar orbits



Outline
Orbits in symmetric potentials
Third integral

Surface of section
Rotating non-axisymmetric potentials

These point should in spite of their notation not be confused with
Lagrange points in the restricted three-body problem, although
there is some similarity.

There are two bodies (here
Sun and Earth) in circular
orbits.

The Lagrange points L1, Lp
and L3 are saddle points and

unstable.

L4 and Ls are stable.
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Epicyle theory

For small deviation from the
circular rotation, the orbits of
stars can be described as
epicyclic orbits.

If R, is a fudicial distance from the center and if the deviation

R — R, is small compared to R,, then we have in the radial
direction

@(R— L) = T*?Z = 4B(A—B)(R—R,) = —k*(R—R,),

d? = _VAR) V2

where the last approximation results from making a Taylor
expansion of V(R) at R, and ignoring higher order terms.
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This equation is of the form ¥ = —x°x and is easily integrated
%
R—R, = Ryo sin Kt,
K

In the tangential direction we have

do  V(R) V, A-B
&~ R R R FTR

where 0 is the angular tangential deviation seen from the Galactic

center. Then
VR,,O

2B

R, = —

Ccos Kt
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The orbital velocities are

VR = WVR,c COs Kt,

VRok .
Vo — Vo = RQ’; sin Kt.

The period in the epicycle equals 277/ and & is the epicyclic
frequency
k= 2{—B(A— B)}'2.

In the solar neighborhood x ~36 km s~% kpc~1.
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For a flat rotation curve we have

_ S Y(R)
f=V2—t

Through the Oort constants and the epicyclic frequency, the
parameters of the epicycle depend on the local forcefield, because
these are all derived from the rotation velocity and its radial
derivative.

The direction of motion in the epicycle is opposite to that of
galactic rotation.
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The ratio of the velocity dispersions or the axis ratio of the velocity
ellipsoid in the plane for the stars can be calculated as

(VB2 _ [=B

<Ve2>1/2 - VA-B
For a flat rotation curve this equals 0.71.

With this result the hydrodynamic equation can then be reduced to
the so-called asymmetric drift equation. Recall

2 EEVAY:
—Kr = %*<VI%> (%(1111/(VI%>)+;{1WH+
(Vi Vo) (i (Ve V2)
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For the case the cross-dispersion in the last term is zero, we can
now write
V2

rot

V2 =

0 0 B
2 9 2 __B
<VR>{ 0R1111/+R0R111<VR> + {1 B—A}}'

Here V..t is the ‘circular’ velocity that corresponds directly to a
centrifigal force V2, /R equal to the gravitational force K.
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If the asymmetric drift (Vi — V4) is small, the left-hand term can
be approximated by

Vr2()t _ Vt2 ~ 2Vrot( Viot — Vt)~

The term asymmetric drift comes from the observation that
objects in the Galaxy with larger and larger velocity dispersion lag
more and more behind in the direction of Galactic rotation.

40p . S e —
aof h
E 2oL ek ]
ﬁ‘20: ' r—}-—a # ]
2 [ 1 WI ]
10 Q#&’,ﬁ’+ 3
ol L 1 PR R G ]
(4] 500 1500 2000
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Vertical motion

For the vertical motion the equivalent approximation is also that of
a harmonic oscillator.

For a constant density the hydrodynamic equation reduces to

d’z
K, = o —47Gpoz.
Integration gives
Vio . :
Z = 3 sin A\t ; V, = V,, cos At.

The period equals 27/ and the vertical frequency A is
A = (47Gpo)'/?.
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For the solar neighbourhood we have py ~0.1 M., pc—3.

With the values above for R,, V,, A and B, the epicyclic period
k™1 ~ 1.7 x 108 yrs and the vertical period A~ ~ 8 x 107 yrs.

This should be compared to a period of rotation of 2.4 x108 yrs.

The Sun moves with ~20 km s~ ! towards the Solar Apex at
Galactic longitude ~ 57° and latitude ~ +27°.

From the curvature of the ridge of the Milky Way the distance of
the Sun from the Galactic Plane is estimated as 12 pc.

The axes of the solar epicycle are about ~0.34 kpc in the radial
direction and ~0.48 kpc in the tangential direction.

The amplitude of the vertical motion is ~85 pc.
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Resonances

The most important ones are between epicyclic frequency and
some other frequency that we will call pattern speed €2,,.

The inner Lindblad resonance occurs for
K

Qp — Qr()t(R) - 5

where €, (R) is the angular rotation speed.

This resonance occurs at the radius, where —in a rotating frame
with angular velocity 2,,— the particle goes through 2 epicycles in
the same time is it goes once around the centre. The resulting
orbit in that frame then is closed and has an oval shape.

It goes back to Lindblad's discovery that the property
Qot(R) — 1/2 in the inner Galaxy is roughly constant with .
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The pattern speed may be identified with that of the rotating
frame in which the spiral pattern (not the spiral arms as physical
structures themselves) is stationary or with the body rotation of a
bar or oval distortion.

Equivalently we have the outer Lindblad resonance

K
Qp — Qr()t(R) + E
and co-rotation

Qp — Qr()t(R)

Higher order Lindblad resonances (involving +/n) sometimes also
play a role.
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Jeans instability

We then start with the Jeans instability in a homogeneous
medium.

There are various ways of describing it to within an order of
magnitude.

The first is to make use of the virial theorem
2 Tkin +0Q=0

for stability against gravitational contraction.
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In a uniform, isothermal sphere the kinetic energy is
Tiin = 1/2 M(V?)
and the potential energy

2
T s
5 R

So the sphere will contract when its mass M is larger than the
value required by the virial theorem.

This is called the Jeans mass Mjqans, Which then comes out as

y 3 i 3/2 i 1/2 <V2>3 1/2
Jeans — 3G 4r P)
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A method that gives roughly the same result starts by calculating
the free-fall time of a homogeneous sphere.
Anywhere the equation of motion is
d’r G M(r) A
_—_— —— = ——G
dt2 P2 S
Solve this and apply for r = 0, then

o B 1/2
=326y

The free-fall time is independent of the initial radius and depends
only on the density. Now, if there were no gravity a star will move
out to the radius of the sphere R in a time

- R
T (V)12
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For marginal stability the two have to be equal and it follows that
the Jeans length is

3 (V2)\ /2
RJeans: =
32 Gp

Sometimes in the literature the Jeans length is taken as the
diameter of the sphere.
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Toomre criterion for local stability

Next we need to consider Toomre's! criterion for local stability:

_ (V)2
~ 33660

(V2)Y/? is the stellar velocity dispersion in the R-direction, o is the
local disk surface density and « is the epicyclic frequency.

An approximate derivation of Toomre's criterion can be made for
an infinitesimally thin disk.

1. At small scales the Jeans instability needs to be considered.

'A. Toome, Ap.J. 139, 1217 (1964)
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Take an area with radius R and surface density o. The equation of

motion is
d’R
dt?

= —7Go

Solve this and apply for R = 0; this gives the free-fall time
oR \ /2
tg = ——
b <WGU>

A star moves out to radius R in a time
R

b= (V2)1/2

and this must for marginal stability be equal to the free-fall time.
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This then gives the Jeans length

2(V?
RJea‘ns — 7§GO'>

2. At large scale we need to consider stability resulting from
differential rotation.

Take an area with radius R,; the angular velocity from differential
rotation is
Q=8B

The centrifugal force is then

Fof = R.Q?
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Let it contract to radius R, then the angular velocity becomes

_ R2B

Q =2

and the centrifugal force

R4B?2

Fi = RQ? = >

If the contraction is dR then

dFee  3RiB?

dR R4
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Now look at the gravitational force

GrR2%0
R2

i grav —

This is correct to within a factor 2 for a flat distribution. Then

dfgrav 2TFGR§O'
dR RS

At R = R, these two must compensate each other, so

2rGo

Rcri‘ = Y=
' 3B2

and the disk is stable for all R > R..it.

Piet van der Kruit, Kapteyn Astronomical Institute Galactic dynamics: Epicycle orbits, inst:



Jeans instability
Outline Toomre criterion for local stability
Epicycle orbits Goldreich-Lynden-Bell criterion

Instabilities Global stability
Tidal radius

3. Toomre's stability criterion then follows by considering that the
disk is stable at all scales if the minimum radius for stability by
differential rotation is equal to or smaller than the maximum radius
for stability by random motions (the Jeans radius).

Thus
12 7® Go

<V2>(:rit 7 ﬁ?

In practice B ~ —A (for flat rotation curves), so we can write

2\ 1/2
(V2)eli ~ 2m (3) 6o _ 51357
’ K

Toomre in his precise treatment found a constant of 3.36.
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Goldreich—Lynden-Bell criterion

This can be extended to the criterion, that Goldreich and
Lynden-Bell? derived for stability of gaseous disks of finite
thickness against sheared instabilities:

_T6p <,

4B(B — A)
This follows from the result for the Toomre criterion above as
follows.

From the vertical oscillation above we find that the maximum
distance from the plane is

Vi0
(47Gpo )t/

Zo =

2R. Goldreich & D. Lynden-Bell, MNRAS 193, 189 (1965)
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Equate the critical velocity dispersion in our derivation of the
Toomre criterion to V, ., then

12 B2

—G7123p0—2

T g

Now take a mean density p equal to o/z, and to %po and using

(B—A) =~ 2B, we get

m p
NGRS
3CB(B-A)

These sheared instabilities were proposed by Goldreich &
Lynden-Bell as a possible mechanism for the formation of spiral
structure.
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More recently, Toomre? has studied the process in stellar disks and
finds an instability based on shear due to differential rotation, that
he called swing amplification. This process is prevented when

2
_ R >3
2rmGo

where m is the number of arms. For —B ~ A (a flat rotation
curve) this can be written as

QVrot

This is Toomre's local stability citerion if the velocity dispersion is
replaced by 0.22 Vo /m.

3A. Toomre, Normal Galaxies, ed. S.M. Fall & D. Lynden-Bell, 111 (1981)
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Global stability

For global stability there is a global condition due to Efstathiou,
Lake & Negroponte* from numerical experiments, which reads

b 1/2
Y =Vt | —— 2 1.1
' (GMdisk)

For a pure exponential disk with surface density
o(R) = exp (—R/h) without any dark halo Y = 0.59.

For a flat rotation curve it is then easy to show that the condition
implies that within the disk radius of 4 to 5 scalelengths h the mass
in the halo should exceed that of the disk by a factor of about 3.5.

*G. Efstathiou, G. Lake & J. Negroponte, MNRAS 199, 1069 (1982)
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For a flat rotation curve and an exponential disk Y can be

rewritten as
. QR\/l‘()t 1/2 R

and this gives
Q\/rot

——5as ~ 91

<\/§>1/2
Comparing this to the equation for swing amplification we see
that for spirals that are stable against global modes, swing
amplification is possible for all modes with m > 2, at least at those

radii where the rotation curve is flat.
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Ostriker & Peebles® have also found from numerical experiments a
general condition for global stability.

Stability occurs only when the ratio of kinetic energy in rotation S
to the potential energy Q2
S

t=— <014
12|

The virial theorem says that 25 + 2R + 2 = 0, where S is the
kinetic energy in random motions.

Since R/S > 0, we would have expected t to have the range 0 —
0.5 available.

®J.P. Ostriker & P.J.E. Peebles, Ap.J. 186, 467 (1973)
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The criterion translates into R/S 2 2.5, while for the local
Galactic disk it is about 0.15.

So disk galaxies require additional material with high random
motion in order to conform to the criterion, either in the disk itself
(e.g. the stars in the central region) or in the dark halo.
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Tidal radius

Globular clusters have tidal radii due to the force field of the
Galaxy. These radii can be estimated as follows.

Assume two point masses M (the Galaxy) and m (the cluster) and
a separation R in a circular orbit (the following can be adapted to
elliptical orbits as well with R the smallest separation).

Kepler's third law says
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For a circular orbit we can find the angular velocity of the globular
cluster around the center of gravity is

o {G%?m)r/z

The center of gravity is at a distance MR /(M + m) from the
cluster.

Take a star at distance r from the center of the cluster in the
direction of M and calculate where the total force on that star is
zero. Thus in terms of accelleration (after dividing by G)

M m M+m< MR >
—r| =0

(R=r2 2 R® \M+m
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Since r is much less than R we may expand the first term

~
~

1+2é)

Since m is small compared to M the third term can be reduced to

M+ m MR M mr
R3S \M+m ~ R2 RS
Then the equation reduces to

3Mr m
RZ 2

Piet van der Kruit, Kapteyn Astronomical Institute Galactic dynamics: Epicycle orbits, inst:



Jeans instability
Outline Toomre criterion for local stability
Epicycle orbits Goldreich-Lynden-Bell criterion

Instabilities Global stability
Tidal radius

The tidal radius then is the solution for r of this equation:
m )1/3

Itidal ™~ R (W

For M = 102 My, m = 10° My, and R = 10 kpc we get
ftidal ~ 30 pc.

Observed tidal radii can be used to constrain the mass distribution
in the Galaxy.
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The distribution of space velocities of the local stars can be
described with the so-called ellipsoidal distribution.

This was first introduced by Karl Schwarzschild and is therefore
also called the Schwarzschild distribution.

The distribution is Gaussian along the principal axes, but has
different dispersions. This anisotropy was Schwarzschild's
explanation of the “star-streams” that were discovered by Kapteyn.
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Properties of the velocity el

The general equation for the Schwarzschild distribution is

V2)(V2) (V2
f(szv VR:VQ;Vz) = 8< R>7§3/92>< z>[/

V2 Vy — V)2 V2
exp | — R,i(e L)i Z -

2(V3) 2(Vi3) 2(v2)
VR Vi WV, (Vo — W)V,

2(VRVp)  2(WmV,) 2(VyVy)
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Properties of the vel y ellipsoid
The closure problem

There is an interesting deduction that can be made from this
ellipsoidal velocity distribution, which was done by Oort in the
same paper in which he discovered differential rotation, defined the

Oort constants and laid the foundations for “stellar dynamics”?.

Take the asymmetric drift equation, insert this distribution and add
the condition that z = 0 is a plane of symmetry.

Then you get an equation in terms of velocities and multiplications
thereof that has to be identical, so that all terms need to be zero.

This is a lot of algebra (see Oort's paper).

1J.H.Oort, B.A.N. 4, 269 (1928), see also his chapter in Stars & Stellar
Systems V, Galactic Structure, ed. Adriaan Blaauw & Maarten Schmidt, 455
(1965)
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The Schwarzschild distribution

[1 Bf 9 (08]{ [1aé) + Z;T-i-r-% KH??{[ + Kz 57 fo (6) ‘ We shall assume, then, that the velocity distribution

4 | is of the ellipsoidal type and that the centre of sym-

This equation is generally solvable *), but at present | metry of this distribution has a velocity ®, with respect

I shall only consider some particular solutions, which | to the stationary co-ordinate system. The directions

take account of the fact that the distribution of the ‘ of the axes of the Schwarzschild ellipsoid will be left

peculiar motions of the stars has been found to | undetermined for the present, so that we find a
approximate very closely to a function of the fol- | distribution function of the following form :

f = foe—BIE— 2 (8—0,)2— 25— 11 (6—6) —#llZ—p (9—00)Z (8)

in which 4, %, Z, m, n, p, f, and @, are functions of & and z. Inserting (8) in equation (6) we get after
dividing by — f and arranging according to powers of I, @, Z:

A2 dm 0 (O L (A 2l -2k dm  dp  p
W 4 o(‘ég_g)ﬂu( +am)+HO =+ )+I104(~» + ""E) +
2 :
+uz«(” i ")+®s-+@a (a + >+@z= ?+23A HTW—O")— %)
1 200) _ & G)} . @.,) g 38
Bm o a oz
+ n,a ) L awk, +n.((,-—f—l+@(mf( +pK) +z[3“” 2K 40K, —%i{_

m8, K —p()u}(} =0
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The Schwarzschild distribution

As this equation must hold for all values of II, ©@
and Z, the co-cfficients of the different powers must
vanish separately. We thus get the following conditions:

P - (10)
o
e (11)
= gtn=a g il=e ()
t%’ = 2(1’; #) (13)
(k0 _ ko, ; )
5(§:@u) — (15)
%?g: - (f;() D 4wk b 2K, 3. (16)
}o Baj;o - 3('5;2 5 nKy + 28K, (17)
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stars considered. In our present notation we have thus:

a4l (9_ _ B(~),)
2 \o bilal
and similarly for the quantity derived from proper
motions:

B==
2

1 0, 1,
i
Thus, inserting these in (19):

Jelkr = —Bj(A—B) (26)
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Outline
The Schwarzschild distribution

Properties of the velocity ellipsoid
The closure problem

The result is

20V3) = G+3G2
20Vi) = G+ GR*+ 1G22
2V7) = G+3G2°
2(VRV,) —CsRz
(VRVe) = (VW) =0

Vi — C3R

Cl + C2R2 aF %C;)Z2

The constants C; to C5 are positive constants.
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The Schwarzschild dlstrlbutlon

Properties of the velocity
The closure pnol)l(‘m

The density distribution at z = 0 follows from

Oln v C22R2 =F (2C1 C32 -G CQ)R CGiR
= =2C1 KR + = =
OR (C2R2+ Cl)2 C5R2+2C4

and the vertical gradient from

dglzz/ (C5R2 ' 2C4)K7 = C5Z [RKR+
2(Co +2C3)R? + G522 + 2G 1

2GR+ G2 120G GZ212G
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The Schwarzschild distribution

Properties of the velocity ellipsoid
The closure problem

Oort's derivation only holds if the stellar velocity distribution is
exactly Gaussian.

It is too restrictive (e.g. it does not allow high-velocity stars) and
therefore, it cannot be used for a description of galactic dynamics.

In reality, the velocity distributions are not precisely Gaussian and
are better seen as a superposition of Gaussians (such as of groups
of stars with similar ages).

So, these equations are of historical interest only. However, it is
interesting to see that Oort assumed that C; = 0. This uncoupled
the radial and vertical motion (as for a third integral).
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Properties of the velocity ellipsoid
The closure problem

Properties of the velocity
ellipsoid
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The Schwarzschild distr

Properties of the velocity el
The closure prok

For the solar neighbourhood, but probably anywhere in galactic
disks, the velocity distribution of the stars is very anisotropic.

» The ratio of the radial versus tangential velocity dispersions is
determined by the local differential rotation and can be
derived using the epicycle approximation.

The axis ratio of the epicycles depend on the local Oort
constants and therefore axis ratio of the velocity ellipsoid is

(Vj) __-B

(Vi) (A-B)
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The Schwarzschild distribution

Properties of the velocity ellipsoid
The closure problem

» The ratio of the vertical to radial velocity dispersion is
unconstrained, as a result of the third integral.

However, the existence of a third integral does not necessarily
imply that the velocity distribution has to be anisotropic.

If no third integral would exist, the velocity distribution would
have to be isotropic, according to Jeans.
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The Schwarzschild distr

Properties of the velocity el
The closure prok

» The long axis of the velocity ellipsoid in the plane should
point to the center.

However, it does not in practice. This is called the “deviation
of the vertex" and presumably is due to local irregularities in
the Galactic gravitational field.

» The long axis of the velocity ellipsoid outside the plane has an
unknown orientation.

This has been a longstanding problem, also sometimes
referred to as the “tilt” of the velocity ellipsoid.

Oort assumed the long axis to be parallel to the Galactic
plane (Cs = 0), but later assumed it to be pointing always
towards the Galactic center.
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The Schwarzschild di

Properties of the velocity
The closure

There is an interesting consequence in this respect of flat rotation

cu I’VGS2.

Take the Poisson equation for the axisymmetric case

OKn Kn OK,
IR +F+ g = —41Gp(R, 2)

For a flattened disk, it can be shown that the first two terms in or

near the plane z = 0 are
OKr | Kr _
R TR

~2(A— B)(A+ B)

2P.C. van der Kruit & K.C. Freeman, Ap.J. 303, 556 (1986)
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The Schwarzschild distr

Properties of the velocity el
The closure prok

In 1965, Oort3 estimated that the first two terms are in the solar
neighborhood and in the plane of the Galaxy about 34 times
smaller than the third term.

For a flat rotation curve we have A = —B, so the equation reduces
to that for a plane-parallel case.

On this basis one may expect for small distances from the plane
that the long axis is parallel to the plane.

So with flat rotation curves the plane-parallel case turns out to be
a much better description of reality than may expected on the
basis of the form of the Poisson equation.

3J.H. Oort, Stars & Stellar Systems V, Galactic Structure, ed. Adriaan
Blaauw & Maarten Schmidt, p. 455 (1965)
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The closure problem
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The Schwarzschild distribution

Properties of the velocity ellipsoid
The closure problem

The hydrodynamical equations were obtained by multiplication of
the Liouville equation with velocities and then integrating over all
velocity space.

This system is not complete (there is a “closure problem™): there
are only three equations for eight unknowns (the density, rotation
velocity, three velocity dispersions and three “cross-dispersions” as
a function of position).

In principle one could take higher order moments (by multiplying
the Jeans equations with velocities once more and again
integrating over all velocities), but this produces more extra
unknowns than extra equations.
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The Schwarzschild distri

Properties of the velocity ellipsoid
The closure problem

However, with reasonable assumptions4 there has been some
progress.

It works as follows. In analogy to the second moment

1 r
7un(Re2) = (Vo) = [ (V= (Ve (V5 = (V) fPV
one defines the third and fourth moments as
1 r
Sune(R2) = (VaWo Ve = 3, [ (Vam (VD) (Vo= (Vo)) (Ve (VD) PV
Tade(R«,Z) — <Va\/b\/cvd>

1/(v.d—<v.d>)<vb—<vb>>(vc—<v(-,>)(vdf<vd>>fd3v

v,

*P.0. Vandervoort, Ap.J. 195, 333 (1975); and in particular P. Amendt &
P. Cuddeford, Ap.J. 368, 79 (1991); P. Cuddeford & P. Amendt, MNRAS 256,
166 (1992)
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The Schwarzschild distribution

Properties of the velocity ellipsoid
The closure problem

The third moment correponds to the “skewness’ (e.g.
Srrr/(0rr)>?). It is zero for a Gaussian, since this is completely
symmetric.

The fourth moment corresponds to the “kurtosis’ (e.g.
Trrrr/(orRr)?), which decribes how peaked the distribution is; a
Gaussian has a kurtosis of 3.
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Properties of the velocity ellipsoid
The closure problem

The assumptions of Amendt & Cuddeford were
» All parameters can be expanded in terms of a small parameter
¢, which is the ratio of the radial velocity dispersion to the
rotation velocity.
» The ordering scheme of these remains such that only terms in
the leading order have to be taken. Thus e.g. in

(%)

_ E n+3 ¢cn+3

5'(11)(: — € Sahc
n=0

the higher order components of S,;,. become smaller with n.
» The velocity distributions are Gaussian (Schwarzschild) up to
one more order than required by the equations. This happens
to translate e.g. for the kurtosis into
TRz
22— 3.4 0(e%)

2 2
URZ Ozz
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The closure problem

These assumptions mean that we have to do with a cool, highly
flattened and quasi-isothermal system.

Then the system can be closed and four more equations result
after a lot of algebra. Here they are from the publication

Since it is rare for v (R, z) to be known a priori, particularly its z-behavior, we use equations (A1) and (A4) to eliminate v, and v,
and after some tedious algebra arrive at a system of four partial differential equations for the four components of the velocity
dispersion tensor, in terms of the potential ®. The first three of these equations are

1[(R*Dp) D, @
(07, 0, 0k + OheOr0R) = 3 [—EM =@ TR0k = 2 ok + —5F 0ok~ ahe), 19

028,03 + o} 0n 0}, = 0, 80)

4 1
2 2 25 2 2 2 AL e 2 2 58] I C W 2 2
0"[4 O, 0, 0%, + 05,0, 0k + 4 Okp 0 Ok: + =z (ORR Oz — 0RO 0% + 0k Og Ok | = 2P g, 0. 02, — R (60, + 4RD 5 )0k, Orr

1 a5 8 8
o (60 5 + 2R® g0, ohy — 20, 0%, + 204, G—‘; = O patod, + 5 ®,0k.0%,. (81)

The new form of the fourth equation, equation (C1), is cumbersome and is included in Appendix C.

Piet van der Kruit, Kapteyn Astronomical Institute Galactic dynamic:

the velocity ellipsoid



The closure problem

For ease of notation we make the substitutions ¢%, = t; 6kg = u; o:rgo = v; 07, = w, and use subscript comma notation to denote
partial differentiation on the potential. When we eliminate the mean velocity and number density from equation (78) we obtain the

final equation of our closed system of partial differential equations

ﬂ)_x{{Zr‘ +u — 3uwtN8, W) + (26w — utw)3, wé, 1) + (4¢* — Suwe)&, wagt)
— 20wH3, 1) — 3°w(értd, 1) — = w 20 r 0, u) — uwt X (0 1) — = t MW(Ort O ti) — = wi(G, wa, u) — = *w(@ woRu)}

a6 = uw)w?® — uw + %) — @, w(t® — uw)]d, w

+[@
{0 oo2w? — 2uw +1%) + [# (R ) — 2@_,,}», ~2® } Wi, t
1
+ R 2+ 1) — = (RO ) g tPuw — 20, t*w + e (R3® ) g uw’t ]OR{

[L (R ) g w? — ZR‘ (R'®, )Rtw]lzwﬁzu + [ZR" (R*D g) g tw — ﬁ (R3CD',)_,,.LZ]: wdgu
(&3}

4
(@, t— P W)Wz = e @t — @ wiPwe

(@t — O wiPw?d,v—=

These equations can be used to derive further information on the
velocity ellipsoid in cool, flattened galaxies (i.e. in disks).

There are a few applications
Galactic dynamics: the velocity elli
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Outline
The Schwarzschild distribution

Properties of the velocity ellipsoid
The closure problem

The tilt of the velocity ellipsoid.
From the equations it can be found that

A z — 2
W(R,O) — A(R) <<VH>R<V>> (R.0)

with

A(R) =

N3 < N2 N2 =1
, P <3dd> 920 ()<D> @

ora2 \3ar T Rarz Yoz

For a flat rotation curve this gives

21 GR3 ap
AlR,0) = (vsrchpa/e) (R.0)

Piet van der Kruit, Kapteyn Astronomical Institute Galactic dynamics: the velocity ellipsoid



The Schwarzschild distri

Properties of the velocity oid
The closure problem

The radial dependence velocity dispersions.
A solution of the equations has the following form

2
A(R) ( “5at ) (R.0)+ ARIVER.0) = (R

The functions  have complicated forms and are related to the
local potential and kinematics through parameters «,  and ~.

o >
o= <022> (R,0) ==\

where A is the vertical frequency.
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The Schwarzschild distribution

Properties of the velocity ellipsoid
The closure problem

0%d 3 (00
5 = (5m) R0+ 3 (58) (RO)

_ % (W) (R,0) = —r?

with x the epicyclic frequency.
1 2o\ [0\ !
vy = “SR|(=—=||—=— R
- o2 () +ahimo

- (W) o

which is the anisotropy in the velocity distribution.
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The Schwarzschild distr

Properties of the velocity ellipsoid
The closure problem

This can be solved for a given potential; the most realistic solution
is with a logarithmic-exponential potential

R
®(R,z) = Aln R — BR — Cz° exp <> )

h
9% R
(()Z2> (R,0) =2C exp (_h>

and thus an exponential density profile (as has been observed for
the surface brightness distribution).

which has
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The Schwarzschild distribution

Properties of the velocity ellipsoid
The closure problem

The resulting distributions show
» The radial velocity dispersion (V/3) decreases more or less
exponentially with radius
» The velocity anisotropy (V/3)/(V/?) is roughly constant (in the
inner regions at least)
» Toomre @ is constant with radius, except near the center.
The following graphs show this for a number of combinations of
values for C and h.
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The closure problem

The axis ratio of the velocity ellipsoid (V32)/(V2).
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The closure problem

The temperature parameter (Vi2)/ V2.

-1|\\‘\|||Il\|ﬁlltlll}1\lII\l\l

2
Ve

2

T gr,
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The closure problem

The axis ratio of the velocity ellipsoid w.r.t. @ = constant.

10 11 L L O I
8 — =}
% L i
g 6 — —
°
G L J
9, f= =
m§ - B
b
~
B
-]
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The Schwarzschild distri

Properties of the velocity ellipsoid
The closure problem

A further application is the following new equation

<a2a<z\/23>> (R.0) = _A(R) K<Vé> . <V3>> 6111@%‘&} (R.0)

Since A\(R) >0, (Vi) > (V/?) and (V/?) decreasing with R, the
righthand side of the equation has to be positive.

That means that (V/?) has a minimum in the plane.

So disks are not strictly isothermal in z and numerical values
suggest less peaked in density than the exponential function.
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Properties of the velocity ellipsoid
The closure problem

The final application gives a more accurate estimate of the velocity
anisotropy in the plane through

<V92> _ } Oln Vt - 5()0() 1 ORQVSRR0+
(Va) 2 dn R~ Vi(V3) ' vRV(VZ) OR
R OSpg, | V2 — Vi3 TRRo9
) o S
Vi(VB) 0z | V(VR)2 RR T (2

In practice this can be approximated as

V2 1 on V, T,
<R>_ <1 n t+ RR&@)

(vz) 2 om R~ (V2)?

This constitutes a small correction to the classical result
<V§> _ E 1 Oln V, _ —B
<V02> 2 Oln R A—B

Galactic dynamics: the velocity ellipsoid
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Outline

The self-consistency problem

Isothermal solutions and related results
Isothermal sphere and King models
Isothermal sheet and other vertical distributions

Potential theory
General axisymmetric theory
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The self-consistency problem
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Outline
The self-consistency problem

Isothermal solutions and related results
Potential theory

Ideally, one would like to construct self-consistent, self-gravitating
models for galaxies, by solving the two coupled, fundamental
equations:

of of of 0 of 0dIf 0P Of

Vo Vo, TV a: T axou dyov  dzow

and

e 0P 9Pd _ _,
% + dy? + 972 = Voo = 4nGp(x,y, z)

Unfortunately, in general this is not possible.
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The self-consistency problem

Isothermal solutions and related results
Potential theory

There are two possible apporaches:

» The direct method. Assume a potential ® on the basis of the
density distribution, inferred from observations. Then use the
observed kinematics to derive further properties of the
distribution function.

» The inverse method. Make a guess for the dependence of the
distribution function on the isolating integrals and calculate
the density, potential, motions and velocity distrubutions.

The direct approach is straightforward in e.g. the case of the
vertical distributions in a galactic disk (where it reduces to a
one-dimensional treatment).

The inverse method makes use of functional solutions of
well-defined cases, such a isothermal models.

First we turn to the direct method.
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Isothermal solutions and related results
Potential theory

The Schwarzschild method

Schwarzschild® proceeds as follows:

» Choose a density distribution for the system you want to
model.

» Solve Poission’s equation (usually numerically).

» Compute a library (many hundreds) of orbits in this potential
and calculate the density distribution that each orbit
generates.

» Add these with appropriate weights to recover the density

distribution started from (usually this involves “linear or
quadratic programming”).

M. Schwarzschild, Ap.J. 232, 236 (1979)
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Isothermal solutions and related results
Potential theory

Often it is possible to use constraints as the observations of the
kinematics of the stars, i.e. their motions and velocity dispersions.

There is uncertainty whether any outcome is unique.

But it is an extremely powerful approach.
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Isothermal solutions and related
results
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Isothermal solutions and related results Isothermal sheet and other vertical distributions
Potential theory

For simple geometries full semi-analytical solutions for the
distribution function to the set of two fundamental equations can
be obtained.

These solutions refer to self-gravitating systems, which means that
p and v are the same.

Examples are spherical density distributions or density distributions
on stratified layers with isothermal velocity distributions (equal
velocity dispersions at all positions),
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Isothermal sphere and King models

The Poisson equations for spherical symmetry was

1 0
EO—R(RQKR) = —4rGp(R)

and the Jeans equation

SAVR) + LL2AVR) — V2~ (Vo — W) — (V3)) = vk

If the velocity distribution is isotropic and if there is no rotation
this reduces to
dp

<V2>07R = pKr

Here V is the radial velocity.
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Isothermal solutions and related results Isothermal sheet and other vertical distributions

Potential theory

The equations can be combined to give

(V2) 0 20Inp\
Rz or \K gr ) = ~4Cr

The solution is

(V2) oo
R)=—=R
pR) =+ =
This is called the singular isothermal sphere, since the density is

infinite at the center.

Note that we have not constrained the functional form of the
velocity distribution.

Piet van der Kruit, Kapteyn Astronomical Institute Galactic dynamics: The self-consistency problem and potenti



Outline
The self-consistency problem Isothermal sphere and King models

Isothermal solutions and related results Isothermal sheet and other vertical distributions
Potential theory

A well-behaved solution is obtained by assuming that the velocity
distribution is Gaussian.

There is in this spherical, non-rotating case only one isolating
integral of motion, namely the energy E.

According to Jeans' theorem then the distribution function is only
a function E.

So take the distribution function to be

f(E) = const. X o~ E/(V?)
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Potential theory

With £ = —® + JV/? integration over all V/ gives

p(R) = p(0)e~ "RV

Now set the boundary conditions p(0) = p, and (dp/dR),—o = 0.
Then the solution

p(R) = poe™®
can be found from a numerical integration where ® follows from
1/2
o Ld (2d®) (V)N
X2 dx dx/) 47 Gpo
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Potential theory

For large R this becomes

(V2) o2
R)=—=R
pR) =+ =
and thus approaches the singular isothermal sphere.

This solution has a natural length-scale that is called the core
radius (also King radius)

-1/2
Ro _ 47TG£)()
9(v?)

At this core radius the projected surface density is roughly half the
central one.

The next slides show the density distribution and the logarithmic
density slope.
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King models

King models are adapted isothermal spheres with a tidal radius R;
and a corresponding upper boundary in the velocity distribution.

es!

!
E \—-—

isothermal King model

lowered Maxwellian

The distribution function is
f(E) = const. e E/V?) _ o=Eesc/(VA) | for E < Eeoe
0 for E > E.s
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Using again £ = —® + %V2 and defining the zero-point of ® such
that E.sc = 0 we may write this as

f(E) = const. [e*E/<V2> — 1} for E >0

Integrating over all velocities then gives

_ | eoRy v g &
p(R) pO € er <V2>

)

Here erf is the Error Function.
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Then we get
d [ _,do . ®
— (RPZZ) — 4 JR2 | e®(RV/ V) orf _
dR ( dR> mGpoR” € vy

4¢ 29
1
v (1 50m)
This again has to be numerically integrated from the center
outwards.

At the tidal radius R; the density drops to zero.

The ratio ¢ = log(R;/R.) is called the concentration.
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Here are some models in projected surface density?.

log 1/fa

-4

log t/rg——->

2|.R. King, A.J. 71, 64 (1966)
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The total mass is

and the central surface density

Ry
0o = P00 & R

The functions f and g can only be calculated numerically and are
given in the literature. The velocity dispersion is

poM(R:)
(Re/Ro) g (Re/Ro)

2\1/2
(VB2 o

King models are useful to describe globular clusters and to some
extent elliptical galaxies.
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Isothermal sheet and other vertical distributions

For a self-gravitating isothermal sheet the basic equations become

0K,
o —4rGp(z)
and 5
2V _
(W >02 =vK,

The two basic equations can be combined into

2 z
—4nGp(z) = <W2>% {ln'zgoi}
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Potential theory

p(z) = W) sech? (Z>

2mGz? Zo

The solution is

The corresponding surface density is
o = 2zppo
and the relation to the velocity dispersion
(W?) = nGoz,

The vertical force results from integration of Poisson's equation as

W2
K, = —2< ) tanh (Z)
Zo Zo
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Usefull approximations are

2
z z
sech? < > = exp <2> for z < z
20 0
2
4 exp (—Z> for z> z

The isothermal sheet is

used to describe vertical distributions in
stellar disks.3

3P.C. van der Kruit & L. Searle, A.&A. 95, 105 (1981)
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For a second isothermal component of negligible mass and
different velocity dispersion in this force-field we find

p11(z) = prr(0)sech?? <Z>

Zo

where
(w2
P = 7o
(W)

An application of this is for example the HI-gas layer inside a
stellar disk that contains most of the surface density.
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Exponential and sech-distributions

The isothermal sheet is only an approximate description of the
vertical distribution of stars in disks of galaxies. There is a range of
generations of stars, each with their own velocity dispersion.

Often used is the exponential distribution, since it is a convenient
fitting function.

Since the velocity dispersion now varies with z we have to write

the equation in terms of the velocity dispersion in he plane

<W2><1>/2. The equations corresponding to this case are*:

W ([ z
P2) = orezz™P 3

*P.C. van der Kruit, A.&A., 192, 117 (1988)
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0 = 2Z:po

(W2, =7nGoz

K, = —2nGo {1 — exp <Z> }
Z()

If an isothermal component of negligible mass moves in this force
field, then

p1i(z) = prr(0)exp {21)2 +2p {1 — e <Z> H

Zz Ze

where now

Piet van der Kruit, Kapteyn Astronomical Institute Galactic dynamics: The self-consistency problem and potenti



Outline
The self-consistency problem Isothermal sphere and King models

Isothermal solutions and related results Isothermal sheet and other vertical distributions
Potential theory

As an intermediate case between the isothermal solution and the
exponetial it is also possible to use the sech-distribution®.

This corresponds probably closest to reality. The equations then
are: w2
2{W 11 V4
p(Z) = ?GZESCCh (ZO>

0 = TPoZe

7T2

<W2>Oo = 5 Goze

K, = —4Go arctan {sinh <Z> }
Ze

°P.C. van der Kruit, A.&A. 192, 127 (1988)
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For the second isothermal component we now get

pui(2) = pu(0)exp {:2"/ <zzo> }

y
l(y):/ arctan(sinhx)dx
0

where

This integral can be evaluated easily by numerical methods or
through a series expansion.

The properties are illustrated in the following figures, where
properties appropriate for the Solar Neighborhood have been
chosen.
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The density distributions as
a function of z expressed in
magnitudes.
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k2

(10"ms? nzeo

The vertical force K, as L -
a function of z.
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General axisymmetric theory

General axisymmetric theory

Much attention has been paid to inverting Poisson’s equation.
For the axisymmetric case:
2?6 100 9%
— + ——— + —5 = 4nGp(R,
o2 T Ror T o2~ 4mOPR:2)
so that the potential (and the forces) can be calculated when the
density distribution is given.

This is a limited problem in that it does not involve the continuity
equation and the distribution function and therefore is not a
general solution for a dynamical system, such as the isothermal
solutions above.
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General axisymmetric theory

At the basis lies the Hankel (or Fourier-Bessel) transform, which in
the radial direction for the density is

plk,z) = / udo(ku)p(u, z)du
Jo
Jp is the Bessel function of the first kind.

The important property, why this is useful, is that the transform
can be inverted:

p(R,z) = /00c kdo(kR)p(k, z)dk
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General axisymmetric theory

Now, if we take this transform in the radial direction for both sides
of the Poisson equation we get®

92

» 92 .
2 -
k“d(k,z) + 022¢(k’z) = 4nGp(k, z)

This linear non-homogeneous ordinary differential equation can be
solved to give

~ 2nG [°
®(k,z) = —WT exp (—k|z — v|)p(k, v)dv

J =00

6S. Casertano, MNRAS 203, 735 (1983)
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General axisymmetric theory

Using this, Poisson’s equation can then be inverted to

¢(R,z)—2wc/‘ / ‘Jo(kR)ﬁ(k,v)e_k‘Z_V‘dvdk
0 —00

Then

CD(R,Z)—27TG/O /O / udo(kR) Jo(ku)p(u, v)e MZ=Vldy du dk

The integrations are simpler when the density is separable

p(R, z) = or(R)pa(2)
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General axisymmetric theory

The forces follow by taking the negative derivatives of the
potential in the radial and vertical directions.

09(R, z
727rG/ / / ukJy (kR) Jo(ku)p(u, v)e =" dv du dk
JO JO J —co
and
09(R, z
KZ(R7Z) - = E{)Z ) =

—27TG/ / / udo(kR)Jo(ku)p(u, v)sign(z — v)e ¥2=Vldv du dk
0 JO —o0
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Rotation curves

Forces and potential

We saw that Poisson’s equation can then be inverted to

®(R,z) = —27G / / Jo(kR)j(k, v)e X7Vl dv dk
J0O —00

Then

<D(R,z)—27rG/O\/O/ udo(kR)Jo(ku)p(u, v)e 7= VIdv du dk

The integrations are simpler when the density is separable

p(R, z) = or(R)p.(2)
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Rotation curves

The forces follow by taking the negative derivatives of the
potential in the radial and vertical directions.

09(R, z
727rG/ / / uk i (kR) Jo(ku)p(u, v)e =" dv du dk
JO JO J —c0o
and
09(R, z
KZ(R7Z) - = E{)Z ) =

—27TG/ / / udo(kR)Jo(ku)p(u, v)sign(z — v)e ¥2=Vldv du dk
0 JO —o0
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There are various ways of proceeding from here. The first is by
taking an analytical form for the density distribution.

Kuijken and Gilmore® have done this for exponential disks.
If the radial density distribution is exponential

o1 (R) = 00 exp (—R/h)
then the Hankel transform becomes

ooh®

o —u/h .
/0 ooJo(ku)ue™ " "du = @R £ 1972

K. Kuijken & G. Gilmore, MNRAS vol. 239, 571 (1989)
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Rotation curves

The potential can then be written as

Jo(kR)
_ 2 0 —k|z—v|
®(R,z) = —2nwGh / /3o PEToR 1)3/2[)5( v)e dv dk

First note that if p,(z) is symmetric around z = 0, then

L(k,z) = / /)Z(v)efk‘zf‘/‘dv

J —00
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Kuijken and Gilmore first solve for an exponential z-distribution:
Pz = exp (—|z|/z)

Solving for this gives

dk

~00 J (kR) efk‘z‘ — = kef‘z‘/z(‘/
¢(R7z) = —4AnGogh ZU/O (k2h2 + 1)3/2 1= k2z§

The possible term for which the denominator is zero (kz. = 1) is
still finite; the last quotient is in that case
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The forces are

109 J(kR) e Kzl — z ke~ I?l/z
KR(RZ) = —4wGogh ZO/O k(kzhz + 1)3/2 1-— k223

dk

and

Jo(kR) L e—klzl — g—lzl/z
sign(z T

K(R.z) = ~4mGoolz. | e 1)
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Next they assume that the density distribution is given by
p(R,z) = po exp (—R/h) sech”(z/nz,)

For n = 0 we have again the exponential z-distribution with
vertical, exponential scaleheight z..

For n = 2 we have the locally isothermal disk? and for n = 1 the
“sech-disk” 3.

Kuijken and Gilmore show that the potential can be written as

®(R,z) = —4nGpoh*z2" / Jo(kR)(K*H* +1)73/?x
J0

< ) (1+2m/n) exp (—k|z|) — zek exp [—(1 + 2m/n)|z|/z]

(1 +2m/n)? — k2z2 dk

OM?

2P.C. van der Kruit & L. Searle, A.&A. 95, 105 (1981)
3P.C. van der Kruit, A.&A. 192, 117 (1988)
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The possible term, for which m = n(kz, — 1)/2, has a zero
denominator and must be written as

: <_m”> (1+ k|z])e*

2z.k

The binomial with the upper coefficient negative can be written as
follows

m(m+n—1 m(m-+n—1)!
~ o (") = o T

So the potential is in this case expressed as a sum of those for
exponential z-distributions.
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This is essentially related to the fact that the sech is written as a
sum of exponentials:

o0

sech x = 2 Z —(2/+1)Ix]
Jj=0

This well-known expansion suffers from the fact that it does not
work for x = 0, because the terms are alternatingly +1 and —1.

This does not necessarily make it unsuitable, because after
integration each term gets divided by —(2/ + 1) and the series will
converge even for x = 0.
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However, it may remain slow for small x. For example the sum for

x=0 _
52 CY
,70214—1 2
Jf

takes 32 steps to reach an accuracy of 1%.

Similar expressions as above can be found for the forces, but this
will not be fully written out here.
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Rotation curves

Casertano® has derived an expression for the potential in the plane
for an arbitrary density distribution in order to find the rotation
curve of a disk with a density distribution derived from surface
photometry.

He uses the radial force in the plane and performs the integration
over k first (rather than over u).

The equation for the radial force in the plane for a symmetrical
z-distribution is

Kr(R,0) = —4nG / / / ukJy (kR)Jo(ku)p(u, v)e™ % dv du dk
Jo Jo Jo

%S. Casertano, MNRAS 203, 735 (1983)
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It helps to have the same order Bessel functions and get rid of the
linear factor k by integrating in parts

/ ‘uJU(ku)p(u, v)du = HJl(uk)p(u, V) 1 / qu(uk)Mdu

JO k 0 k Jo ()

Then

Ke(R,0) = —47G / / / u (kR) Jy (k) 228 o=k g, e gy
Jo Jo Jo du

and this can be solved to give

RO—SG/ / J;pa”“v (p) — E(p)]du dv

R+ P+
- 2Ru

where
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K and E are the complete elliptic integrals of the second and first
kind respectively for which good approximations are known. For
the z-dependence of the density one can take an exponential or the
isothermal distribution.

Casertano’s work can be extended to the potential, vertical force
and the radial force out of the plane. First start with Ki at
arbitrary z.

At a general position we had

KR(R,Z):—sz/ // ukJy (kR)Jo(ku)p(u, v)e=*2=Vldv du dk
0 0 —o00
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As Casertano we can do the integration over k (after integration
by parts) and obtain

2 — p*)K(p) — 2E(p)
7pvV Ru

/x I (kR) Jy(uk)e Kz=vIdk = (
J0

where

vRu
VE—v?+(R+u)

p=2

This is the same as Casertano found (except that he had z = 0),
but he chose to rework it further to the form above.

The formula for p has a singularity at R = u = z = 0. Note
however that for R = u = 0 we already have p = 0 for all z, so
that we should take p = 0 also for z = 0. Of course this only
occurs when evaluating the force in the center.
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Stéckel |)0tcnt|1|§

The radial force now becomes

Kr(R,z) = 2G/ / (2- p\(/l_ 2E(p) @/)guu, V) du dv

For the vertical force and the potential itself we have a product of
Bessel functions of equal order before the integration by parts, but
this of different order after that.

When then the integration over k is done, we get expressions
which contain the Heuman Lambda function. This can be
rewritten only in forms that involve incomplete elliptic integrals of
the first and second kind or the elliptic integral of the third kind,
but these are much more difficult to evaluate numerically.
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Rotation curves

Also the integrals over u must then be written as the sum of two
different integrals, one from 0 to R and one from R to co. So it is
better to start with the forms before the integration by parts.

For the vertical force we start with

K.(R,z) = —27G / / / udo(kR) Jo(ku)p(u, v)sign(z—v)e ™ *~¥dv du dk.
J0 0 —oo

The integration over k yields

|z — v|p?
4n(1 — p2)/(uR)?

/OckﬁﬂkR)b(m0ekzvdk E(p)
J0

and we get

——g o sign(z — v u\z—v|p3E(p) u,v)avau
KRz =5 [ [ sien s st v
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For the potential we start with

¢(R,z):27rG/O /0/ udo(kR) Jo(ku)p(u, v)e ™ Z=Vldy du dk

The integration over k now yields

TV UuR

/xJo(kR)Jo(ku)ekZ"dk P K(p)
0

The potential then is given by

®(R,z) = —QG/ / UPK (u, v)dvdu
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There are in the literature many particular potentials that can be
used to describe galaxies, but are not isothermal.

The most important ones will be summarized here.

These are not solutions of the Liouville and Poisson equation.
Rather they are convenient expressions for the potential or density
distribution that can be inserted analytically in Poisson’s equation.

Piet van der Kruit, Kapteyn Astronomical Institute Galactic dynamics: Various potentials



Qutline Plummer, Kuzmin and Toomre models
The exponential disk Logarithmic potentials

Various potentials Oblate spheroids
Stackel potentials. Infinitesimally thin disks

Plummer, Kuzmin and Toomre models

The Plummer model was originally used to describe globular
clusters.

The potential has the simple spherical form

GM
VRt 2

The corresponding density distribution is

= (i) (%)

O(R) = —
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The Kuzmin model derives from the potential

GM
R2 + (a+ |z])?

®(R,z) = —

This is an axisymmetric potential that can be used to describe
very flat disks.

The corresponding surface density is

aM
R =
7R = @+ 2P
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The Toomre models derive from the Kuzmin model by
differentiating with respect to a’.

The n-th model follows after (n — 1) differentiations:

R2
The corresponding potential can be derived by differentiating the
potential an equal number of times.

It can be seen that Toomre's model 1 (which has n = 1) is
Kuzmin's model.

The limiting case of n — oo becomes a Gaussian surface density
model.
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Logarithmic potentials

These are made to provide rotation curves that are not Keplerian
for large R.

Since these can be flattened they provide an alternative to the
simple isothermal sphere. The potential is

2

V. 2
(R,z) = % In <r§ TR+ ;>

V/ is the rotation velocity for large radii and ¢ controls the
flattening of the isopotential surfaces (¢ < 1).
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The density distribution is

V2 (2c® +1)r2 + R? +22%[1 — 1/(2¢?)]
47 Gc2 (r2 4+ R% + z2/c2)?

p(R,z) =

At large radii R > r, the isodensity surfaces have a flattening

<:>2 —ct2— ¢ %)

In the inner regions R < r, it is
b\ 2 1+ 4c2
aJ 2+43c2

VoR

\/r2 + R?

The rotation curve is

\/rot —
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Oblate spheroids

Assume that all iso-density surfaces are confocal ellipsoids with
axis ratio ¢/a and therefore excentricity

e=1/1— —
22

Let the density along the major axis be p(R). Define

Z2

a(R,z) =R+ ——
(R.2) =
The forces and the potential can then be calculated. | will not
treat the full derivation®, but simply list the equations.

°See Binney & Tremaine, section 2.5
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Inside the spheroid the forces and potential are

4 G\/l— z
T c / p(a)sin® dS

Kp = —

JV1_ e2
K, =— 47TG 1 ° / tan 6dg

4rGV1—e2 [ [° , a
(R, z) = 7|'G\/eie {/o pla)aBda + sin™? e/é p((y)ad(y]

Here 5
z
(52 _ R2 4+ =
1— e?
> R?sin% 3 + z2tan? 3
- Z

«
e
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Outside the spheroid (v > a) we have

4 \/1— 2
6 € / sm2 6dg

Kr = —
K, =—

/1 o2
47TG 1 c / () tan 6dg

/1 — a2
O(R,z) = 4TGV1 e/ a)afda

Here ~ follows from

R2sin?~ + z2tan?y = a%e

Galactic dynamics: Various potentials
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Infinitesimally thin disks

This is analogous to the treatment of general disk potentials
above, but now the vertical distribution is a d-function.

The equation we had before based on the Hankel-transform was

®(R,z) = —27TG/O /0\ / udo(kR) Jo(ku)p(u, v)e ™ ¥Z=Vldy du dk

The potential can be written for the infinitesimally thin disk as

»00

(R, z) = —27TGQ/O.OC exp (—k|z|)Jo(kR) ./0 o(r)Jdo(kr)r dr dk
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The rotation velocity then becomes

C

V2(R) = —R /OC S(k)J1(kR) k dk
J0O

where -
S(k) = —2nG / Jo(kR)o(R)dR
Jo

It may be useful to calculate the surface density corresponding to a
known rotation curve V.(R).
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Stdckel potentials. Infinitesimally thin disks

Using the inversion of the first equation above it can be shown
that

1 [1 [Rdv? r 1 dV/2 R
R)= —— |= K (— Sk (=
gty G {R,/O dr <R)dr+‘/R r dr <r)dr}

where K is the complete elliptic integral.

There is a contribution from the part of the disk beyond R.

This also holds for disks with finite thickness as long as the density
distribution is not described by spheroids.

In general the rotation curve of a disk depends on the surface
density at all radii.
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Mestel disk

This has the surface density distribution

Ro
o(R) = o

The corresponding rotation curve is flat and has

GM(R)

V3(R) = 2rGooR, = >

where M(R) is the mass interior to R.
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Stdckel potentials. Infinitesimally thin disks

This is treated in a famous paper by Freeman®. The surface
density is
R
o(R) = 0, exp (h>

The corresponding potential from the equation above for a
infinitessimaly thin disk is

®(R,0) = —7GaoR [l (;) ki <§7> i (277) . <2R;1>}

Here | and K are the modified Bessel functions.

®K.C. Freeman, Ap.J. 160, 811 (1970)
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The rotation curve is (again with the equation above for
infinitessimally thin disks)

o wcen (5) o () (5) (D)5 (5]

The total potential energy of the disk is

Q~ —11.6Go2h’

The rotation curve and the corresponding resonances are shown in
the next figures. Note the approximate constancy of Q — /2 with
radius.
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Exponential Disk
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Various potentials
Stéckel potentials.

Stackel potentials are potentials that can be written as separable
functions in ellipsoidal coordinate systems.

They are defined as follows’.
If (x.y,z) is a cartesian coordinate system, then the ellipsoidal
coordinates (A, s, /) are the three roots for 7 of
2 2 2
X z
=L
T+a T+0 T+4+7

where v < (3 < v are three constants.

"P.T. de Zeeuw, MNRAS 236, 273 (1985)
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The potential and the density distribution

Velocities, angular momentum and integrals of motion

Stéckel potentials.

The coordinate system is illustrated in the picture below.
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Stéckel potentials.

| will here only treat the axisymmetric case with oblate density
distributions (which means a prolate potential distribution), which
applies to disk galaxies®.

In that case the coordinate system is spheroidal and it can be seen
as a further generalisation of the axisymmetric, plane-parallel case,
where the potential is separable in R and z.

8See also H. Dejonghe & P.T. de Zeeuw, Ap.J. 333, 90 (1988); S.M. Kent
& P.T. de Zeeuw, A.J. 102, 1994 (1991)
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Stéckel potentials.

Coordinate system

The new coordinate system is (A, ¢, ). The relation with the

axisymmetric system (r, ¢, z) is, that A and v are the two roots for

7 of

r2 Z2

+ =1
T+a T+

with
0<r<A
The constants « and ~ are sometimes also given in the form
a=—-a>, vy=-c
These correspond to a focal distance

A= (ly—a)? = (|8 - )/

Note that \ and » have a dimension of length?.
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Stéckel potentials. = g

The coordinate surfaces are spheroids for constant A\ and
hyperboloids for constant v with the z-axis as rotation axis.

The case for flattened disks obtains, when —a > — 7, so that
—y=c2<v<—a=a<A\

Spheroids of constant A then are prolate, while the hyperboloids of
constant v have two sheets.

On each meridional plane of constant ¢ we then have elliptical
coordinates (A, v) with foci on the z-axis at z = +A.

Note that the mass distribution is oblate, although the coordinate
system is prolate.
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Velocities, angular momentum and integrals of motion

Other relations between the two coordinate systems are

2 larelwsie) 5 (Gl
Y — A = @

A\ v = %(r2+z2—ﬂ/—o{)i%\/(r2 — 22+ y—a)?+4r2z2

)\+V:r2+z2—a—7/ : )\V:Q’\/*”/rZ*OéZ2

Note that » and A occupy different, but contiguous parts of the
positive real line.
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Various potentials
Stéckel potentials.

> In the plane we have v = —y, A = r? — &
» On the z-axis

> 1/12277/,)\:*(lf0r0§|z‘§A

» v=—qa, A =22~ for |z| > A.
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The potential and the density distribution

Suppose that the potential ®, which is minus the usual potential ®
and therefore always positive, can be separated as follows

A+7)6() — (v +7)G(v)
A—vU

d(\,v) =
Such potentials are called (axi-symmetric) Stackel potentials.
For models with a finite mass M the potential should tend to zero

for large radii, which means that for A — co we get

GM
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F Velocities, angular momentum and integrals of motion

Stéckel potentials.

The density p, which is defined such that p dx dy dz is the mass in
the volume element dx dy dz, can be calculated from Poisson’s
equation, which has the complicated form

> o o
mGp(d v)(v = A) = A+ a)A+7) 55 + (3A+3a+9) N
P 5 o0
(v+a)(v+7) E (Sv+3a+7) %

The Kuzmin equation gives the properties, when the density on the
z-axis are given:

Assume that this density is ¢(7), where 7 = A, v and note from
above that on the z-axis we always have 7 = z> — v for all z.
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Velocities, angular momentum and integrals of motion

Then the density follows from

o\ v) = (i*j)zww—

A+ a)(v + a) Pp(N) — p(v) v+a\?
T A *( ) o)
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Stéckel potentials.

The total mass is

0 Dy — %)
M =27 7t a;,o(a) do = 4n / (22 + A?)p(2) dz

The potential follows from

G(1) =21Gy(o0) —

27 G / o+« (0) do

VTi7 ) e r
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Velocities, angular momentum and integrals of motion

In order to convert velocities we write

v+ )0+ o [A )ty
aoosy o= e ey

Velocities are related for the oblate mass models (v — o > 0) as

1/2
cos© = [ }

Vi = Vycos© — V,sin® ; sign(z) V, = V)sin© + V, cos©

and

V) = V; cos ©+sign (z) V,sin® ; V, = —V,sin ©+sign (z) V, cos ©

Note that V) and V, are velocities in the local Cartesian system
and do not describe the changes in A and v.

Galactic dynamics: Various potentials
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For the momenta we need the coefficients of the coordinate system

p2 _ A—v . R2_ V— A
AN+ o)A +r) CAv+a)(v+7)

The momenta then are

px=PVy, ps=1rVys, p,=RV,.

The angular momenta are
Ly =yz—zy =rV,sin¢ — z(V;sin ¢ + Vi cos ¢)
Ly = zx — xz = —rV, cos ¢ + z(V; cos ¢ — V sin ¢)

L,=xy —yx=rV,

The total angular momentum L is

2 = (P + 2)VE + (1V, — 2V)?
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Is
Stackel potentlals

Integrals of motion

It can then be shown that there are three integrals of motion,
namely

2
px . Ps | P

h=E=- D(,
: 2p2 T 22 Tope | T OAY)
h=3L
) —
b= 32+ )+ (3 - ) [Jv2 - 28R = C0)
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Stiickel potentials. Velocities, angular momentum and integrals of motion

1 I: I-
2 2 S
—_ - g -2 _ B _F
PA=o01a) |CW 35a ar,
ps = 2h
1 [ I I- 1
pr=— |G- 2 -8B _E
2v+a) | v+a v+vy |

In the meridional plane the orbits are restricted to the area defined
by
—y<v<1y, AM<A< A

where the turning points 19, A\ and Ay are the values for v and A
for which respectively V), and V) are zero.

The case v = —~ corresponds to z = 0.
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Stéckel potentials.

The turning points are the three solutions 7 < 75 < 73 of

where in general there should be
» one solution 71 < —a, which is vy, and

» two solutions —a < 79 < 73, which are A1 and \s.
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Velocities, angular momentum and integrals of motion

Stéckel potentials.

In the case of an oblate mass distribution (prolate coordinate
system) all orbits are “short axis tubes”, bounded by two prolate
spheroids and one hyperboloid of one sheet.
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Component separation
Moderately inclined spirals
Edge-on spirals
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Component separation

Bulge luminosity laws
Reynolds! made the first fit to the M31-bulge.
He used the function:

(x + 1)?y = constant

with x the radial distance and y the “light ratio” (relative surface
brightness on a linear scale).

He went out to only 6.9 arcmin (~ 1.4 kpc). At this radius the

surface brightness is 21 B-mag arcsec 2.

'H.H.Reynolds, MNRAS. 74, 132 (1913)
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H
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. / 3 .
3 ¢ $
120} o é = ¥ - |
a4 i
{ | |
| _ | —

Light Curve of the Andromeda Nebula,

Hubble used this later in the form:

I(R) = I,(R + a)~2
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Component separation

The most commonly used fitting function is the so-called R'/*-law

found empirically by de Vaucouleurs?.

I(R R\ Y4
log (/) — ~3.3307 <R> 1

(&) €

R. = Effective radius
1(0) = pe + 8.3268

L =7.2157/,R?(b/a)

2G. de Vaucouleurs, Ann. d'Astrophys. 11, 247 (1948)
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Luminosity distributions
Component separation

For this there is a numerical deprojection formula from Young?,
which has an approximation for large R (in Lg pc™3):

L(R) = 5219 <é>3<§o>7/8.

R\ /4
, —7.67 ( —
exp 6 <R(>>

If flattened R — « = \/R?(b/a)? + z°.

More physical rather than empirical are the King models*, which
work best for globular clusters and also better for elliptical galaxies

than bulges.

3P_.J. Young, A.J. 81, 807 (1976)
*]. King, A.J. 71, 64 (1966)
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Component separation

They are based on isothermal distributions with upper limits on the
energy of the particles and are therefore isothermal spheres with a
tidal radius.

Jarvis & Freeman® introduce also rotation and study the effects of
the gravitational effects of the disk.

The starting point is a distribution function, which is a truncated
Maxwellian:

f(E,J)=alexp (—PE) — exp (BE)] exp (7J)

E < E, is the energy per unit mass and J the angular momentum
parallel to the symmetry axis.

For v = 0 we get the King models.

°B. Jarvis & K.C. Freeman, Ap.J. 295, 314 and 324 (1986)
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Luminosity distributions

Jarvis and Freeman take a constant M/L and include effects of
disk potential, and are able to reproduce observations of both
isophotes and (stellar) kinematics.

NGC 7814
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Luminosity distributions

e 7aa 4 il woe 7o 21l

o s e e The conclusion is that bulges
g ] are consistent with isotropic,
1 oblate spheroids, flattened
o | mostly by rotation.

minosity distributions: Bulges and disks



Bulge luminosity laws
Luminosity distributions in disks

Luminosity distributions

Luminosity distributions in disks

De Vaucouleurs® discovered that radial surface brightness profiles
of disks are exponential.

®G. de Vaucouleurs, Ap.J. 130, 728 (1959)
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C . Luminosity distributions in disks
omponent separation

A famous paper on exponential disks and the corresponding

dynamics is by Freeman’.

The surface brightness is

I(R) = I, exp (—R/h)
in linear units (Ls pc?).
In magnitudes arcsec™? it is a straight line.

The total luminosity is
L = 2wh?l,

"K.C. Freeman, Ap.J. 160, 811 (1970)
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Vertical distributions can (away from the dust lane) of the old disk
population be approximated with an isothermal sheet.

This is not unreasonable in view of . '

1 Pop.1t

the Age - Velocity dispersion I

relation? of stars in the solar

neighborhood. 50 1

Star older then a few Gyr have
dispersions of the order 50 km sec™.

°R. Wielen, A.&A. 60, 263 (1977) 0 : :

0 5 4,007 years) 10
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Luminosity distributions

300 " -
200 ]
100 i
With the HIPPARCOS £ ° .
astrometric satellite better = e
data are possible. 20
-300 v - . . -
0.1 1 10
Here is a more recent version 200 ’
of the relation.? % i
E 0
?H. J. Rocha-Pinto et al. A.&A. = i
423, 517 (2004)
-200
-300 . . - . ol
01 1 10
age (Gyr)

Increase of the u peculiar velocity with age, for uncorrected
and corrected chromospheric ages.
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The three-dimensional distribution of stars in disks was therefore
proposed® (with the inclusion of a cut-off radius, so that
R < Rmax) as

L(R,z) = L(0,0) exp (—R/h) sech %(z/z)
I(R) = 22,L(0,0) exp (—R/h)

(V2) = nGI(R)zo(M/L)

V4

8P.C. van der Kruit & L. Searle, A.&A. 95, 105 (1981)
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Luminosity distributions in disks

For large z-distances:

z/z,>> 1 then sech?(z/z,) = 4 exp (—2z/z,)
Near the plane:

z/z, < 1 then sech?(z/z,) = exp (—z%/22)
For Ryax — 00:

I(R, z) = 2hL(0,0)(R/h)Ky(R/h) sech 2(z/z,)
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Luminosity distributions

Here is an isophote map of the pure disk, edge-on galaxy NGC
4244,
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Luminosity distributions

We fit profiles, averaged
symmetrically, in z at
various R and shifted in
coincidence (left) and at
a radial profile at a
suitable z above the
dustlane.

magnitudes

Piet van der Kruit, Kapteyn Astronomical Institute

Bulge luminosity laws
Luminosity distributions in disks

Z(kpc) R{kpc)
1 2 0 5 1 15
T T T T T T
NGC 4264 7=302
=0.73kpc

| 1 1 i L i A

Z(arcsec)

Luminosity distri

0 200 400 600
R{arcsec)

itions: Bulges and disks

22
Hy




Bulge luminosity laws
Luminosity distributions in disks

Luminosity distributions

Here is the fit in directions parallel to the major axis.

T T T ] T T I
22+ NGC 4264 (2 =302) i
Hy
y/AS N
26F 1
28 N

L 1 1 Il | L ? i

0 200 400 600

Rpax

Riarcsec)
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Luminosity distributions

And parallel to the minor axis.

K, NGC 4244

0 40 80
Z (arcsec)

Piet van der Kruit, Kapteyn Astronomical Institute Luminosity distributions: Bulges and disks



Luminosity distributions Eulecfuninosityllows

Luminosity distributions in disks

A closer look at a larger set of edge-on galaxies? shows that the
constancy of the vertical scaleheight z, does not hold for early type

galaxies.

0.2 ——1—— —— — —
%\ Z(a) ! ! ! ' B-band ]
~ oL pE--bg g =
- B Bt S & ]
< i & 2 ] - 4
< ot E i 4 a8 S R -]
& Ly= 0. oms iq 0007 Ty o 0745 (:l:(? oo:as) ]
& w1 R T | o
£ OlpP=—gdog =
i oo T“*‘“‘*ég%‘yé?i :
£ oF ]
E c E
5 g, 72700086 (+0.0012) T +;0.0%41 (40.0068) |

’ -2 o 2 4 8 8

Revised Hubble Type (T)

°R. de Grijs & R.F. Peletier, A.&A. 320, L21 (1997)
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Luminosity dist

Component se

It is unlikely that at moderate and
small distances above the plane the
stellar population is isothermal.

Therefore a set of functions was
proposed to allow for this?

by
&
T

Surface Brightness (mag)

L(z) = L(0)2%/" sech 2/" (”Z)

22,

1+ 1 L L L L

°P.C. van der Kruit, A.&A. 192, 117 ’ ! ¢ b * °
(1988)
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Bulge luminosity laws

C B Luminosity distributions in disks
omponent separation

This ranges from the
isothermal distribution for
n =1 to an exponential for
n f— m. l:l Only I-band data available

Il / and K’~band data available

Fits? give

2/n = 0.54 4 0.20

N{(2/n)

in the K-band (2.2 u).

“R. de Grijs, R.F. Peletier & P.C.
van der Kruit, A.&A. 327, 966
(1997)
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Moderately inclined spirals

Edge-on spirals

Moderately inclined spirals

The usual assumption is to view the galaxy as built up of an
exponential disk and an RY/*-bulge.

Parameters of the fit then are:
> /. and R, for the bulge
> 1o and h for the disk

This is usually done with some least-squares procedure after a first
guess at parameters for the dominant component.

Test on artificial images'® show that this usually works well.

10J M. Schombert & G.D. Bothun, A.J. 92, 60 (1987)
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Moderately inclined spirals

Component separation Hifeam exiteE

Here are some actial component separations form Schombert &
Bothun.

N2gs | N2554 R N2575 R

wing. /L1

wa, /1

w1
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Edge-on spirals

Component separation

Edge-on spirals

We now fit to a projected exponential, locally isothermal disk and
an RY/“-bulge.
Parameters of the fit now are:

> /o, h and z, for the disk

> /i, R. and b/a for the bulge

The fit is made first for the dominant component and this is
subtracted from the observed distribution.
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Luminosity distributions

Moderately inclined spirals
Edge-on spirals

Component separation

We look at two examples:
NGC 8911, This is an Sb in which the disk dominates the light.
NGC 7814%2. This is an Sa and the bulge dominates the light.

van der Kruit & Searle, A.&A. 95, 116 (1981)
2van der Kruit & Searle, A.&A. 110, 79 (1982)
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Moderately inclined spirals
Edge-on spirals

NGC 891 (D = 9.5 M
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Moderately inclined spirals

Component separation Edzeuspitals

We start with the original image (here the J ~ B band) after
“subtraction” foreground stars by interpolation.
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Moderately inclined spirals

Component separation (Fiigeam eritels

Then we make a fit for the disk from composite R- and z-profiles
and subtract this from the data. We then find the bulge brightness
distribution.

Piet van der Kruit, Kapteyn Astronomical Institute Luminosity distributions: Bulges and disks



Outline
Luminosity distributions

Moderately inclined spirals
Edge-on spirals

Component separation

NGC 7814 (D = 15 Mpc)

: Bulges and disks



Moderately inclined spirals
Edge-on spirals

Component separation

The procedure now is to find a bulge model and subtract that from
the observations to reveal the disk.
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Moderately inclined spirals
Edge-on spirals

Component separation

Note the color change in the bulge (again bluer in the outer
parts)®3 .
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Moderately inclined spirals

Component separation (Fiigeam eritels

blarcsec)
20 L0 100 200
20F T ? !
F F N7814
ar Bulge on
R scale
2r
23
24
25F
F Uy = 14.87 + 3.32b1/4
" Uy ope = 13.72 + 3.55p1/4
5F iy = 13.08 + 3.75p"/%
5| up = 10.70 + 4.2061/4
o py = 9.19 + 4.36b"/*
2 3
bl larcsec) Hg = 8.07 + 4.43!’”4
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STRUCTURE AND DYNAMICS OF GALAXIES

13. Luminosity distributions: Parameters

Piet van der Kruit
Kapteyn Astronomical Institute

University of Groningen, the Netherlands
www.astro.rug.nl/~vdkruit

Beijing, September 2011
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Luminosity distributions
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Elliptical galaxies Selection and Freeman’s law

Distribution of parameters

Ken Freeman! was the first to study the distribution of properties

of exponential disks.

His results are in the following two figures; the small range of
(extrapolated) face-on, central surface brightness is known as
“Freeman's Law":

fto = 21.67 £ 0.30 B — mag arcsec ™2

This has generated considerable discussion. The problem is that
samples need to be statistically complete and Freeman's sample
had serious selection effects.

!K.C. Freeman, Ap.J. 160, 811 (1970)
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Distribution of parameters
Disk galaxies Selection effects

and Freeman’s law

Selection effects

I
30273
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25 f— 3C48 .
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1 a
first by Arp 2. R - o 1
[ ] Q
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Outline Distribution of parameters
Disk galaxies Selection effects

Elliptical galaxies Selection and Freeman’s law

The selection effects operating here are:

» For a particular luminosity and a faint 1, we get a large h, but
for the most part the object is fainter than sky.

» For the same luminosity and a bright 1., we get small h and
the object will appear starlike.

We will quantify this below.
First we will consider the V/V,,.x-test for completeness.

For this we need to know the selection criteria of the sample.
These could be for example all objects down to a certain angular
diameter (at some isophotal level) or integrated apparent
magnitude.
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Disk galaxies Selection effects

Elliptical galaxies Selection and Freeman’s law

Suppose that an object has a distance R. Now shift it in distance
untill it drops out of the sample due to the completeness limit and
call this distance Ryax.

Then we have V' as the volume corresponding to R and Vi,.x as
the volume relating to Ryax.

Now, in case of a uniform space distribution each object has an
uniform chance to be actually located throughout the volume
\/max-

In otherwords, the property V// V.« calculated for all objects in the
sample should be distributed uniformly over the interval 0 to 1.

Note that V//V,,.x can usually be calculated without knowing the
actual distance.
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Elliptical galaxies Selection and Freeman’s law

In practice the test is to calculate (V// V). For a compete
sample it is required that

<V/Vmax> =0.5.

The error in (V/Vinax) is (12 n)~Y/2.

This is so, because all numbers between 0 and 1 have an average
of 0.5 and a dispersion of v/12.
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Elliptical galaxies Selection and Freeman'’s law

Selection and Freeman’s law

Mike Disney? suggested that Freeman's law is the result of sample
selection (and not only of incompleteness).

In the process he also addressed the equivalent for elliptical
galaxies, called Fish's law.

The analysis was later extended as in the following>.

Assume luminosity-law (in linear units)

o(R) = oo exp — (R/h)Y/?

b = 1: exponential disk
b = 4: RY* bulge or elliptical galaxy.

2M.Disney, Nature 263, 573 (1975)
3M. Disney & S. Phillipps, Mon.Not.R.A.S. 205, 1253 (1983); see also J.I.
Davies, Mon.Not.R.A.S. 244, 8 (1990)
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Elliptical galaxies Selection and Freeman'’s law

We then have for the integrated luminosity:

Lot = / 27Ro(R)dR = (2b)!7o,h?
0

a. Diameter selection.

Suppose that a sample is complete for a radius larger than 0y,
arcsec at an isophote of ju;,, magnitudes arcsec™2. For a radius R
and a distance d the angular diameter is = R/d radians.

For clarity we now do the derivation only for an exponential disk.

The disk has an apparent radius

Oo
Rapp = hin < )
Olim
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Elliptical galaxies Selection and Freeman'’s law

In magnitudes arcsec™2 this is

R"ipp = 04|I’1 10 h (,u']im — ’U/o)

e

With L = 270, h? this becomes

0.4In10 / L\ /2
Rapp - ﬁ <O’> (/“im - /lo)

This can be rewritten as

TOlim 0.41In 101070.2

R (Ulim*ﬂo)(uhnl . MO)

app L \@

The square-root term on the lefthand side is a kind of fiducial
radius, that Disney and Phillipps write as Rr..
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Elliptical galaxies Selection and Freeman'’s law

The case with 5 = 4 for elliptical galaxies is

R. 41n10)*
app _ (O n O) 1070.2(;1]1“,*;10)(Iuhnl . ,Uo)4

Ry, V8!

In the following figure we see the behavior of R,,/Ri, as a
function of the central surface brightness i, for the case of a
diameter selection at an isophote of 24 (B-)magnitudes arcsec™2.
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Distribution of parameters
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Selection and Freeman'’s law

The apparent diameter for exponential disks (full line) peaks at a
central surface brightness of (i, — f10) = 2.171; for elliptical
galaxies (dashed line) this occurs at (uiy, — /o) = 8.686.
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Elliptical galaxies Selection and Freeman'’s law

Now when we express surface brightness 1 in magnitudes arcsec™
and distances (such as /o /L) in parsec we can derive

L

Olim

— 100-4(“1'1111 - M+5)

Then for the maximum distance for a galaxy to remain in the
sample d in parsec and angular radius limit 6}, in arcsec we get

0.4In10 Mlim — Mo 100.2(;107M+5).
2 Hlim

dsizc —

For the general case the result is

(0.41n10)° (pa1im — ft0)® 100-2(10—M+5)
7T(2b)' glim

dsize —
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Outline Distribution of parameters
Disk galaxies Selection effects

Elliptical galaxies Selection and Freeman'’s law

The maximum of d occurs at

N
0.2In10

Ho,max = Hlim —

b. Integrated magnitude selection

Now the sample is supposed complete up to a limiting integrated
apparent magnitude my;,, within an isophote i, -

Assume that the image is overexposed at isophote i to allow for
photographic surveys and define

=0.4In10(punm — po) 5 p = 0.41n10(p1im — f40)
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The maximum distance then comes out as

dmagn = [Ase™® — Apefp}m 100-2(miim —M-+5)

with
n=2b 5N n=2b—1 Pn
As = ' Ap — g
! n!
n=0 n=0

The following figure below is for a limiting isophote of 24

magnitues arcsec ™2 and a saturation isophote of 19 magnitudes

arcsec 2.
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Again we see maxima as for diameter selection.

24

Note that both diameter and magnitude selection works in favor of
disks around Freeman'’s surface brightness and elliptical systems

near Fish's value.
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Elliptical galaxies Selection and Freeman'’s law

Some actual values: For Palomar Sky Survey:

Lim ~ 24 B-mag arcsec 2

vt =~ 19 B-mag arcsec 2

Diameter selection: d® peaks at:
— 21.8 B-mag arcsec™2 for b = 1
— 15.3 B-mag arcsec2 for b = 4

Magnitude selection: d3 peaks at:
— 18.5 B-mag arcsec™2 for b = 1
— 12.0 B-mag arcsec™2 for b = 4

Observed:
b=1: 21.6 + 0.3 B-mag arcsec™2 (Freeman's law)
b=4: 14.8 4+ 0.9 B-mag arcsec 2 (Fish's law)
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Elliptical galaxies Selection and Freeman'’s law

In any catalogue each galaxies has a value for d according to the
selection criteria.

If both diameter and magnitude selection play a role the smalles of
the two values is the appropriate one.

We can then define the visibility as the value for d° for each
galaxy: in an unbiased sample and a uniform distribution a value of
Lo will occur at a frequency o d°.

The equations for the visibility can of course also be used to
correct complete sample for the volumes over which galaxies are
sampled as a function of their properties in order te obtain space
densities as a function of parameters.

This can be used to study the question of the origin of Freeman's
law and whether it results from selection effects.
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Disk galaxies Selection effects

Selection and Freeman'’s law

Allen & Shu* were the first to suggest that the selection only
works at the faint level and that there is only a real upper limit to
the central surface brightnesses.

This is confirmed by Roelof de Jong®, who also confirmed that the
faint surface brightness disks are all of late type®.

107 g+

PETTITT MR

2(up) (Mpe®)
!

®(up) (Mpe)
T

PR

{1 L L

ol oo f Bv By alas o] 10-5 L1 .
20 22 24 26 16 18 20 22

u (B-mag arcsec-?) 1 (K-mag arcsec~?)

*R.J. Allen & F.H. Shu, Ap.J. 227, 67, (1979)
°R.S. de Jong, A.&A. 313, 45 (1996)
P.C. van der Kruit, A.&A. 173, 59 (1987)
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Selection and Freeman'’s law

This is related to the fact that late type galaxies generally have
fainter disks.
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Distribution of parameters
Selection effects

Selection and Freeman'’s law

Data can be combined in bi-variate distribution functions.
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From a weighing with the total luminosity it can be estimated that
high surface brightness galaxies probably provide the majority of
the luminosity density in the universe.
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Elliptical galaxies
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Outline Luminosity distributions
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Elliptical galaxies Color gradients

Luminosty distributions

Elliptical galaxies usually
conform to the R'/*-law
and look smooth and
regular.

NGC 3379 has been used as
a prototype and standard
for surface photometry?.

?G. de Vaucouleurs & M.
Capaccioli, Ap.J.Suppl. 40, 699
(1979)
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Outline Luminosity distributions
Disk galaxies Shells and ripples

Elliptical galaxies Color gradients

Detailed study shows that the isophotal structure of ellipticals is
usually much more complicated.

In particular there are isophote twists and deviations from
ellipticity.

The latter are described by parameters a(/).

These describe the deviations from pure ellipses in multiplicity i”.
These are derived from Fourier analysis of the isophote shapes
relative to the best fitting ellipse.

By definition (because of the ellipse fit) a(/) = 0 for i = 0,1, 2.

’R. Bender, S. Dobereiner & C. Méllenhoff, A.&A.Suppl.74, 385 (1988)
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Luminosity distributions
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Elliptical galaxies Color gradients

The most interesting is a(4),
which is negative for “boxy"
isophotes and positive for
“disky" isophotes.

Here are some examples of
non-zero parameters a(4).
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FIGURE 7. — R-image of NGC 5322, an elliptical galaxy with
box-shaped isophotes (a(4)/a~ — 0.01).
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Luminosity distributions
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And here are fits a disky galaxy.

" NGC 4660

FIGURE 6. — R-image of NGC 4660, an elliptical galaxy with a
disk-component in the isophotes (a(4)/a ~ + 0.03).
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Outline Luminosity distributions
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Elliptical galaxies Color gradients

The global a(4) parameter for a sample of galaxies does not
correlate with effective radius or integrated luminosity®.

However, galaxies with strong radio emission or X-ray halo’s are
almost always boxy.

It has been suggested that “boxyness” results from interactions.

8R. Bender, P. Surma, S. Débereiner, C. Mdllenhoff & R. Madejsky, A.&A.
217, 35 (1989)
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Outline Luminosity distributions
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Elliptical galaxies Color gradients

There is a well-defined color — magnitude relation for early-type
galaxies®.

The relation is the same in clusters and in the field.

It is actually one between metallicity and mass (or escape velocity).

°A. Sandage, Ap.J. 176, 21 (1972)
N, Visvanathan & A. Sandage, Ap.J. 216, 214 (1977)
A. Sandage & N. Visvanathan, Ap.J. 223, 707 and 225, 742-(1978)

Piet van der Kruit, Kapteyn Astronomical Institute Luminosity distributions: Parameters



Luminosity distributions
Shells and ripples

Elliptical galaxies Color gradients

T T
Groups and Clusters
Including Virgo

26 * SO,SBO —
\\0‘05., oF

08 -

(b-V);

08 —

(V=)

L I L 1 L L L

8 12 16

et van der Kruit, Kapteyn Ast al Institute i Parameters



Luminosity distributions
Shells and ripples

Elliptical galaxies Color gradients

Elliptical Field Galaxies

SO Field Galaxies

I ] T
I i T I(al

006 . .'- N1400 4
=

= il BN . i
> 0 0

9 L% 13 15
(VZCS)Virgo

9 1 13 15
(Vi) Virgo

Piet van der Kruit, Kapteyn Astronomical Institute Luminosity distributions: Parameters



Luminosity distributions
Shells and ripples

Elliptical galaxies Color gradients

LUMINOSITY (x/2%)

The luminosity function of galaxies is
fitted with the Schechter-function? 1600

300

o(L)dL o< (L/L*)* exp (—L/L*)d(L/L¥)

30|

NUMBER

The best fits have o ~ 1.2 and L* °
corresponding to My ~ —20.6. sk

o Composite cluster galaxy
luminosity distribution

?P. Schechter, Ap.J. 203, 297 (1976) [ ® oD gelovies ncluded A
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Shells and ripples

In the outer parts faint “shells and ripples” are seen, such as in
NGC 1316 = Fornax A0,

°F Schweizer, Ap.J. 237, 303 (1980)
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Outline Luminosity distributions
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Elliptical galaxies Color gradients

Numerical experiments'! show that these can be the result of a
collission with a disk galaxy.

In the figure on the next frame we see how the disk evolves in the
potential of a 100 times more massive elliptical galaxy in a typical
encounter.

The unit of time is the circular period at a characteristic radius in
the potential.

P J. Quinn, Ap.J. 279, 596 (1984)
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Outline Luminosity distributions
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Elliptical galaxies Color gradients

Color gradients

Important for formation models is the correlation of color gradients
with structural and dynamical properties.

Color gradients usually are defined as the change in color index in
magnitudes per decade in radius or
v(B—-V)=A(B-V)/A(logr).
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Outline Luminosity distributions
Disk galaxies Shells and ripples

Elliptical galaxies Color gradients

The property (V,,/0)* is normalised to unity for an isotropic
oblate rotator.

» Ellipticals have significant color gradients. The light becomes
redder towards the center.

» However, dwarf spheroidals have inverse gradients. This may
be due to recent star formation.

» Anisotropic galaxies have smaller gradients.
» Also boxy galaxies tend to have smaller gradients.

» There is no strong correlation between the strength of the
color gradient and the luminosity or velocity dispersion.
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Fundamentals
The fundamental discussion is by Tinsley?.

The Initial Mass Function (IMF) is the distribution over stellar
masses during star formation.

It is determined in the solar neighborhood independently for low
and high mass stars:
> Low masses (M < 1My)) from general distribution of masses
of older stars in the disk, since these are all still present.
» High masses (M > 1My,) from distribution of stellar masses in
actual clusters and associations.

!B.M. Tinsley, Fund. Cosmic Physics 5, 287 (1980)
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Normalisation is done such that the two parts join smoothly at
~ 1Mg (continuity constraint).

An usefull analytic form of IMF:
H(M) = xME M~ gm

for
ML <M< MU

Usually My, = 0.1M, and My = 50M,.
The “Salpeter-function” has x = 1.35.

Here are some forms of the IMF often used.
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Bi-model star formation was proposed by Larson?. It says that the

two modes of star formation of high- and low-mass stars are

independent and normalisation of the IMF must be done separately.
2R.B. Larson, Mon. Not. R.A.S. 218, 409 (1986)

Piet van der Kruit, Kapteyn Astronomical Institute Photometric evolution



Fundamentals

Analytical models

Detail dies

Schmidt’s law for star formation

Outline
Photometric evolution

Population synthesis

The Star Formation Rate(SFR) is the total mass in newly formed
stars as a function of time.

In the solar neighborhood it has been roughly constant with time.

It may vary between galaxies, but is usually taken independent of
position in a galaxy.

With an IMF and a SFR it is possible to calculate the luminosity
and colors of galaxies as a function of time.

This is done by first calculating the photometric evolution of a star
clusters by assuming an IMF and using stellar evolution tracks.

In principle this needs to be done for different metal abundances.

These clusters can then be added according to the SFR (and the
evolution of metal abundance with time).
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Analytical models
Single burst.

First look at the Main Sequence; we have approximately:

L oc M®

Rough values for aw are 4.9 in U, 4.5 in B and 4.1 in V.
The main-sequence life-time is:
tms = M7

With M in M., the unit of time is ~ 10 years. A good value for
Y is 3.
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Assume that stars formed all at t = 0 and that the total mass is
5. Then

M,
Lus(t) = / VYo M*p(M)dM
J My,

X _
= —— MM,
o — X

where
Mt - tl/"’

Now look at the giants. Assume all giants have a luminosity Lg
and are in that stage for a time tg.

Reasonable values for Lg are 35 in U, 60 in B and 90 L in V and
0.03 for ta.
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The number of giants at time ¢ is then

dM
dtms

Na(t) = vop(M) '

M=M;

X _
= 1;)ofl\/lffMg “ta
v

Now we can derive the Single Burst luminosity at time t:

Lsp(t) = Lms(t) + Na(t)Le

Using U(;) = 540, B(;) = 5.25 and V(;) = 470, and ML = 0.1M(;>,
the following table can be calculated.
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t [(U—B)[(B—V)[(M/Ds
0.01 -0.34 0.12 0.15
0.03 -0.06 0.45 0.38
0.1 0.18 0.64 1.12
0.3 0.38 0.79 2.79
1 0.56 0.90 6.95
3 0.66 0.96 149

Ongoing star formation.

Write the SFR as ¢(t). Then

L(t) = ./Otu(t — t')Lsp(t')dt’
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For two extreme cases we get at t = 1:

Model (U-B) | (B-V) | (M/L)p
Single burst 0.56 0.90 7.0
Constant SFR | -0.25 | 0.24 1.0

This spans the range of the observed two-color diagram with the
single burst corresponding to elliptical and SO galaxies and the
constant SFR for Sc and later types.

Now let us look at some more detailed studies.
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Detailed studies

Searle, Sargent & Bagnuolo® find the following luministies and
colors for sinble bursts a number of slopes of the IMF.

TABLE 1

THE BRIGHTNESS AND COLORS OF MODEL STAR CLUSTERS
As A FUNCTION oF AGE

AGE =21 o= 245

(107 yrs) My B—-V U-B My B—¥V U-B

4 Fo ) —0.23 -1.18 —6.6 —-0.22 —=1.10
0.3.. .6 =019 =0.96 -6.2 -0.21 —0.96
1.0.... 4 =0.15 —0.43 - 6.9 -0.18 =0.78
30 2 —0.05 —0.60 —=6,0 —~0.03 —~0.58
10.0.... 0 +0.19 =0.22 —-5.0 +0.19 —-0.23
0.0 8 +0.21 +0.03 —39 +0.34 0.00
100.0.... 5 +0.44 +0.12 —2.8 +0.46 +0.16
300.0.... 6 +10.66 +0.26 =19 +0.67 +0.28
1000.0.. .. 9 +0.89 +0.38 =12 +0.50 +0.36

Using this they get a predicted two-color diagram with the Salpeter

31, Searle, W.L.W. Sargent & W.G. Bagnuolo, Ap.J. 179-,427 (1973)
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Here numbers x show
the location of models
of ages 10* years old; o5 |-
with primes for SB
models and unprimed for
constant SF. All normal el
galaxies lie to the right
of the dotted line.

u-B
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Searle et al. conclude that the models and observations are

consistent with:
> All galaxies ~ 1019 years old.
» IMF everywhere similar to local IMF.
» Mean SFR averaged over sufficiently large area’s and long
times generally declines with time.
» Decay times vary among late-type galaxies; some show bursts,
some show uniform SFR.
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Larson & Tinsley* add:

» Precise form of SFR is not important. Important is only SFR
over the last ~ 108 years to mean SFR over the life of the
galaxy.

» Effects of different ages, metallicities and upper stellar masses
are small.

» Interacting galaxies show more scatter in two-color diagram.
This can be explained with bursts of 5% (fraction of mass to
total stellar mass at time of burst; b ~ 0.05) and duration
T~ 2 x 107 years.

“R.B. Larson & B.M. Tinsley, Ap.J. 219, 46 (1978)
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Fig. 7.—Colors of models with monotonic SFRs and age
0‘° yr. Heavy line, local IMF. Long dashes, IMF with slope
= 1. Short dashes, x = 2. The foregoing use case T super-
gxdnt colors and have an upper mags limit my = 30 M.
Doi-dashey, x =1, my = 30 Mg, and case C supergiant
colors, Dots, x = 1, case T, and my = 10 M. The reddening
vectors for A, = 0.3 show the RC2 formula for galactic
reddening which depends on B — V. The other vectors
indicate schematically how colors of red and blue palaxies,
fespachve]y may change with a factor 4 reduction in metal-
icity.

Photometric evolution
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Rob Kennicutt® adds the integrated H,, fluxes (in the form of an
equivalent width, providing independent information on recent
formation of heavy stars.

Equivalent width is the wavelength interval in the continuum that
corresponds to as much flux as the line.

His most important results are the following slides:

°R.C. Kennicutt, Ap.J. 272, 54 (1983)

Piet van der Kruit, Kapteyn Astronomical Institute Photometric evolution



Fundamentals

Analytical models

Detailed studies

Schmidt’s law for star formation

Photometric evolution

-0.6

» The slope of upper
IMF is roughly that
of the Salpeter
function.

E | | ] 1
@ 0.2 0.4 06 0.8 1.0 12

(8-v)J

FiG. 3.—~Two-color diagram from Shapley-Ames spiral galaxies,
along with the model galaxy disk colors described in the text. The
three curves correspond to the different mass functions adopted, the
Miller and Scalo function (lowest curve), the extended Miller-Scalo
(Le., “Salpeter”) function, and the shallow m ™2 IMF (top curve).
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FiG. 4—Observed emission line equivalent widths and corrected
RC2 colors for observed galaxies, along with the evolutionary models.
The effect of dust has been shown by plotting cach model as an arca,
as described in the text. The IMFs corresponding (o each model
are the same as in Fig. 3.
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Roelof de Jong® derives models to study the color gradients in
disks and among different disks.
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Fig. 6. Evolutionary color—color plots of stellar synthesis models. The symbols indicate the number of years after creation of this population.
To the right in each panel, the different ages connected by solid lines, are the single burst models of Worthey (1994) for different metallicities.
The corresponding [Fe/H] values are indicated next to them. To the left in each panel are the solar metallicity models of Bruzual & Charlot
(1996). The dotted line indicates the single burst evolution. The dashed line is a model with an exponentially declining star formation rate. The
leftmost dot-dashed line, overlapping the bluc part of the exponentially declining SFR model, indicates a model with constant star formation.
Bruzual & Charlot used the Johnson R and I' passbands which were here converted to Kron-Cousins R and I passbands using the equations of
Bessell (1979).

6R.S. de Joing, A.&A. 313, 377 (1996)
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His conclusions are:

» Dust reddening plays a minor role.

» Quter parts have lower average ages and are more metal poor
than inner parts of disks.

> Late type galaxies (T > 6)” have lower metallicites and
younger average ages.

"Following de Vaucouleurs himself the de Vaucouleurs types are given
numerical values, e.g. T=1 — Sa, T=3 — Sb, etc. So here is meant types

later than Sc.
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Schmidt’s law for star formation

Maarten Schmidt® proposed that the star formation rate relates to
the gas density as
SFR o p?

Often this was immediately translated in (observable) surface

properties.
The latest result® gives

s 1.440.15
as _ — )
S ) Mg year ‘kpc

Yorr = (25+£0.7) x 174 [ —5%
sPR = ( ) x (1/\//:.;1)(:

8M. Schmidt, Ap.J. 129, 243 (1959)
°R.C. Kennicutt, Ann.Rev.Astron.Astrophys. 36, 189 (1998)
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Her one attempts to fit the intermediate resolution spectra with
those of observed stars.

Best method now is by fitting integrated spectra of generations of
particular age and metallicity!©.

The steps are the following.:
» Measure spectra of stars of various ages and metallicity.

» Synthesize integrated spectra of generations from a set of
isochrones.

» Fit using least-squares techniques to galaxy spectra.

For example A.J. Pickles, Ap.J. 296, 340 (1985); Ap.J.Suppl. 59, 33
(1985) or A.J. Pickles & P.C. van der Kruit A.&A.Suppl, 84, 421 (1990) and
91, 1 (1991)
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These are synthesized
spectra of a metal rich
cluster at three ages.
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Population synthesis

This a an example of a spectrum of an elliptical galaxy fitted by a
set of stellar spectra.
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It is now possible to directly observe colour-magnitude diagrams in
dwarfs galaxies in the Local Group®!.

{m—M),=24.0 (m—M),=24.5 (m-M),=24.4
LGS 3 (HST/ACS) Leo A {HST/ACS) Cetus (HST/ACS)
[T AR ORREE LS L [T
—4r ' N ' 1AL
TRr 1-2f
= of | of
2 1 2F
4 [ J 4 F
" ; y PP PP I BN Pt T N
0 1 2 0 1 2 o} 1 2
<E - I)o (B - I)u (B - Do

11See E. Tolstoy, V. Hill & M. Tosi, Ann.Rev.A.&A. 47, 371 (2009) for a

review.
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Even in M31 and M33 it has been possible now!?.

Foreground

Red

Supergiants
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Moment analysis
Tilted rings

Examples of HI observations
Example of an inclined galaxy: NGC 5055
Example of an edge-on galaxy: NGC 891

HI velocity dispersions

CO and H2
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HI observations

As an example | take the observations of NGC 3198 with the
Westerbork Synthesis Radio Telescope.

These observations are part of the Palomar-Westerbork Survey of

northern spiral galaxies®.

This survey combined 21-cm observations of the neutral hydrogen
with three-color optical surface photometry from photographic
plates with the Palomar 48-inch Schmidt-telescope.

'B.M.H.R. Wevers, Ph.D. Thesis, 1984, B.M.H.R. Wevers, P.C. van der
Kruit & R.J Allen, A.&A.Suppl. 66, 505 (1986)
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The first thing to do is add up the channels at which no Hl is
present to find the continuum map.
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HI velocity dispersions
CO and Ho

The continuum radiation is mostly non-thermal synchrotron
emission from relativistic electrons moving in the galactic magnetic
field.

At the position of the HIl-regions there also is thermal free-free
emission from interaction between free electrons and ionized
hydrogen (protons).

This particular galaxy has radio emission from the center and some
extended faint emission from the disk.

This continuum map is then subtracted from all channel maps to
reveal the distribution of HI at various velocities.

The continuum map should be produced from as many channel
maps as possible, so that the noise in it is low compared to that in
the channel maps themselves.
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Here are the channel maps of
NGC 3198 as far as they
contain neutral hydrogen
emission.

The radial velocity increases
from left-top (468 km sec™1)
to right-bottom (832 km
sec™1) in steps of 33 km
sec™ L.

Obviously the northern (top)
part is approaching us with
respect to the systemic
velocity and the southern part
is receeding.
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Moment analysis

Tilted rings

Analysis of HI observations
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Analysis of HI observations

Moment analysis
Tilted rings

These channel maps can
be added to produce the
map with the
distribution of neutral
hydrogen, the total
HI-map.

To suppress noise usually
this is preceded by
blocking out the areas in
each of the channel
maps that appear to
have no HlI-signal and
thus contain only noise.
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Analysis of HI observations

Moment analysis
Tilted rings

Moment analysis

From this map the radial
HI profile can be ) ————————
produced by averaging
in azimuthal annuli.

In practice this is done :é -
after analysis of the ;e 1
velocity field in order to B 1

=8 .

find the position of the
center and the
orientation parameters
(direction of major axis
and inclination).

!

L l i 1 1 i I
] 150 300 us0 600 750 900
RADIUS (ARCSED)
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Analysis of HI observations

Moment analysis
Tilted rings

One can then take the optical map(s) and derive the radial
luminosity profiles.
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Analysis of HI observations

Moment analysis

Tilted rings

These can be further extended with
radial color profiles and radial profile of
the Hl-surface density versus optical
surface luminosity.

Here we have on the left from top to
bottom the surface brightness profiles in
three color bands, the radial profiles of
three color indices and ratio of the
(face-on) surface density if HI over the
surface brightnes.

On the right are azimuthal color profiles
and at the bottom differences of surface
brightnesses from independent
meassurements (not applicable here).

105 0,40,

Piet van der Kruit, Kapteyn Astronomical Institute Kinematics of spiral galaxies



Moment analysis
Tilted rings
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Analysis of HI observations

Moment analysis
Tilted rings

The velocity field follows N3198
from deriving at each

position the radial 4055’
velocity.

This can be done either S0

by moment analysis of
the HI-profile or a fit 45
with a Gaussian.

This is called a spider 4o+ 790 .
diagram.

L i
10M7"20° 10M6"40°
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Outline
Analysis of HI observations

Moment analysis

I Tilted rings
ions

i Cd ;|;1ri Ho

500 600 700 808

Helpful for further analysis are also
position-velocity diagrams (or
x,V-diagrams), which have position along a

line (or curve) on one axis and radial
velocity on the other. i -
The figure shows the x,V-diagrams along -l A Aol
the major and minor axis.  omf | o | ]
ol |
. . : N \
Also useful is the integrated profile. w] E
i @ . -o#
(5"

506 608 700 80

Piet van der Kruit, Kapteyn Astronomical Institute Kinematics of spiral galaxies



Outline

Analysis of HI observations
Examples of HI observations
HI velocity dispersions

CO and Ho

Moment analysis

Tilted rings

Tilted rings

The next step is to analyse the velocity field in terms of the
orientation of the plane of the disk and the rotation curve.

A first guess for the major axis direction and the inclination can be
obtained from the distribution of HI and/or the optical image.

Assume we have a disk galaxy with a rotation curve Vo (R).
The position angle of the major axis is ®, and the inclination is /
(defined as zero for face-on).

Take the coordinates on the sky as (r, ®) and in the plane of the
galaxy (R, ). Then

cos(® — ,) tand — tan(® — ®,)

IR = -
cos 6 cos |

V()bs — Vgys F Vrol(R) sin i cos @
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Analysis of HI observations

Moment analysis

Tilted rings

We can calculate the pattern
of the residual velocity field
after subtraction of a model.

We then see that errors in each
parameter produce different
patterns and therefore in
principle these parameters can
be determined independently?.

?See P.C. van der Kruit & R.J
Allen, Ann.Rev.Astron.Astrophys.
16, 103 (1978)

Piet van der Kruit, Kapteyn Astronomical Institute
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Outline
Analysis of HI observations

- . Moment analysis
Examples of HI observations analy

Tilted rings

HI velocity dispersions
CO and Ho

The usual procedure to determine the velocity field is as follows.

From the optical maps the position of the center, the position
angle of the major axis and the inclination are estimated.

Then in rings in the galaxy plane (which corresponds to ellipses on
the sky) the observed velocities are converted into “rotation
velocities” along the ring.

Then changes in the parameters are introduced; this changes the
run of deduced rotation velocity along the ring.

The parameters are optimized until these variations along the ring
are minimal.

In practice it turns out that in particular in the outer regions the
planes of the rings change.
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Analysis of HI observatioi
Examples of HI observations
HI velocity dispersions
CO and Ho

Example of an inclined galaxy: NGC 5055

Example of an edge-on galaxy: NGC 891

Examples of HI observations
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Outline

Analysis of HI observations
Examples of HI observations
HI velocity dispersions

CO and Ho

Example of an inclined galaxy: NGC 5055
Example of an edge-on galaxy: NGC 891

Example of an inclined galaxy: NGC 5055

This is illustrated with the observations of NGC 50552,

2A. Bosma, Ph.D. thesis, 1978; A.J. 86, 1791 (1981)
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Outline

Analysis of HI observations
Examples of HI observations
HI velocity dispersions

Example of an inclined galaxy: NGC 5055

Example of an edge-on galaxy: NGC 891

CO and Ho

Here is the distribution of HI.

The distribution of the HI in the outer parts suggests that the
plane of the disk changes. This is called a “warp”.
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Outline

Analysis of HI observations
Examples of HI observations
HI velocity dispersions

CO and Ho

Example of an inclined galaxy: NGC 5055

Example of an edge-on galaxy: NGC 891

We also see distortions in the velocity field.

14 » e R
il e
; ~ asee. | 2
= ‘s ¥ - L% 0
3 - X X . T
& o . g - F -
A
.
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Example of an inclined galaxy: NGC 5055
Example of an edge-on galaxy: NGC 891

Examples of HI observations

The velocity field is conveniently represented in color (from Albert
Bosma's thesis):

Piet van der Kruit, Kapteyn Astronomical Institute Kinematics of spiral galaxies



Example of an inclined galaxy: NGC 5055
Example of an edge-on galaxy: NGC 891

Examples of HI observations

The distribution and velocity field of the HI can be fitted with
“inclined rings” with pure rotation in a changing plane.
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Examples of HI observations

Example of an inclined galaxy: NGC 5055
Example of an edge-on galaxy: NGC 891

The figure shows from top to
bottom:

Position angle of the major
axis

Inclination
Rotation velocity

We return to the matter of
warps later.

Piet van der Kruit, Kapteyn Astronomical Institute
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Example of an inclined galaxy: NGC 5055
Example of an edge-on galaxy: NGC 891

Examples of HI observations

Example of an edge-on galaxy: NGC 891

The observations are from Sancisi & Allen3.

3R. Sancisi & R.J. Allen, A.&A. 74, 73 (1979)
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Examples of HI observations Example of an inclined galaxy: NGC 5055

Example of an edge-on galaxy: NGC 891
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Example of an inclined galaxy: NGC 5055
Example of an edge-on galaxy: NGC 891

Examples of HI observations

The position-velocity
diagram (/, V-diagram)
now is a projection of
the plane of the galaxy
with only a ambiguity
around the “line of
nodes”.

This can be seen when
we draw lines of equal

line of sight velocity on
the plane of the galaxy.

HPEW
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Outline
Analysis of HI observations
Examples of HI observations

Example of an inclined galaxy: NGC 5055

HI velocity dispersions Example of an edge-on galaxy: NGC 891

CO and Ho

It is possible to model the /, V/-diagram in terms of a distribution
of the HI and a rotation curve.

The radial HI distribution can be estimated by “decomposing” the
observed HI on the sky under the assumption of circular symmetry.

The “extreme” or “high” velocities give a first estimate of the
rotation curve.

To properly model the /, V-diagram one needs to assume an HI
velocity dispersion.

NGC 891 does not have an extended HI disk beyond the stellar
disk and the HI layer appears very flat.

Piet van der Kruit, Kapteyn Astronomical Institute Kinematics of spiral galaxies



Heliocentric radial velocity (kms”)
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Examples of HI observations Example of an inclined galaxy: NGC 5055

Example of an edge-on galaxy: NGC 891

The resulting rotation cuve is typical with a sharp rise and then
remaining constant.
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Outline
Analysis of HI observatior
Examples of HI observations

HI velocity dispersions
CO and Ho

HI velocity dispersions
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Outline
Analysis of HI observations
Examples of HI observations

HI velocity dispersions
CO and Ho

NGC 628 is very close to face-on and can therefore be used to
measure the velocity dispersion of the HI*.

*G.S. Shostak & P.C. van der Kruit, A.&A. 132, 20 (1984)
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HI velocity dispersions
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Outline
Analysis of HI observations
Examples of HI observations

HI velocity dispersions
CO and Ho

The HI is much more extended than the optical image.

Also the spiral structure
continues in the HI
beyond the stellar disk
and the optical spiral
arms.
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HI velocity dispersions

The next thing we can do is
determine the velocity
dispersion of the HI.

For this we need a face-on
galaxy, because the gradient of
systematic motion should be
small accross a beam.

Here are some individual
profiles at various distances
from the center.

It can be seen that Gaussians
can be fit very well to these
profiles.

Piet van der Kruit, Kapteyn Astronomical Institute
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The HI velocity dispersion is between 7 and 10 km/s

28

<VZikms")
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HI velocity dispersions

at all radii.
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Outline
Analysis of HI observations
Examples of HI observations

HI velocity dispersions
CO and Ho

The velocity dispersion of the HI is expected to be isotropic due to
cloud collisions.

This is confirmed by observations of more inclined (and large
angular size) galaxies.

The value of 10 km/s corresponds roughly to a kinetic temperature
of 10* K.

This is the temperature where cooling of the interstellar medium
gets very effective due to ionisation of hydrogen.

Closer analysis shows that within the optical image the velocity
dispersion is systematically higher in areas of higher surface density
(the spiral arms).
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This is probably related to heating of the gas by star formation.

Piet van der Kruit, Kapteyn Astronomical Institute

HI velocity dispersions
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Outline
Analysis of HI observations
Examples of HI observations

HI velocity dispersions
CO and Ho

If the signal-to-noise of the data is good enough, we now can in
edge-on systems als fit the radial HI distribution, the rotation curve
and the velocity dispersion at the same time.?

Here are fits tot the superthin galaxy UGC7321.

5J.C. O'Brien, K.C. Freeman & P.C. van der Kruit, A.&A. 151, A62 & A63
(2010).
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HI velocity dispersions
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HI velocity dispersions
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Outline
Analysis of HI observations
Examples of HI observations

HI velocity dispersions
CO and Hjy

CO and H,
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Outline
Analysis of HI observations
Examples of HI observations

HI velocity dispersions
CO and Hjy

The distribution of molecular hydrogen is often inferred from
observations of CO at (sub-)millimeter wavelengths.

The assumption is that everywhere the ratio between these two
molecules is the same.

This is a dubious assumption, as this ratio is very likely dependent
upon metallicity and physical conditions.
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CO and Hjy

Here are some observations of NGC 8916,
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Here the near-infrared observations are also shown (these should

show the distribution of the dust).

®F.R. Israel, P.P. van der Werf & R.J.P. Tilanus, A.&A. 334, L83 (1999)
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CO and Hjy
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Only recently has it been
possible to directly
measure lines of Hy with
the Infrared Space
Observatory (ISO)?.

We see here
observations of the S(0)
(28.2 1) (filled) and
S(1) (17.0 ) (open)
lines, compared with
CO-observations.

CO and Hjy

ve (km/sec)

°E.A. Valentijn & P.P.
van der Werf, Ap.J. 522, L29
(1999)

radius (kpc)
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STRUCTURE AND DYNAMICS OF GALAXIES

16. Rotation curves and dark matter

Piet van der Kruit
Kapteyn Astronomical Institute

University of Groningen, the Netherlands
www.astro.rug.nl/~vdkruit

Beijing, September 2011
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Outline
Tully-Fisher relation

Rotation curves and mass distribution

Outline
Tully-Fisher relation

Rotation curves and mass distribution
Exponential disk
Dark matter halo
Maximum disk hypothesis
Independent checks on the maximum disk hypothesis
Modified dynamics
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Outline
Tully-Fisher relation

Rotation curves and mass distribution

Tully-Fisher relation
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Outline
Tully-Fisher relation

Rotation curves and mass distribution

For exponential disks:
M x ooh? Vinax X (Joh)1/2

Then
Mo VA o1

max™~ o

With Freeman's law and constant mass to light ratio M/L:

Lo V4

max

This is the Tully-Fisher relation which has indeed been observed®.
In practice V.. is measured from the total width of the HI-profile,
corrected for inclination, at a level 20 or 50% of the peak.

'R.B. Tully & J.R. Fisher, A.&A. 54, 661 (1977)
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Tully-Fisher relation

Aaronson & Mould? find exponents of 3.5 in B and 4.3 in H (1.6y).

Hc.abs

oi |
Brlabs 1o

o 25 27 23 25 27
log AV, (0)

There is debate about the slope in observed relations.

2M. Aaronson & J.R. Mould, Ap.J. 265, 1 (1983)
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Tully-Fisher relation

—24

In the |-band Giovanelli
et al.? find from 555 -

galaxies in 24 clusters a —AE T
slope of 7.68 4 0.13 (in -
magnitudes, which :2
corresponds to 3.07 + _op b
0.05). = -
°R. Giovanelli & 6 other L
authors, Ap.J. 477, L1 _18

(1997) I
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Tully-Fisher relation

A recent study of the Ursa Major Cluster® shows that the relation
is tightest in the K’-band and there the slope is 11.3 + 0.5
(exponent 4.5 + 0.2).

R S e e
24 [ B + R + + :
5 cx -+ .5 .
2 F F F F
=20 T Ed E3 E
18 | E3 T T E
= S o A 2 sl -
e e F A F v F S T
2 25 2 2.5 2 25 2 25
LOg(zvnm) LOQ(ZVnm) LOQ(zvﬂm) LOQ(QVMI)

3M.A.M. Verheijen, Ph.D. thesis (1997) and Ap.J. 563, 694 (2001)
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Exponential disk
Outline Dark matter halo
Tully-Fisher relation Maximum disk hypothesis

Rotation curves and mass distribution Independent checks on the maximum disk hypothesis
Modified dynamics

Rotation, curves and mass
distribution

Piet van der Krui Rotation curves and dark matter
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Exponential disk
Outline Dark matter halo
Tully-Fisher relation Maximum disk hypothesis

Rotation curves and mass distribution Independent checks on the maximum disk hypothesis
Modified dynamics

Exponential disk
The exponential disk has a surface density distribution
o(R) = g, (R/H)

where o, is the central surface density and h the scalelength. The
total mass of the disk out to infinity is M = 2o h?.

When it is self-gravitating and infinitessimally thin, the
corresponding rotation curve has the analytic form*:

R 2
VZ(R) = nGhos <h> [loKo — h Ki]

I and K are modified Bessel functions evaluated at R/2h.
*K.C. Freeman, Ap.J. 160, 811 (1970)
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Exponential disk
Outline Dark matter halo
Tully-Fisher relation Maximum disk hypothesis

Rotation curves and mass distribution Independent checks on the maximum disk hypothesis
Modified dynamics

This rotation curve has the properties

» that it rizes from the center to a maximum at R = 2.2h with

Vinax = 0.8796(7 Gho)/?

» and becomes Keplerian at large R.

In the next figure the axes are dimensionless, such that R = R /h

and V = V\/h/GM.
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Exponential disk
Dark matter halo
Maximum disk hypothesis

Rotation curves and mass distribution Independent checks on the maximum disk hypothesis
Modified dynamics

7 Exponential Disk

5t Keplosian ~s -

The lower half of the figure '
has the angular frequency €,
the epicyclic frequency « and
the Lindblad resonance ) _
frequencies Q + x/2.

These frequencies are in
dimensionaless units of
GMh3.

FREQUENCY
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Exponential disk
Dark matter halo
Maximum disk hypothesis

Rotation curves and mass distribution Independent checks on the maximum disk hypothesis
Modified dynamics

The rotation curve changes slightly when allowance is made for the
finite thickness and the truncation®.

o

— —— Freeman disk
z,=02h
—.—.=h" =0.001h

Rotation velocity in units of Vol
)
n

0 1 2 3 [ 5 6

The dashed line has a infinitely thin disk, the full-drawn line has a
finite thickness (z, = 0.2h) without and with a shallow truncation
(the scalelength changes by a factor 5 at Ry,.x). The dot-dashed

curve has a very sharp edge.
°P.C. van der Kruit & L. Searle, A.&A. 110, 61 (1982)
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Exponential disk
Dark matter halo

Maximum disk hypothesis
Rotation curves and mass distribution Independent checks on the maximum disk hypothesis
Modified dynamics

Here are similar figures from another study® with a truncation as a
linear drop in surface density over a radial range 6 = 0.2h.

On the left the thickness of the disk is varied and on the right the
radius of the truncation.

6S. Casertano, Mon.Not.R.A.S. 203, 735 (1983)
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Exponential disk
Outline Dark matter halo
Tully-Fisher relation Maximum disk hypothesis

Rotation curves and mass distribution Independent checks on the maximum disk hypothesis
Modified dynamics

Dark matter halo

Observations of spiral galaxies show flat rotation curves that do
not show the Keplerian decline beyond the optical edge.

So add a dark halo with p o R~2 at large R.

This can be an isothermal sphere’ or some other analytical
function®.

In practice one may also directly infer a predicted rotation curve
from the disk by calculated from the observed surface brightness
profile.

"e.g. C. Carignan & K.C. Freeman, Ap.J. 294, 494 (1985)
8K. Begeman, Ph.D. thesis (1987)
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Exponential disk
Outline Dark matter halo
Tully-Fisher relation Maximum disk hypothesis

Rotation curves and mass distribution Independent checks on the maximum disk hypothesis
Modified dynamics

In the general case that the disk density distribution is p(R, z), the
rotation curve from the corresponding self-gravitating disk is

_ > [ 0p(r,z) K(p) — E(p)
VZ(R) = —SGR‘/O r/o o (Rrp)2 dz dr

with
R2 + r2 + 22

_ 2 1/2 _
=5 =1 and x =
p=x—(x )< and x SR

When the density distribution is separable in o(R) and Z(z) this
becomes

- r(f(r) /OO dZ(Z) K(p) - E(p) dz dr

V2 = —8GR /
€ 0 0 0z (Rrp)t/2

The vertical distribution can for example be assumed to be the
isothermal sheet.
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We may in addition have a bulge with observed surface density
o(r); then for the self-gravitating case we have

271G it
=%/,

ﬁ - arcaly B — L (r) d
R - arcsin p (r2 — R2)1/2 ro r

For the dark halo the assumed the density law

p(R) =po |1+ <R>2

ro(r) dr +

R.
results in

Re R
VZ(R) = 47GpoR? [1 -y arctan <Rc)]
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To get the total rotation curve for a system consisting of three
components add these circular velocities in quadrature:

1/2
VCiI‘C(R) - [delbk(R) + Vb2ulge(R) + \/}122110(R”

One can make things easier by fitting an exponential disk to the
observations and use the analytic form of the corresponding
rotation curve.

If in addition there is gas, this should be treated in the same way.

In practice we have for the stars only surface brightness
distributions, so we need an undetermined mass-to-light ratio M/L
in order to turn this into a surface density distribution.

From the solar neighborhood we can only find that M/L is of order
a few in solar units.
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In principle one can make an approximately flat rotation curve by a
careful tuning of the disk and bulge contributions, as here for the
Galaxy.
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The following is from an
analysis of the rotation curve
of NGC 31982, which has
essentially no bulge.

The HI extends out to 11
scalelengths.

°T.S. van Albada, J.N. Bahcall,
K. Begeman & R. Sancisi, Ap.J.
295, 305 (1985)
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The procedure then is to choose an M/L of the disk that gives the
maximum amplitude of the disk rotation curve that is allowed by
the observations.

The two free parameters of the dark halo, core radius R. and
central density p, are then used to fit the rotation curve.

This is called the “maximum disk hypothesis”, since it is a fit to
the rotation curve with the largest amount of mass possible in the
disk (and the largest M/L).
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The maximum disk solution to the rotation curve of NGC 3198
looks as follows.

200

Vg (km/s)

Radius (kpc)
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This particular model for NGC 3198 has a total mass of 15 x 10'°
M, within 30 kpc.

Within this radius the ratio of dark to visible matter is 3.9. At the
optical edge this ratio is 1.5.

By adjusting the halo parameters one can minimize the dark halo
mass by assuming that the rotation curve falls beyond the last
measured point.
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The difficulty with the maximum disk hypothesis is that it is
possible to make similar good fits with lower disk masses ...
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and even no disk mass at alll
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Begeman® observed 8 spirals, of which HI in NGC 2841 goes out
to 17.8 h (43 kpc).

(a)

200 ————— T 400 T
r NGC 2403 i L NGC 2841 ]
i 300 — !
T 1% F ]
5 — § 200 T
% 5 B 1
B ES 4
100 |
b T e 1

: fii L A N O O
0 10 20 30 (o} 10 20 30 40 50

Radius (kpe) Radius (kpe)

°K. Begeman, Ph.D. thesis (1987); K. Begeman, A.H. Broeils & R.H.
Sanders, Mon.Not.R.A.S. 249, 523 (1991)
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Independent checks on the maximum disk hypothesis

There are independent ways in which the maximum disk hypothesis
can be checked by independent measurement of M/L.

a. The truncation feature in the rotation curve:

The truncation feature in the rotation curve can in principle be
used to estimate the mass of the disk. It has been done in two
cases where the mass of the halo within the truncation radisu has
been estimated:

» NGC 590710: (Mhalo)Rop: = 60% (so not maximum disk)
> NGC 4013: (Mhaio)Rp. =~ 25%

105 Casertano, Mon.Not.R.A.S. 203, 735 (1983)
'R, Bottema, A.&A. 306, 345 (1996)
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In NGC 4013 the disk
and bulge must
dominate dynamically in
the inner regions.

Surface Brightness {F-magn)

The truncation feature is
clearly visible.

However, the fit to the
rotation curve is not
maximum disk.

Vo thms™}

Radius (kpc)
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b. Maximum rotation versus scalelength
Another interesting argument is the following!?.

For a pure exponential disk the maximum in the rotation curve
occurs at R = 2.2h with an amplitude of

Mgis
Vlnax X hog o< - disk
h
For fixed disk-mass Maisk this gives
8' \/m X
SomE

Ologh

125 Courteau & H.-W. Rix, Ap.J. 513, 561 (1999)
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Remember that the Tully-Fisher relation is a tight correlation
between maximum rotation and total luminosity of disk galaxies.

The total luminosity of an exponential disk is L = 27r,u,oh2.

Then at a given absolute magnitude (or mass) lower scalelength
disks should have higher rotation.

So, if disk-dominated galaxies are maximum disk (in practice
Viisk ~ 0.85Viota1) this should be seen in scatter in the
Tully-Fisher relation

This is not observed and the estimate is that on average
Vdisk ~ 0.6 Vt()tal-
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c. Thickness of the HI-layer.

The thickness of the gas layer can be used to measure the surface
density of the disk independent of the rotation curve.

The density distribution of the exponential, locally isothermal disk
was:
p«(R, z) = p«(0,0) exp (—R/h) sech ?(z/z,)

If the HI has a velocity dispersion (VZ2>11{/12, and if the stars

dominate the gravitational field
pui(R, z) = pui(R, 0) sech 2p(z/zo)
<V22>*

P V2)m
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The full width at half maximum of this distribution is:

Wit = 1.663p~ Y2z, for p>> 1

Wi = 1.763p71/2zC> forp=1

Then to within 3%

7G(M/L)o

Zo

—1/2
Wi = 1.7(V2)1/? { } exp (R/2h)

So the gas layer increases exponentially in thickness with an
e-folding of 2h.
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We now look at an analysis of the Hl-layer in NGC 89113 from
measurements by Sancisi & Allen'#.

13p C. van der Kruit, A.&A. 99, 298 (1981)
“R. Sancisi & R.J. Allen, A.&A. 74, 73 (1979)
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The position-velocity
diagram (/, V-diagram)
is a projection of the
plane of the galaxy with
only a ambiguity around
the “line of nodes”.

This can be seen when
we draw lines of equal

line of sight velocity on
the plane of the galaxy.

HPEW

Piet van der Kruit, Kapteyn Astronomical Institute Rotation curves and dark matter



Exponential disk
Dark matter halo
Maximum disk hypothesis

Rotation curves and mass distribution Independent checks on the maximum disk hypothesis
Modified dynamics

Here is a measure of the thickness.
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Three particular models were then calculated:

» Model |, which has 40% of the mass within the optical radius
in the disk,

» Model Il with all the mass (including the dark mass) in the
disk,

» Model Il with a constant thickness of the HI-layer.

The Wi in the observations were then calculated for disks with
inclinations of 87.5 and 90°.
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Here is the equivalent width in the (x, V/)-diagram for Model | with
inclinations of 90° (left) and 8795 (right).
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Here is the equivalent width in the (x, V/)-diagram for Model |
(left) and Model Il (right) both at an inclination of 8795.

<
{
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Here is the equivalent width in the observed (x, V/)-diagram (right)
and that for Model | with an inclination of 87°5 (left).

Piet van der Kruit, Kapteyn Astronomical Institute Rotation curves and dark matter



Exponential disk
Dark matter halo
Maximum disk hypothesis

Rotation curves and mass distribution Independent checks on the maximum disk hypothesis
Modified dynamics

Here we see the thickness over the “high” velocities only (190 to
230 km/s), compared to observations.

EW("] T T T T T T T
High Velocities
50+ N 891 .
30F
—i=875
10F ——-i=900
o observed
1 E 1 1 1 1 1
0 1 2 3 4 5 6

Rlaremin}

NGC 891 is not maximum disk. Also this analysis shows that the
dark matter cannot be in the disk.
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d. Thickness of the stellar disk

The vertical motions of the stars can be combined with the
thickness of stellar disks to estimate of the disk surface densities o.

For the isothermal sheet with space density
p(z) = p(0) sech 2(z/z,)
we had for the stellar velocity dispersion
(VA2 27 Gp(0) 2 = ViGozs

Roelof Bottemal® found that the stellar velocity dispersion at a
fiducial radius correlates maximum in the rotation curve.
5R. Bottema, A.&A. 275, 16 (1993)
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On the left Bottema's original correlation and on the right the
same from a more recent study®©.
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1®M. Kregel, P.C. van der Kruit & K.C. Freeman, Mon.Not.R.A.S. 358, 503
(2005)

Piet van der Kruit, Kapteyn Astronomical Institute Rotation curves and dark matter



Exponential disk
Outline Dark matter halo
Tully-Fisher relation Maximum disk hypothesis

Rotation curves and mass distribution Independent checks on the maximum disk hypothesis
Modified dynamics

Using this relation we can estimate the disk surface density if we
know z, and the rotation curve.

Statistical analysis of samples of galaxies gives!” then is

Vro dis
—rotdisk _ 0,56 + 0.06.
Vrot.obs

A working definition'® of this ratio for a maximum disk is

Vr() is
—rotdisk _ 0,85 4 0.10.
Vr()t,()bs

So, in general galaxy disk appear to be NOT maximum disk.

"R, Bottema, A.&A. 275, 16 (1993); M. Kregel, P.C. van der Kruit & K.C.
Freeman, Mon.Not.R.A.S. 358, 5003 (2004)
8P D. Sackett, Ap.J. 483, 103 (1997)
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Bottema's analysis'® on a high surface brightness and a
low-surface brightness galaxy gives a model according to the stellar
velocity dispersion as at the top and the maximum disk hypothesis
as at the bottom.

Rot. veloeity (km/s)
Rot. veloeity (km/s)

Rot. velocity (km/s)
Rot. velocity (km/s)

1°R. Bottema, A.&A. 328, 517 (1997)
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e. Our Galaxy

The hydrodynamical equation describes how the distribution and
kinematics of a tracer population relates to the vertical
gravitational force.

10 1
= 22 (v02) + - (vRoR,)

—K,
; vR OR

The second term can usually be neglected and if the tracer
population is isothermal then

Ia

_ 2
Ka =0,

Inv(z)

The Poisson equation relates the gravitational field to the total
density distribution p.
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At small distances z from the plane these equations can be
combined to give

0 (190
4rGpo = — | = 2
i 0z |:V (‘)z(ya“)}
One can use samples of for example K giants or (older) F dwarfs to
this. This idea goes back to Kapteyn?® and Oort??.

Modern analyses of this kind have been done by Bahcall?? and
Kuijken & Gilmore?3.

Bahcall finds for the space density in the solar neighborhood
0.21 +0.04 Mopc—3.
20).C. Kapteyn, Ap.J. 55, 302 (1922)
2L J H. Oort, Bull.Astron.Inst.Neth. 6, 249 (1932)
22 ) N. Bahcall, Ap.J. 276, 156 and 169, Ap.J. 287, 926 (1984)
2K.H. Kuijken & G. Gilmore, Mon.Not.R.A.S. 239, 571, 605 and 651-(1989)
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Observed are the following contributions.

Component density
Main sequence stars 0.044
Subgiants and giants 0.002
White dwarfs 0.005
ISM (atomic & molec. gas, dust) 0.045
Population Il 0.0001
Total 0.096

So in this case a total of about 0.1 M. pc ™2 is unaccounted for.

This problem has been known for many years and is known as the
“Oort limit”.

Large numbers of brown dwarfs or stellar remnants cannot
completely be ruled out.
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Kuijken & Gilmore on the other hand find that the local density is
about 0.10 My pc—2 and that there is no convincing evidence for

missing matter.

In terms of surface density of the Galactic disk, Bahcall finds a
value of 66 & 8 M., pc—2. This is distributed as follows:

Component mass luminosity

Mgpc™®  Lgpc™?
Main sequence stars 23.9 9.7
Subgiants and giants 1.0 13.3
White dwarfs 3.6 0.0
Interstellar medium 4.5 0.0
Unseen matter 33.0 0.0
(Population 11) (3.0) (1.5)
Total 66.0 23.0
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Kuijken & Gilmore find a total surface density of 46 + 9 Mopc ™2,
of which 3545 Mupc~2 is in stars and 13 + 3 Mpc~2 in gas and
dust.

They also propose the following fit to the rotation curve of the
Galaxy.

Poorona,0=0-0100Mo /P pyp, 6=0.00120Mg/pc®  Eypo= 48.0Mg/pe®  Vo=220km/s

Regrona™ 2019.pc Rygy= 80.0pc D= 450050 2ARy=222.km/s

ROTATION CURVE FIT

e 0o

Veot (kms™ 1]

Fiyony= 0.0328 Fy,=—0.0039 F,,, = 0.0280

. . .
0 5000 10 1.5x10*
R [pc]
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It follows that the Galaxy is NOT maximum disk.

With x ~ 31 km sec™! kpc™! and ogg ~ 40 km sec™! the Toomre
parameter can be determined as

Q~2.1.

Disk stars have varying vertical distributions, according to the
velocity dispersion — age relation.

This is also reflected in the (exponential) scaleheight derived from
counts as a function of absolute magnitude.
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Modified dynamics

Flat rotation curves may show that classic Newtonian gravity does
not work at large distances®*. For this purpose Modified
Newtonian Dynamics (MOND)?®> was developed.

This has an accelaration g, which is related to Newtonian
acceleration gy as
o1 -1/2

(5) ()] -
ao ao

with a, ~ 1.2 x 1078 cm sec2.

%e.g. R.H. Sanders, Mon.Not.R.A.S. 223, 539 (1986); K. Begeman, A.H.
Broeils & R.H. Sanders, Mon.Not.R.A.S. 249,523 (1991)
e g. M. Milgrom, Ap.J. 270, 365 (1983)
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» For large accelerations g/a, this reduces to Newtonian gravity.
So on small scales (in the solar system or the inner parts of
galaxies) we have g = gy o< R~ 2 and Keplerian rotation with
Vﬁ)t X Ril'

» But at low accelerations is becomes g = (gna,)'/?.

Since now g o< R~ this gives rise to V2, o« R% = constant.

The result is that flat rotation curves can be produced without
introducing a dark halo .
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NGC 891 and NGC 7814 have the very similar rotation curves.
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but completely different light distributions.?®

This is inconsistent with MOND.

%See also F. Fraternali, R. Sancisi & P. Kamphuis, Astron.Astrophys. 531,
Ab64, 2011
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STRUCTURE AND DYNAMICS OF GALAXIES
17. Warps and dust.

Piet van der Kruit
Kapteyn Astronomical Institute

University of Groningen, the Netherlands
www.astro.rug.nl/~vdkruit

Beijing, September 2011

Piet van der Kruit, Kapteyn Astronomical Institute Warps and dust



Outline
Warps in HI
Dust and absorption

Outline

Warps in HI
Warps: observations
Warps: origin

Dust and absorption
Holmberg's analysis
Analysis of Disney et al.
Background galaxies

Piet van der Kruit, Kapteyn Astronomical Institute Warps and dust



Outline
Warps in HI
Dust and absorption

Warps: observations

Warps: origin

Warps in HI

Piet van der Kri

Kapteyn Astronor

al Institute Warps and dust



Outline
Warps in HI

Warps: observations

. Warps: origin
Dust and absorption arp g

Warps: observations

» Warps in the HI in external galaxies are most readily observed
in edge-on systems as NGC 5907%.

NGC 5907

R. Sancisi, A.&A. 74, 73 (1976)
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Dust and absorption

> An extreme example is “prodigious warp” in NGC 40132.

» The warp is very symmetric and starts suddenly near the end
of the optical disk (see the extreme channel maps on the left).
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2R. Bottema, G.S.Shostak & P.C. van der Kruit, Nature 328, 401 (1987);
R. Bottema, A.&A. 295, 605 (1995) and 306, 345 (1996)
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Warps: observations
Warps: origin

Warps in HI

» It is interesting to note that the NGC 5907 has a clear and
sharp truncation® in its stellar disk, where also the warp starts.

3P. C. van der Kruit & L. Searle, A.&A. 110, 61
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Warps: observations
Warps: origin

Dust and absorption

» NGC 4013 also has a clear truncation* in its stellar disk. The
three-dimensional analysis® does confirm that in deprojection
the warp strats very close to the truncation radius.

*P. C. van der Kruit & L. Searle, op. cit.
°R. Bottema, op. cit.
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Warps: observations
Warps: origin

Warps in HI

» Warps were already seen in less inclined systems, such as
M83°.

» These “kinematic warps” were fitted with so-called
“tilted-ring models”.

min of arc

+10F

min of arc

5D.H. Rogstad, I.A. Lockhart & M.C.H. Wright, Ap.J. 193, 309 (1974)
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Warps in HI Warps: origin
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Warps in HI

Warps: observations
Warps: origin

Dust and absorption

Velocity dispersions

NGC 628 is very close to face-on and can therefore be used to
measure the velocity dispersion of the HI”.

'G.S. Shostak & P.C. van der Kruit, A.&A. 132, 20 (1984)
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Warps: observations

Warps: origin

The HI is much more extended than the optical image.

Also the spiral structure
continues in the HI
beyond the stellar disk
and the optical spiral
arms.
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Warps in HI Warps: observations

Warps: origin
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the radial distribution of 10k i ° Total HI |
. x Window 1 0
the HI from simple - LI :i?ﬁiiw% ires |
o . bboiEs 1Beam
averaging in circular T % b ’ .
annuli on the sky. s | ; § 1
8 " af
g §x
. . & 5| 4 n
There is a feature in the I 8 |
profile at the edge of the _ "y |
: ¥
stellar dsisk (~ 6 . ¥ay ]
: $
arcmin). - 0 1
) L L 1 a“iqii L
0 5 0 15
R (aremin)

Piet van der Kruit, Kapteyn Astronomical Institute Warps and dust



Outline
Warps in HI

Warps: observations

. Warps: origin
Dust and absorption P g

The velocity field looks s g e g
regular in the central Ko s
part, but has clear : M '

deviations in the outer i Y '
part. ' j

The disk is warped and

the HI-plane moves

actually through the ki
plane of the sky.

At a radius of about 7
arcmin the observed
velocity is about the
systemic velocity.
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Warps in HI Warps: observations

Warps: origin
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Warps in HI Warps: observations

Warps: origin

Dust and absorption

The rotation curve has an amplitude of ~25 km/s. For a galaxy of
this type and absolute magnitude (using the Tully-Fisher relation;
see later) the rotation velocity should be 200 to 250 km/s.

The inclination is then only 5 to 7°.

Over the optical part we can derive the residual velocity field when
that from rotation is subtracted from the observations.

This shows no systematic pattern and has an r.m.s. value of only
3.9 km/s.

Any systematic pattern of vertical motion is small (or mimic that
of rotation) and the disk is therefore be extremely flat.

For comparison, in the solar neighborhood a vertical velocity of 4
km /s corresponds to an amplitude of only 45 pc.
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Warps: observations

Warps in HI Warps: origin

Garcfa Ruiz® has done a survey of edge-on galaxies.
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8. Garcfa-Ruis, Ph.D. thesis (2001); I. Garcia-Ruiz, R. Sancisi & K.H.
Kuijken, A.&A. 394, 796 (2002)
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Warps: observations

Warps: origin

His major findings are;
» All galaxies, in which the HI is more extended than the stellar
disk have warps.

» The warp usually starts near the edge of the stellar disk.

» Galaxies in rich environments tend to have larger and more
asymmetric warps.
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Warps in HI Warps: observations

Warps: origin

Warps: origin

Briggs® formulated a set of rules of behaviour for HI- warps.

RULES OF BEHAVIOR FOR GALACTIC WARPS
F. H. Brices

Kapetyn Astronomical Institute, University of Groningen, and Department of Physics and Astronomy, University of Pittsburgh
Received 1989 July 21 ; accepted 1989 Sepiember 19

ABSTRACT

A sample of galaxies is now available for which H 1 21 cm line observations allow the development of
detailed kinematic models based on concentric, circular rings with adjustable inclinations and orbital velocity.
By examining these warped systems in a variety of reference frames, clear empirically determined “rules” for
the behavior of galactic warps have emerged.

Analysis of 12 galaxies with extended, warped H 1 disks show the following

1. The H 1 layer typically is planar within Rys, but warping becomes detectable within Riss = Rys
‘Warping within Ry, appears consistent with a common (i.., straight) line of the nodes (LON) measured in the
plane defined by the innermost regions of the galaxies.

2. Warps change character at a transition radius near R,

3. For radii larger than Ry, the LON measured in the plane of the inner galaxy advances in the direction
of galaxy rotation for successively larger radii. Thus, the nodes lic along leading spirals in this frame of refer-
ence.

4. The galaxy kinematics uniquely specify a new reference frame in which there is a common LON for
oribits within the transition radius and also a differently oriented straight LON for the gas outside the tran-
sition radius. This new reference frame is typically inclined by less than 10° to the plane of the inner galaxy.

The lack of a common LON throughout the entire warped disk argues against models that rely on normal
bending modes to maintain warp coherence at all radii. Instead, the emerging picture may require galaxy
models with two distinct regimes. Behavior in the outer regime is consistent with models that have the LON
regressing most rapidly for oribits that are in closest proximity to the flat, stellar disk. In the inner regime, the
disk may be settling into a warped mode.

°F.H. Briggs, Ap.J. 352, 15 (1990)
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Warps in HI Warps: observations

Warps: origin

Dust and absorption

The most important aspects of Brigg's rules for the present
discussion are:

» The HI layer typically is planar within R»5, but warping
becomes detectable near Ry, = Rog.5.

» Warps change character at a transition radius near Ryy,.

» The outer warp defines a reference frame.
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Warps: observations
Warps: origin

Warps in HI

UGCT7774

A recent finding? indicates .
that warps start just beyond
the truncation radius.

2p.C. van der Kruit, A.&A. 466, . .
883 (2007) . ?
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Warps in HI Warps: observations

Warps: origin

Dust and absorption

Properties of warps can be summarized as follows:
» All galaxies with extended HI disks have warps.
» Many galaxies have relatively sharp truncations.

» In edge-on galaxies the HI warps sets in just beyond the
truncation radius, for less inclined systems it sets in near the
Holmberg radius.

» In many cases the rotation curve shows a feature that
indicates that there is at the truncation radius also a sharp
drop in mass surface density.

» The onset of the warp is abrupt and discontinuous. and there
is a steep slope in Hl-surface density at this point.

» Inner disks are extremely flat and the warps define a single
“new reference frame”.
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Warps in HI Warps: observations

Warps: origin

Dust and absorption

This may mean that the inner stellar disk formed first with a
truncation and that the HIl in the warp fell in later with another
orientation of its angular momentum.

Often spiral galaxies are “lob-sided” 0 in their outer HI, such as
NGC4395.

This has been explained as disks that are lying off-center in a dark
halo®!.

1°R.H.M. Schoenmakers, Ph.D. thesis (1999), R.S. Swaters, R.H.M.
Schoenmakers, R. Sancisi & T.S. van Albada, Mon.Not.R.A.S. 304, 330 (1999)
1S E. Levine & L.S. Sparke, Ap.J. 496, L13 (1998); E. Noordermeer, L.S.

Sparke & S.E. Levine, Mon.Not.R.A.S. 328, 1064 (2001)
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Warps: origin

NGC 4395

Warps: observations

R.A. (1950.0) R4 (1950.0) A, (1950.0)
247 0* 12723 487 L s - ) 30° 12723
(a) (<)
4]
5
24m 30° 12"23m +8 +4 0 -4 B o 1000 2000 3000 4000
RA. (1950.0) Distance along major axis (aremin) Flux density (muy)

(panel ¢ has residual velocities)

Piet van der Krui

nomical Institute

Warps and

58

50

a3Pa4

400

o
8
(s/wi) AsopRs,

(0'pes1) 990




Outline Holmberg’s analysis
Warps in HI Analysis of Disney et al.

Dust and absorption Background galaxies

Dust and absorption
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Outline Holmberg’s analysis
Warps in HI Analysis of Disney et al.

Dust and absorption Background galaxies

Holmberg’s analysis
The earliest study is by Holmberg!?.

He defined an apparent face-on surface brightness from the
apparent magnitude m and and the angular major-axis diameter a

pips = m+5loga
He then plotted this against the axis ratio b/a on the sky.
The inclination i/ is related to the axis ratio as
seci =a/b

for a not too edge-on disk (a/b < 3).

2E. Holmberg. Medd. Lund Obs. Ser. 2, No. 136 (1958)
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Holmberg’s analysis

Analysis of Disney et al.

Dust and absorption Background galaxies
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Outline Holmberg’s analysis
Warps in HI Analysis of Disney et al.

Dust and absorption Background galaxies

Holmberg's fit to the data (triangles) then is
o) = 1/(0) + Ap{seci — 1}
Ap = 0.40 mag for Sa-Sb
Ag = 0.28 mag for Sc
So his conclusion was that disk of galaxies are not optically thick.

However, it should be realised that Holmberg's fit is not physical,
since it is actually that of a dust sheet in front of a stellar disk.

Later with the IRAS satellite is was found that often for galaxies
Lrir/Lopt ~ 1 or more.

Piet van der Kruit, Kapteyn Astronomical Institute Warps and dust



Outline Holmberg’s analysis
Warps in HI Analysis of Disney et al.

Dust and absorption Background galaxies

Realise that for a thin, opaque dust layer in the central plane of
stellar disk we expect:

» Ap = 0.75 mag.
» No change in color index

> LFTR/Lopt ~1
In the Galaxy we are not in an optically thick part of the disk.

Extinctions towards the poles are estimated between 0 and 0.2
mag in B.

But there may be denser parts and towards the center absorption
may in general increase in galaxies.
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Outline Holmberg’s analysis
Warps in HI Analysis of Disney et al.

Dust and absorption Background galaxies

Analysis of Disney et al.

Disney et al.13 collected information from various sources,
Y
parametrizing it as

Lobs (i) = pto — 2.5nc log(a/b)
In a completely optically thin disk one expects n.z = 1 and in an
optically thick disk ne.g < 1.

Then for samples in the Second Reference Catologue (RC2) and
the Revised Shapley-Ames Catalogue (RSA) the following values
are found for n.g:

13M. Disney, J. Davies & S. Phillipps, Mon.Not.R.A.S. 239, 939 (1989)
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Outline Holmberg’s analysis
Warps in HI Analysis of Disney et al.

Dust and absorption Background galaxies

Type Holmberg | RC2 | RSA
Sa-Sb 0.46 0.72 | 0.46
Sbhc 0.46 0.68 | 0.65
Sc 0.65 0.68 | 0.65
Sd - 0.68 | 0.65
Sdm-Im - 0.96 | 0.82

So there is certainly evidence for some absorption.

Now look at some simple models of Disney et al.
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Outline Holmberg’s analysis
Warps in HI Analysis of Disney et al.

Dust and absorption Background galaxies

& SCREEN MODEL

DUST

The dust layer has optical thickness 7, the stellar disk emissivity
E* and thickness T.

Piet van der Kruit, Kapteyn Astronomical Institute Warps and dust



Outline Holmberg’s analysis
Warps in HI Analysis of Disney et al.

Dust and absorption Background galaxies

The observed surface brightness the becomes

L(i) = E*Tseciexp {—7seci}

Note that Holmberg's /' is L'(i) = L(i)cosi, so

W (i) = pl + Ay seci = 11/(0) + Aj(seci — 1)

The total face-on absorption becomes

A% = 1.0867

For <1
L(i) = E*Tseci

Piet van der Kruit, Kapteyn Astronomical Institute Warps and dust



Outline Holmberg’s analysis
Warps in HI Analysis of Disney et al.

Dust and absorption Background galaxies

The observed surface brightness is L(7, /) and the bolometric
surface brightness is L(0,0) sec /.

Consider a circular area 7a°, then total luminosity is

Lot = 7a?L(0,0) = ma2E* T

The observed face-on luminosity is

Lopt = ma*L(r,0)

If the dust re-radiates isotropically

LFIR, — Lb()l - LOpL — 7T32{L(0, 0) - L(Tv O)}

Piet van der Kruit, Kapteyn Astronomical Institute Warps and dust



Outline Holmberg’s analysis
Warps in HI Analysis of Disney et al.

Dust and absorption Background galaxies

The FIR surface brightness at inclination / then is
LFIR(i) = SeC I{L(O 0) — L(T, 0)}
and we can calculate (drop the 7's)
Lrr E*T — L(0)
—— =seCi——————
L(7) L(7)
So we get for the Screen Model

Lrir

L(7)

= exp {rseci}—1

For the optically thin case 7 < 1 this reduces to

Lrir

L(7)
Piet van der Kruit, Kapteyn Astronomical Institute Warps and dust
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Outline Holmberg’s analysis
Warps in HI Analysis of Disney et al.

Dust and absorption Background galaxies

& SLAB MODEL

Now make the model more realistic.

L,

$TARS + DUST

TR

The results then become:

L(i)= E:_T [1— exp {—7seci}]

Lrir T—14+ exp {—7}

. (=) L(i) el exp {—Tseci}
— exp (-7
A = 2.5|og{p}

-
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Outline Holmberg’s analysis
Warps in HI Analysis of Disney et al.

Dust and absorption Background galaxies

_ ) For the optically thin case 7 < 1
For the optically thick case 7> 1

L(i) = E*Tseci

. E*T
L(i) = —— = constant
T So L' is independent of /.
AB :25|OgT AB —_25 |Og (17 %)
L .
PR — (7 — 1) seci Lpin 7

L) i) 2
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Outline Holmberg’s analysis
Warps in HI Analysis of Disney et al.

Dust and absorption Background galaxies

& SANDWICH MODEL

In real galaxies the dust layer is thinner than the stellar disk.

* * * *STARS * *

// STARS + DUST //

* * STARS *

Let the thickness of dust layer be pT. Then

1—
L(i) =E*Tseci [2[3{1 + exp (—7seci)}+

p .
l=e —
Tseci{ exp (—7seci)}

Piet van der Kruit, Kapteyn Astronomical Institute Warps and dust



Outline Holmberg’s analysis
Warps in HI Analysis of Disney et al.

Dust and absorption Background galaxies

The optically thick case 7 > 1

now becomes fp<1
1 — . E* .
L(i) = E*Tseci & L(i) = 5 Sec!
2
2
Lrir
/FIR . (1+p)772p ~ — Sec/
—— =sec| L(7)
()~ *'a=pyr+2p

Piet van der Kruit, Kapteyn Astronomical Institute Warps and dust



Outline Holmberg’s analysis
Warps in HI Analysis of Disney et al.

Dust and absorption Background galaxies

The optically thin case 7 < 1

gives Ifp <1

-
stec/} L(i) = E*Tseci (1 5 sec1>

L(i) = E*Tseci{l -

1—p AB:72.5Iog<17g>
Ap = —25log< 1 — T
Lpir 7
L 7 TR

L(i) 2

Warps and dust
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Holmberg’s analysis
Analysis of Disney et al.

Dust and absorption Background galaxies

2.0

e triangles: 7 < 1 Screen }
Model L
e stars: 7 > 1 Slab Model g2 -

<

e dashes: 7 > 1 Sandwich P
Model (p = 0.5). Lo 1
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Outline Holmberg’s analysis
Warps in HI Analysis of Disney et al.

Dust and absorption Background galaxies

The optically thin Slab and Sandwich Models predict no
dependence of Holmberg surface brightness on inclination.

So observations are consistent with optically thick models, but the
results are very geometry dependent and therefore not yet
conclusive.

The near-IR data are also not entirely conclusive. Lpir can be very
large compared to L if star-formation occurs extensively in very
thick, obscured, but localized area’s (GMC's)

Disney et al. also calculate triplex models as above, which give
similar results as these simple models.

We can still extend the analysis by looking at the colors.
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Outline Holmberg’s analysis
Warps in HI Analysis of Disney et al.

Dust and absorption Background galaxies
In all models we had:

L(i)=E*TF(p,,i)seci

Take
v = 0.75718

Le(i)  E*(B) F(p, 78, i)
E*(V) F(p, v, 1)

[_\](I)
The color change between inclination 0° and 70° then is

F(p7 B, 7O)F(P~,T\/’: 0)
F(p,mv,70)F(p, 78,0)

A(B—V)=-25 Iog{

Piet van der Kruit, Kapteyn Astronomical Institute Warps and dust
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Outline Holmberg’s analysis
Warps in HI Analysis of Disney et al.

Dust and absorption Background galaxies

For the Sandwich Model we have:
e Optically thin (7 < 1):

F(p,7,i)=05=A(B-V)=0
e Optically thick (7 > 1):

1l =
F(p,T,/):Tp;»A(B—V):o

Here are some values for A(B — V) as a function of optical
thickness.
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Outline Holmberg’s analysis
Warps in HI Analysis of Disney et al.

Dust and absorption Background galaxies

7T | Screen [ p=1|p=05|p=0.1
0.1 | 0.05 0.02 0.02 0.02
0.5| 0.26 0.09 0.06 0.04
1.0 | 0.52 0.13 0.04 -0.01
20| 1.04 0.11 -0.04 -0.07
5.0 | 2.61 0.02 -0.04 -0.01
10. | 5.22 0.02 0.02 0.02

e For small 7 B is always more affected than V, so redder with
inclination.

e For large 7 at high inclination we see only up to the dust, so we
have unreddened colors.

However at face-on there is still reddening and disks become bluer
with inclination.
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Outline Holmberg’s analysis
Warps in HI Analysis of Disney et al.

Dust and absorption Background galaxies

Background galaxies

A very effective test in principle is to look for galaxies seen through
disks as in the pair NGC450/UGC807.

Y. Andredakis & P.C. van der Kruit, A.&A. 265, 396 (1992)
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Holmberg’s analysis
Analysis of Disney et al.

Dust and absorption Background galaxies

In the photometry we can deduce the surface brightness
distribution of NGC 450 in the area of overlap.
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Holmberg’s analysis
Analysis of Disney et al.

Dust and absorption Background galaxies

Subtraction then gives the “uneffected” image of UGC807.

Piet van der Kruit, Kapteyn Astronomical Institute Warps and



Holmberg’s analysis

Analysis of Disney et al.
Dust and absorption Background galaxies

This shows no color changes, so there is no significant gradient in
absorption.

Hagni tude

Pixels
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Holmberg’s analysis
Analysis of Disney et al.

Dust and absorption Background galaxies
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Outline Holmberg’s analysis
Warps in HI Analysis of Disney et al.

Dust and absorption Background galaxies

More sophisticated is to study images of galaxies with the Hubble
Space Telescope and identify background galaxies.

For this one takes images from the HST archive, essentially from
the key-project to derive the distance scale through Cepheids and
calibration of the TF-relation!®.

Then the test can be done by adding the Hubble Deep Field
(HDF) with the appropriate noise and background level and see
what fraction of these galaxies are recovered.

With this synthetic field method!® evidence for some absorption
has been found.

Psee www.ipac.caltech.edu/HOkp/.
18R A. Gonzélez, R.J. Allen, B. Dirch, J.C. Ferguson, D. Calzetta & N.
Panagia, Ap.J. 506, 152 (1998)
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Holmberg’s analysis
Analysis of Disney et al.
Dust and absorption Background galaxies
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Dust and absorption

isney et al.

Background galaxies

The synthetic field method works as
follows. One starts with a set of
HST images of nearby galaxies.

This is then compared to images
where the HDF has been superposed
with various amount of dimming.

The dimming where the same
number of galaxies per unit solid
angle is found then shows the
amount of absorption.

Piet van der Kruit, Kapteyn Astronomical Institute
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Outline Holmberg’s analysis
Warps in HI Analysis of Disney et al.

Dust and absorption Background galaxies

Here is the final result from this project!’:

Top: Average color of
background galaxies in
observed fields and in HDF
(dotted line) .
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7B .W. Holwerda, Ph.D. Thesis; B.W. Holwerda, R.A. Gonzalez, R.J. Allen
& P.C. van der Kruit, Ap.J. 129, 1381 (2004)
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Density wave theory

We distinguish two types of spiral structure, grand design
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and flocculent.
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Stellar kinematics

A comparative study of these two classes! suggests that in
grand-design spiral strcuture there seems to be a strong underlying
spiral wave in the stellar disk, while not in flocculent ones.

The density wave theory? was a response to the “winding
dilemma’, where material arms would wind up in a matter of 108
years or less.

The density wave is a spiral pattern, whose shape does not change
with time, and which moves through the stellar and insterstellar
disk.

!B.G. Elmegreen & D.B. Elmegreen, Ap.J.Suppl. 54, 127 (1984)
2C.C. Lin & F.H. Shu, Ap.J. 140,646 (1964), C.C. Lin, C. Yuan & F.H.
Shu, Ap.J. 155, 721 (1969)
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At the basis of a good description we can take the deduction that
in the disk of our Galaxy (and in many others) the inner Lindblad
resonance 2 — /2 is fairly constant.

In this resonance a star 7

goes through two sor
epicycles during one __ 50
revolution around the ‘Iﬁ‘qo__
center. That means it ;§30;
describes a closed oval £
orbit in a rotating i
coordinate system with 10t
Q—k/2. ol
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In a disk where this property is constant over most radii we can get
the following situation, where the stars are forced in orbits that line
up as a spiral pattern.

4 10

=
In a coordinate frame, rotating ///;7/////ﬁ
V1 e
with the pattern speed ///{(/W(((/ﬂ( ;/&\§
\(

[ ~\\

Q, = Q — £/2, the spiral Bor ( <\ %\ ﬂ({@m
A
NN

o

N

AN
N —

| \(
({ &\\\s\x\sv/f
pattern remains unchanged. \Q\\: \\\\\é/

4 -10
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In the original density wave theory the density perturbations
maintain themselves. The response of the stars to the perturbed
gravitational field by the density concentrations in the arms results
in a self-sustaining pattern of density perturbations.

It was realized later by Toomre and others that the dissipation of
energy in the waves is quick enough (~ 108 years) that
rejuvenation is required regularly.

It took until the first part of the seventies, before the underlying
wave in the stellar disk was discovered in surface photometry3.

3F. Schweizer, Ap.J.Suppl. 31, 313 (1976)
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The strongest confirmation came from studies of the interstellar
medium.
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The reponse of the gas and dust is a-linear, since the relative

velocities involved are supersonic?.

5 N
;440 -~
This gives shocks at the L5
inner sides of the spiral 810 1
arms and associated } Netyibom shois
dustlanes and star 3
formation. 2
E x}
E
o & -8,
Shock  Potential Potential
Minimum Minimum

*W.W. Roberts, Ap.J. 158, 123 (1969)
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spiral arm of HI

observed gaseous 1 Q

newly born stars
and HIL regions

The “delay” between dustlanes
and Hll-regions concerns the
time between onset of
gravitational instability and
birth of MS-stars.
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p Stochastic star formation model

It was also confirmed by radio continuum studies with the new
WSRT? in M51.

The compression holds at least
for the magnetic field and
possibly the relativistic
electrons, so the synchrotron
radiation will be enhanced at
the inside of the arms and at
the dustlanes.

I
13"28"2c* 13"28"00* 13"27"36° 13272t

rlght ascension (1950)

°D.S. Mathewson, P.C. van der Kruit & W.N. Brouw, A.&A. 17, 468-(1972)
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The next thing was to try and measure the streaming motions due
to the density wave. This was tried in M81 using HI.

Piet van der Kruit, Kapteyn Astronomical Institute Stellar kinematics and spiral structure
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The Ph.D. thesis of H.C.D. Visser® analysed this in detail.

He used the surface photometry of Scheizer and Hl-measurements
at Westerbork.

With that he was able to find an internally consistent
representation of the observations of at the same time both the HI
surface density distribution and the HI velocity field.

Here are the (non-linear) streamlines of the gas.

61978; see also A.&A. 88, 159 (1980)

Piet van der Kruit, Kapteyn Astronomical Institute Stellar kinematics and spiral structure



Piet van der Kruit, Kapteyn Astronomical Institute Stellar kinematics and spiral structure



Spiral structure

Density wave theory
Stochastic star formation model

Ma1
model

52"

h
9] 51

L&’ ' C el

- i 69710

M81
observations
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The streaming motions
are of the order of 10
km s~1.

Piet van der Kruit, Kapteyn Astronomical Institute Stellar kinematics and spiral structure



Outline
Spiral structure
Stellar kinematics

Density wave theory
Stochastic star formation model

Piet van der Kruit, Kapteyn Astronomical Institute Stellar kinematics and spiral structure



Outline
Spiral structure

Density wave theory

D . Stochastic star formation model
Stellar kinematics

A very exceptional case is the disturbed, star burst galaxy NGC
3310, which is probably an example of a recent merger”.

"P.C. van der Kruit & A.G. de Bruyn, A.&A. 48, 373 (1976); P.C. van der
Kruit, A.&A. 49, 161 (1976)

Piet van der Kruit, Kapteyn Astronomical Institute Stellar kinematics and spiral structure



Outline
Spiral structure

Density wave theory

. R Stochastic star formation model
Stellar kinematics

The velocity field shows strong signs of streaming motions related
to the spiral arms.

NGC 3310

Piet van der Kruit, Kapteyn Astronomical Institute Stellar kinematics and spiral structure
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Spiral structure

The streaming motions are here up to a third or so of the rotation
velocity.

xDyn Centre
 Nucleus

Piet van der Kruit, Kapteyn Astronomical Institute Stellar kinematics and spiral structure



Outline
Spiral structure

Density wave theory
Stochastic star formation model

Stellar kinematics

Stochastic star formation model

Density waves may be generated by tidal interactions, such as in
M51 or in NGC 3310, or through Toomre's swing amplification.

The flocculent spiral stucture is probably the result of stochastic
self-propagating star formation®.

Since the propagation and induced star formation is never 100%,
also this will die out unless there is also spontaneous star
formation.

8H. Gerola & P.E. Seiden, Ap.J. 223, 129 (1978)
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In this model star formation
through supernova explosions

0 0 many stars form at the same time

IS pOStUlated to Stlmulate star (an instantaneous burst of star formation)
formation in the neighborhood.

all stars evolve together and the massive ones
explode as supernovae around the same time

supernovae create shock waves

Such structures are then drawn st comprane e saame
out by differential rotation into
o compression triggers star formation and leads
arm-like features. te a new generation of stars further downstream
the stars of the niew generation evolve
On the next page some together and the story repeats itself

simulations. {
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It has been suggested® that grand-design spiral structure is
produced by bars or tidal encounters, while flocculent spiral
structure results if the disk is left by itself.

°J. Kormendy & C.A. Norman, Ap.J. 233, 539 (1979)
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To measure stellar kinematics one needs to analyse absorption line
spectra.

The assumption is that the galaxy spectrum is essentially that of a
late-G to early K-giant (the “template”), shifted by a radial
velocity and broadened by the velocity distribution.

This is based on the fact that the integrated light from an old

population is dominated by the stars in the upper part of the Giant
Branch.

Piet van der Kruit, Kapteyn Astronomical Institute Stellar kinematics and spiral structure
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The fundamental equation is

G(log\) = a S(log\ — ) = B

G(log\) = galaxy spectrum

S(logA) = template spectrum

B = broadening function

) = radial velocity

(V212 = velocity dispersion (the second moment of B)

Analysis is therefore exclusively based on Fourier methods!?, using:

10Following the fundamental discussion by S.M. Simkin, A.&A. 31, 129
(1971)
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Here is an example!!

B UL T e
»«MLMW%WW’!’MMWWWMMMWWWMMW

54B
‘www”\whfﬂ“-ngkf\“/\f i MM\W!\JWA JMW.”" VA iy Ay

3.68 3.70 3.72 374 3.76
log(h (A))

"From M. Kregel, P.C. van der Kruit & K.C. Freeman, Mon.Not.R.A.S. 351,
1247 (2004)
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Stellar kinematics

An often used part of the spectrum is around 5000A, where one
finds the Mgb triplet and many Fe | lines.

The figure? shows at the
top galaxy exposures
and below broadened
spectra of template
K-giants.

T T T
NGC 628 DISK

T T T T
NGC 628 BULGE

gttty e

D 213139
o= 0 kst

WWWM(""\WWW

?From van der Kruit &
Freeman, Ap.J. 278, 81
(1984)

+
D 164147

—ee—

o= i km st

AV AN

> 213139 HD 164147
o3kt 6= 73 km s
D 213139 HD 164147

. | . .
4900 5000 5100 5200
waverenern ()

4900 5000 5100 5200
WaveLensti ()
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There are three general methods.

» Power spectrum method!?.
e ¢ from cross-correlation peak
° <V2>1/2 from slope of power spectrum

» Fourier quotient method!3.
e Assume B is a Gaussian
e Then B is also a Gaussian (but complex)
e Fit a Gaussian to G(k)/T (k)

» Cross-correlation method!#.

e ) from cross-correlation peak

o (V?)1/2 from width of cross-correlation peak

2G.D. lllingworth & K.C. Freeman, Ap. J. 188, L83 (1974)

3due to Paul Schechter; W.L.W. Sargent, P.L. Schechter, A. Boksenberg &
K. Shortridge, Ap.J. 212, 326 (1977)

%), Tonry & M. Davis, A.J. 84, 1511 (1979)
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Stellar kinematics

The major progress in this area is the use of integral-field units, as
in the DiskMass project!® so that large areas can be observed at
once (and compared to other data).
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M.A. Bershady, M.A.W. Verheijen, et al., Ap.J. 716, 198 & 234 (2010)

Piet van der Kruit, Kapteyn Astronomical Institute Stellar kinematics and spiral structure



STRUCTURE AND DYNAMICS OF GALAXIES

19. Dynamics of spiral galaxies: Stars

Piet van der Kruit
Kapteyn Astronomical Institute

University of Groningen, the Netherlands
www.astro.rug.nl/~vdkruit

Beijing, September 2011

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of spiral galaxies: Stars



Outline
Stellar velocity dispersions

Global stability

Outline

Stellar velocity dispersions
Z-velocity dispersion
R- and 6 -velocity dispersions
The Bottema relations
Implications for maximum disk and stability

Global stability

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of spiral galaxies: Stars



Z-velocity dispersion

R- and 6 -velocity dispersions

The Bottema relations

Implications for maximum disk and stability

Stellar velocity dispe

Global stability

Stellar velocity dispersions

Piet van der Kr Kapteyn Astronomical Institute i iral galaxies: Stars



Z-velocity d

Outline
Stellar velocity dispe S

The Bottem

Global stabilit .. . . .
obal stability Implications for maximum disk and stability

Z-velocity dispersion

If disks have constant mass-to-light ratios M/L, the density can be
described by

p(R, z) = p(0,0) exp (—R/h) sech *(z/z)

The vertical velocity dispersion then is

(VA2 = /27 Gp(R,0)z

and it is expected that

(VA2 ¢ exp (—R/2h)

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of spiral galaxies: Stars
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This can be tested by observations in face-on systems, e.g. NGC
52471,

+ N 0 1 2
<Vi>l NGC 5247
o (kms™) }
00t 1

50—%

0 50 100
Distance from centre (arcsec)

1p.C. van der Kruit & K.C. Freeman 1986, Ap.J. 303, 556 (1968)
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Global stability

The fit is

(V212 = (62 + 7) exp [—(0.42 + 0.10) R/h]km s~

This is consistent with M /L about constant.

It has been confirmed in various studies since then.2

2See recent review by P.C. van der Kruit & K.C. Freeman, Ann. Rev.
A.&A. 49, 301, 2011
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Implications for maximum disk and stability

R- and ¢ -velocity dispersions

From fundamental kinematics we have

(Vo — Vi)?) B

(Vi)  B-A

So, if we know the rotation curve we know the ratio of the radial
and tangential velocity dispersion.
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Global stability

The other property to consider is the asymmetric drift.

The hydronamic equation can be written as

0
K = VB (V)|
1

R {{VR) — (Ve — )2+

n(v(Vi)) +

<VZVR>(§)Z(|”V<VZVR>)}

Poisson’s equation is

OKr Kr @ OK,

(’)RJrR 0z

= —A4nGp
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For small z it can be shown that

0Kr Kgr
—— 1+ —~=2(A-B)(A+B
e+ = 2(A— B)(A+B)
and for a flat rotation curve A = —B, so that
0K,
= —4nG
0z R
Then
(V,VR) =0

Obviously we have
KR - Vrzot/R

For an exponential disk with constant M/L

0 1
—lhw ===

OR h
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Implications for maximum disk and stability

The asymmetric drift equation then becomes

R 0 B
2 2 _ /2 _ 2\ — _
Vrot VL <VR> h RaRIn<VR> {]‘ BA}:|

There are now two possibilities for observing. The first is to
measure (V/2)'/? directly from spectra.

The difficulty is the line-of-sight integration. This has to be treated
by modeling as was done in the edge-on galaxy NGC 51703.

The profiles now have become asymmetric.

3R. Bottema, P.C. van der Kruit & K.C. Freeman, Ap.J. 178. 77 (1987)
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Global stability

Using an estimate of the circular motion from the HI-rotation
curve one can calculate the profiles in a stellar “l,V-diagram”.

To do this one needs an assumed radial variation of the velocity
dispersion, the rotation curve (and from that the Oort constants)
and the density distribution of the stars.

In the figure here we see a few such simulations. The three lines in
each panel are form top to bottom: the circular motion from
Hl-observations, the stellar rotation velocity and peaks of
Gaussians fitted to the resulting profiles.
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The second option is to measure the asymmetric drift.

The relevant equation was

R 0 B
2 2 2 - 2\ _
Vi = VZ = (VR) |5 — Rgp In(V) {1 BAH

So we see that we need to measure:
» Viot, A and B from HI-synthesis or emission line spectroscopy.
» V; from absorption line spectroscopy.

» h from surface photometry.
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For a flat rotation curve:
B 2V2
B_ A 0.5 and x% = 7/?12“
For small asymmetric drift:
%

rot

— VL2 ~ 2\/1~()t,(\/1‘()t — \/t)

Now consider two possibilities:

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of spiral galaxies: Stars



Z-velocity dispersion

R- and 0 -velocity dispersions

The Bottema relations

Implications for maximum disk and stability

Outline
Stellar velocity dispersions

Global stability

e Model | with (V32)/(V?) constant. Then

(VA2 o exp (—R/2h)

V2
Vrot - VL - < R>

e Model Il with @ constant. Then

(VR)Y? o R exp (—R/h)

(V) (3R
Viot — Vi = — | — — 2.
! ! 2Vrot h °
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How different are these models? For comparison calculate a @
(arbitrarily set to unity at one scalelength) for the first model:

R/h=1.0 Q=117

1.5 1.00
2.0 0.96
3.0 1.06
4.0 1.31
5.0 1.73

We see that the models are really not different up to four h.

Numerical experiments on dynamics of stellar disks give
Q ~ 1.5 — 2.0 at all radii.
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The Bottema relations

R. Bottema? observed stellar velocity

dispersions in a set of 12 galaxies.
He then defined as fiducial values the radial R R T
velocity dispersion at one scalelength for '

inclined systems and the vertical velocity
dispersion in the center for face-on

Velocity Dispersion (knis)

systems. 27 LT N ST
This difference should roughly correct for I
the ratio between these dispersions. T P
?Ph.D. thesis (1995); Bottema, A.&A. 275, 16 S ] T
(1993) { P

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of spiral galaxies: Stars



Z-velocity dispersion

R- and 0 -velocity dispersions

The Bottema relations

Implications for maximum disk and stability

Stellar velocity dispersions

He then found the following relations

<V]%>11q/2h <V2>%{/20 = —17 x Mg — 279 km/s

(VAF2, = (V22 = 0.20Vio, km/s

160 - 7
z 1z
€ s 120 1
5 1% 1
% 2
& &
g 1B
5 2 s =
2
s - {W —
: &
K] AF ok sa e 4
2y Y 1 ;
vt y. ! ——
e 158K x: inclined (w2 w4
ol

L L L L L L L L L L L
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Max. Rotational Velocity (km/s)
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Absolute Luminosity, old disk only (B-mag)
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Can we understand these relations?
From the definition of @ we have
Q o (V§)!/2k0 1
For a flat rotation curve
ko< Vg R
An exponential disk has
o X pio(M/L) exp (—R/h)

Combining these equations gives

(VB2 o p1o(M/L)QhVio!
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Implications for maximum disk and stability

Now L  poh? and the Tully-Fisher relation gives L oc V7, with
n=4, so

(VBYY2 o 110 (ML) QVoor o 110 (M/L) QLY

So we expect that 1., M/L and @ or at least their product are
constant between disks.
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Implications for maximum disk and stability

We had for hydrostatic equilibrium at the center

(VA2 = (2.3+0.1)y/Gooze

0, is the central surface density and the range in the constant
results from the choice of n.
The maximum rotation velocity of the exponential disk then is

h
disk = 0.88y/7Gooh = (0.69 + 0.03) (V)12 1/ —

Ze
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Global stability

With the Bottema relation between this central velocity dispersion
and the maximum observed rotation velocity we get

Vaisk [ h
= (0.21 =0.08)4/ —
Viot ( ) Ze

Analysis of a sample of edge-on galaxies gives for the ratio of
scaleparameters 7.3 + 2.2% so that

V( is
Sk — (057 +0.22)
Vrot

So disks in general are not maximum disk.

M. Kregel, P.C. van der Kruit & R. de Grijs, Mon.Not.R.A.S. 334, 646
(2002)
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Z-velocity dispersion

R- and 0 -velocity dispersions

The Bottema relations

Implications for maximum disk and stability

Stellar velocity dispersions

Bottema® first showed with this argument that his relations implied
that for maximum disk situations the stellar disks should be much
flatter than observed.

Velocity Dispersion (km/s)

———— lindisp. (M/Lls = 20

1 1 1 1 1 1
120 160 200 240 280 320
Max. Rotational Velocity (km/s)

°R. Bottema, A.&A. 275, 16 (1993)

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of spiral galaxies: Stars



Z-velocity disp

R- and 6 -velo

The Bottema rela
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Outline
Stellar velocity dispersions

Global stability

For a flat rotation curve we have

k=2\B(B—A) = fz\/;’t‘

From the definition of @ and applying at R = h we get

3.36G _o(R = h)h
V22

Using hydrostatic equilibrium (also at R = h) gives®

<VZ2>1/2
<V12{>1/2

P.C. van der Kruit & R. de Grijs, A.&A. 352, 129 (1999)
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The Bottema relations

Implications for maximum disk and stability

Outline
Stellar velocity dispersions

Global stability

In the solar neighborhoud this axis ratio of the velocity ellisoid is
~ 0.57 and for the Galaxy we have z. ~ 0.35 kpc and h ~ 4 kpc,
so that

Q ~ 2.5.

Taking all data and methods together it is found that this applies
in all galaxies; disks are locally stable according to the Toomre
criterion.

Numerical studies give such values for @ when disks are marginaly
stable.

"W. Dehnen & J. Binney, Mon.Not.R.A.S. 298, 387 (1998)
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Stellar velocity dispe

Global st;

Swing amplification® of disturbances occurs as a result of the shear
in rotating disks and turns these disturbances into growing trailing
spiral waves.

It can be formulated in a criterion for prevention of this instability®

Rk?
X=———23
27Gmo(R)

Here m is the number of spiral arms.

8A. Toomre, in a Cambridge conference on Structure and Evolution of
Galaxies (1981)

°J.R. Sellwood, IAU Symp. 100, 197 (1983)
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Global stability

For a flat rotation curve this can be rewritten as

Q\/roL

and with Bottema's relation it translates into

QR211lm

To prevent strong asymmetric m = 1 or bar-like m = 2 instabilities
we require Q < 2.

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of spiral galaxies: Stars



Stellar velocity disper

Global stability

Numerical studies have indicated that disks with velocity
dispersions as observed show global instabilities when evolving by
themselves.

Disks can be stabilised by massive halos and therefore global
stability requires that the disk mass has to be less than a certain
fraction of the total mass, according to the criterion1?

h 1/2
V= V]'ot <ledk> Z, 1.1

This implies that within R..x the mass in the halo M., > 75%.
This is also not true for maximum disk.

G, Efstathiou, G. Lake & J. Negroponte, Mon.Not.R.A.S. 199, 1069 (1982)
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Stellar velocity dispersions

Global stability

The criterion can be rewritten as

QRVior 12 R
Y =0615 | — > —— ] 211
0.615 {h(VE{)l/?] exp h

Evaluating this at R = h and using the Bottema relation gives

QR?2

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of spiral galaxies: Stars
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Rotation and shapes

With Fish's law (constant central surface brightness) and constant
M /L then follows the Faber-Jackson relation! between luminosity
L and stellar velocity dispersion o:

L oo

This is equivalent to the Tully-Fisher relation for spirals.

There is also a relation between diameter Dy, (the radius at which
the mean surface brightness is 20.75 mag arcsec2) and the
velocity dispersion?:

Ds. o3

!S.M. Faber & R.E. Jackson, Ap.J. 204, 668 (1976)
2A. Dressler et al., Ap.J. 313, 42 (1987)
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Rotation and shapes

This can be used to decrease the scatter in the FJ-relation by
including surface brightness ((SB.) = mean surface brightness
within the effective radius) as a second parameter

L O_2.65<SBG>70.65.

The “fundamental plane” of elliptical galaxies is a relation between
some consistently defined radius (e.g. core radius) R, the observed
central velocity dispersion o and a consistently defined surface

brightness /3:
R o gl4£0.15;-0.9+0.1

3see J. Kormendy & G. Djorgovski, Ann.Rev.Astron.Astrophys. 27, 235
(1989)
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Fundamental Plane

Rotation and shapes

In broad terms the Fundamental Plane can be understood as
follows.

For equilibrium the Virial Theorem states that
2T +Q2 =0
where Ty is the total kinetic energy and €2 the potential energy.

The kinetic energy is proportional to MV? and the potential
energy to M?/R. Here M is the total mass, V/ a typical internal
velocity and R some characteristic radius.

All the information on the detailed density and velocity structure is
in the proportionality constants.

Piet van der Kruit, Kapteyn Astronomical Institute Elliptical galaxies: Global dynamics
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Rotation and shapes

Thus we have
M x RV?

For elliptical galaxies the kinetic energy is dominated by that in
random motions rather then rotation. So for V' we will take the

mean velocity dispersion* o.

With the mass-to-light ratio M/L, we replace M with L(M/L) with
L the total luminosity. For R we take a typical radius such as the
effective radius; then we get

M
RXL<L>O'2

*If o is the observed line-of-sight velocity dispersion, the typical velocity is
actually the three-dimensional velocity dispersion 3o.

Piet van der Kruit, Kapteyn Astronomical Institute Elliptical galaxies: Global dynamics
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Rotation and shapes

If / is the mean surface brightness within R we have / oc LR~2 and
A
Roco®l™( —
o (2)

The observed FP was

R 0_1.4i0.15l—0.9i0.1

The coefficients are close to the observed ones. Differences arise
because of variations in actual structural parameters and possible
dependence of M/L on M and/or o.

Piet van der Kruit, Kapteyn Astronomical Institute Elliptical galaxies: Global dynamics
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Rotation and shapes Detailed kinematics

Flattening of oblate spheroids

If we consider elliptical galaxies to be oblate spheroids, flattened by
rotation we can estimate how much rotation is needed using the
virial equation.

Let the spheroid be flattened along the z-axis. Then the symmetry
with respect to this axis requires

(Vr) = (Vi) = (W Vo) = (V. Vo) =0
The rotational velocity is (Vj).

Start with the motions tensor

Piet van der Kruit, Kapteyn Astronomical Institute Elliptical galaxies: Global dynamics
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Fundamental Plane Vin /& — € relation and triaxiality
Rotation and shapes Detailed kinematics
We have
(ve) = (Vp)sinf ;  (vy) = (Vp) cosb
Then
Txy — % /[)<VX><Vy>d3X
' 2 0o 0O
= 3 / / / p(R, z)(Vg)?sin O cos 6 dz dR df
JO JO —00
=0
since

2m 2T
/ sinfcosfdf = 3 / sin(20)dO =
Jo Jo

Lsin?(0) ‘Oﬂ =0

Piet van der Kruit, Kapteyn Astronomical Institute Elliptical galaxies: Global dynamics
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Similarly, all non-diagonal elements of the tensors Tj;, 1 and W;
can be shown to be equal to zero.

Them because of symmetry in the system we must also have

Tux = yy o My = I_Iyy ) Wxx = VWyy

So the only non-trivial virial equations are
2Txx+|_lxx+Wxx:0 ) 2Tzz+|_|zz+sz:0

So
2 TXX —"_ I_IXX WXX

27_ZZ + I_IZZ N WZZ

Piet van der Kruit, Kapteyn Astronomical Institute Elliptical galaxies: Global dynamics
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Rotation and shapes Detailed kinematics

The ratio W,/ W, for density distributions with surfaces of equal
density being confocal ellipsoids can be shown to be independent of
the actual radial dependence of the density. | illustrate that now.

Assume that the axis ratio is ¢/a and therefore the excentricity

62
V-2
a

Let the density along the major axis be p(R). Define

Z2

a(R,z) = R*> + 1 o2

Then inside the spheroid with radius a the forces and potential are

47TG 1 —c / ) sin ddd

Piet van der Kruit, Kapteyn Astronomical Institute Elliptical galaxies: Global dynamics
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wnGVI— & /
——7
6’3 Jo

K, = p(a)tan® 3dj

4Gyl —e2 [ [° a
®(R,z) = @ {/ p(a)afda +sin~te / p(oz)ozdoz]
= Jo Js
Here
) R2 Z2
52 = S
e
and
5 sin? 3 + z%tan? 3
a” =

e2
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With partial integration we may write in the equation for Ky

sin~le sin"le o
. 2 14
sin® B8dB3 = pB; — / —dp
/0 ! ! Jo op
with
sin"le in—le
B = / sin? 6dg = %( 3 — sin (3 cos d)}
Jo
This is a constant and then
47 G/1 — €2 sin~le g
Kp=— 1oV~ pp, /)—/ Pds
e 0 8d
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Similarly

dp

_4WszB 5 /'Sinle ap
e3 2hl2 Jo 8[5

with

=il

sin e .
B2 = / tan2 /gdﬁ = (—{)) + tan {))) Sm le
0

Now remember that

- 50 :
WRR——. RaRd3x/RKRd3x
b
W,, = — /zad3xz /zKZda‘x
) 0z
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Rotation and shapes Detailed kinematics

So in the ratio W, /., the dependence on the functional form of

p disappears®.

In fact, to a good approximation, for oblate bodies we have then

2 Tax + My - Wi (C>70'9

2—,_ZZ + I_IZZ a sz > 5

Now consider the cases where the system is either rotating or not
or has an isotropic or anisotropic velocity distribution.

®The actual ratio is related to parameters in Table 2-1 of Binney &
Tremaine.
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Outline Flattening of oblate spheroids
Fundamental Plane Vin /G — e relation and triaxiality
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A. Isotropic and rotating.

Then the velocity dispersion o is independent of direction. But it
may vary with the ellipsoidal surface it is on and therefore we use a
density-weighted rms (one-dimensional) velocity dispersion 7. So,
if the total mass is M

My = / po2.d3x = Ma? =,

Say, the density-weighted rotation velocity (around the z-axis) is

V/: then vX2 = %\_/2, and we get

T,,=0

Piet van der Kruit, Kapteyn Astronomical Institute Elliptical galaxies: Global dynamics
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Fundamental Plane
Detailed kinematics

Rotation and shapes

Therefore _
%MV2 + M52 B (C)*O-g
M2 - \a

This can be reduced to

\V 0.9
z=2[(7" -1
o a

This is interesting, since it shows that a large amount of rotation is
necessary to give rise to flatterning. E.g. for a rather modest
flattening of c/a = 0.7 one needs V ~ 0.95.

Elliptical galaxies: Global dynamics
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B. Anisotropic and non-rotating

Then Ty = 0 and My = M52, M,, = M52,

Oy (C> —0.9

@ a
For the same modest flattening of c¢/a = 0.7 one now needs only
a small anisotropy 7, /G ~ 0.85.

This gives

Piet van der Kruit, Kapteyn Astronomical Institute Elliptical galaxies: Global dynamics
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Rotation and shapes Detailed kinematics

C. Anisotropic and rotating

Write
N, =(1-0)Nw=(1-0Ms°

We have again 7., =0 and 2T, = s M V2.

Then

V_ |2 {(1 ) (5)70'9 - 1}

o a

This would mean that we can expect a relation between V//5 and
the ellipticity e = 1 — (c/a) in elliptical galaxies.

Piet van der Kruit, Kapteyn Astronomical Institute Elliptical galaxies: Global dynamics
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Rotation and shapes Detailed kinematics

However, we observe these systems from random orientations and
see an apparent flattening, a projected rotation and the integrated
velocity dispersion along the line-of-sight.

It turns out that this only shifts the galaxies that are oblate,
isotropic rotators in the apparent (Vy, /G — €)-plane roughly along
the line of the correlation®.

So we can compare the observations with the predictions from the
anisotropic, rotating case.

®See Binney & Tremaine, section 4.3 (page 217)
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Vin/7 — € relation and triaxiality

Originally elliptical galaxies were thought to be simple systems,
mainly supported by random motions and flattened by rotation.

The rotation turned out to be too small to provide the flattening
so this had to be due to anisotropic velocity distributions.

A parameter used is the ratio of the observed (projected)
maximum rotation velocity V;, and the observed line-of-sight
velocity dispersion at the center &.

This is a measure of the relative importance of rotation and
random motions.

Piet van der Kruit, Kapteyn Astronomical Institute Elliptical galaxies: Global dynamics
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Rotation and shapes Detailed kinematics

It can be compared to the observed flattening e = 1 — b/a with a

and b the (projected) major and minor axis’.

The symbols in the next graph indicate models with isotropic
velocity dispersions that are flattened by rotation and seen under
various inclinations.

The bars are data and rotate less than expected for the observed
flattening.

Note that the models lie on a well-defined line where the intrinsic
relation roughly coincides with the projected one.

'G. lllingworth, Ap.J. 218, L43 (1977)
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Further work® showed that spiral bulges and faint ellipticals are
fast rotators.

Fi16. 3.—Comparison of bulge data (filled circles) with all
~{ available elliptical galaxy data (crosses, arrows indicate upper
imits) in the dimensionless rotation-ellipticity plane. Derivation of
V,,, 0, and ¢ is discussed in the text. The line labeled 1SO
-epresents projected models of oblate spheroids with isotropic
-esidual velocities and rotational flattening. The line labeled AN-
[SO describes a typical anisotropic oblate model with o, smaller
:han o, and 0.

8e.g. J. Kormendy & G. lllingworth, Ap.J. 256, 460-(1982)
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Minor axis rotation was first discovered in NGC 4261°.
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°R.L. Davies & M. Birkinshaw, Ap.J. 303, L45 (1986)

Piet van der Kruit, Kapteyn Astronomical Institute

Elliptical galaxies: Global dyr



Rotation and shapes

Flattening of oblate spheroids
vlll/-

Detailed kinematics

— e relation and triaxiality

The maximum rotation is in p.a.~ 70°, while the isophotes have
major axis at ~ 160°.
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The suggestion was made that this galaxy is prolate.

Elliptical galaxies: Global dynamics

Piet van der Kruit, Kapteyn Astronomical Institute



Outline Flattening of oblate spheroids
Fundamental Plane Vin /G — € relation and triaxiality

Rotation and shapes Detailed kinematics

It turned out that elliptical galaxies are triaxiall0.

This explains the (V;,/0 — €)-relation, the isophote twists and the
minor axis rotation.

Minor axis rotation can result from?11:
» projection effects in triaxial systems or

» misalingment of the angular momentum and the shortest axis.

10) Binney, Mon.Not.R.A.S. 183, 779 (1978)
M. Franx, G. lllingworth & P.T. de Zeeuw, Ap.J. 383, 112 (1991)
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Define the misalignment )i,
as the angle between the
intrinsic short axis and the ! A Sbhare
angular momentum. oy
. & / ;' .g
Define for axes a > b > c the qq“" / g‘
triaxiality o8 £ L0
&« i I §
2 42 2.2 Triazial Elpsoids | 8
a—b 1—b%/a Lo
T — _ T=1 2/3  1/3 | T=0
a2 —c2 1-—c?/a® Neadle ! i
0 . + Cireular
(4] Eliptic Disks 1 Disk
b/a

Thus T=0: oblate;
T=1: prolate.

Elliptical galaxies: Global dynamics
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We can measure the apparent
ellipticity € and the apparent
misalignment 1 (the ratio of
maximum observed velocity on
the apparent axes)

Vmin

tany =

Vmaj
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The distributions observed give the following rough indications:

» Most (at least 50%) ellipticals have a small ¢,y ( < 10°), but
some (=~ 10%) rotate along their major axis.

» (T)~ 0.3 and T has a wide distribution with possibly as
much as 40% of the galaxies prolate.

» The ratio c/a has a peak at about 0.6-0.7.

Dust lanes are often seen'? and occur usually along the apparent
minor axis, but also sometimes along the major axis.

12F Bertola & G. Galletta, Ap.J. 226, L115 (1978)
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Here is NGC 1947.
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In triaxial potentials stable orbits are possible, but the detailed
kinematics depends on the galaxy shape and body rotation.

In principle dust lanes can be used to determine the intrinsic shape
of an individual galaxy 3.

13R L. Merritt & P.T. de Zeeuw, Ap.J. 267, L19 (1983); J. Kormendy & G.
Djorkovski, Ann.Rev.A&A. 27, 235 (1989)
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FIGURE TYPE OF DUST—LANE DUST~LANE
ROTATION AXIS ORBIT APPEARANCE  KINEMATIC SIGNATURE
Equatorial 0@ —®e Prograde
@ Short -8
e @ A Perpendicular,
then retrograde
Equatorial Retrograde
Long
Anomalous i Perpendicular,
Bl e then prograde
L>
)

Figure 1 Stable orbits of gas in a rotating triaxial galaxy (adapted from Merritt & de Zeeuw
1983). As illustrated, the figure tumbles in the direction of stellar rotation (Q, > 0);if Q, < 0,
the sense of gas rotation is reversed. Assume that the figure rotates about its shortest or
longest axis (leff). The second column gives the kind of orbit, and the third sketches resulting
dust lanes seen edge-on. Anomalous orbits have different orientations at different radii (van
Albada et al. 1982). They are the analogues of polar orbits in a stationary potential; at small
radii, where €0, is unimportant, they are polar. At large radii, the figure rotates several times
during an orbit and so is effectively oblate-spheroidal; then the orbit is equatorial (Simonson
1982). In between, the orbits have skew orientations determined by the Coriolis force. The
schematic illustrations of dust lanes show the directions of stellar and gas motion; © indicates
approach, and @ indicates recession, The right column states the kinematic signature, i.e.
the sense of rotation of the dust lane with respect to the stars.
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Detailed kinematics

Detailed kinematics, including higher order moments of the
velocity distyribution, of the velocity distributions can now be
observed very well.

An example is a study of NGC33794.

Dynamical modeling shows that NGC 3379 may be a flattened,
weakly triaxial system seen in an orientation that makes it appear
round.

14T S. Statler & T. Smecker-Hane, A.J. 117, 839 (1999)
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NGC 4365
SAURON /WHT

Recently the SAURON integral
field spectrograph has been
built and used to survey
kinematics and structure of T e N
elliptical galaxies?.

N
2 7 acsec

°P.T. de Zeeuw et al.,
Mon.Not.R.A.S. 329, 513 (2002)
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Central kinematics and black holes

Dynamical models
Stackel potentials
The perfect ellipsoid
Types of orbits

Dark matter
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The central regions often show kinematics deviating from the outer
parts.

These distinct cores may show:
» Rapid rotation in the core but slow rotation in the main body
» Opposite rotation in the core relative to that in the main body
» Core rotation along the minor axis.

The distinct cores usually show small velocity dispersions, which
suggest a two-component galaxy consisting of an elliptical with a
small central disk.
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Central kinematics and black holes

Evidence for black holes comes from rapid rotation and high
velocity dispersions in the inner regions, such as in NGC 45941 or
our own Galaxy.
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Central kinematics and black holes
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A compilation of all available data® shows a tight correlation
between the mass of the black hole and the luminosity or velocity
dispersion in the main body of the elliptical galaxy or bulge.

Probably this means no more than that larger galaxies have more
material to feed into the center.

2S. Tremaine et al., Ap.J. 574, 740 (2002)
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Central kinematics and black holes

IS M o
ZE b bl d 13
Rl T A *ﬁf-i 1 P E
EH L A IS
TUE [ z

-14 =16 =18 =20 =22 1.8 2.0 2.2 24 28
MEI,bngE |0g Ue (km S_])

Piet van der Kruit, Kapteyn Astronomical Institute Elliptical galaxies: Dynamical structure



Outlir

Central kinematics and black holes Sl tentials

The perfect ellipsoid
Types of orbits

Dynamical models
Dark matter

Dynamical models

Piet van der Kr Kapteyn Astronomical Institute cal gala Dynamical structure



Outline

Central kinematics and black holes Sl poinil

The perfect ellipsoid
Types of orbits

Dynamical models
Dark matter

Stackel potentials

The most simple description of an elliptical is that of King models,
which are isothermal spheres with tidal radii and truncations in the
velocity distributions. For these we have can estimate the total

mass from
M 902

L~ 27Glor,

However, we have seen that ellipticals have anisotropic velocity
distribrutions and are in general triaxial.

A describtion then is with Stackel potentials, which are potentials
that are separable in ellipsoidal coordinates.
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These are coordinates (A, 1, ) that are the three roots of 7 for

X2 y2 Z2

+ + = il
T+a T+B T+7

with a < <~ three constants. It then turns out that

—A<rv< < pu<—a<

The line element is ds? = P2d)\2 + deu2 + R2du? with

p2__ (—p(A-v) o2 (m=r)(p=A)
AA+a)A+B)A+7) 4p+ a)(p+ B)(n+7)
o r=Nw-p

Av+a)(v+0B)(v+7)
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In such coordinate systems surfaces of constant A\ are ellipsoids, of
constant p hyperboloids of one sheet and of constant v
hyperboloids of two sheets.
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Stackel potentials are of the form

S\, p,v) = — F(A) _ F(u) - F(v)

C-0—2) w=-0)u-N @-Nr-n)

This can be used to describe triaxial galaxies>.

Many density distributions can be locally approximated with a
Stackel potential.

For example, it is possible to derive a local approximation to the
the potential in a disk with a flat rotation curve by a Stackel
potential?.

3P.T. de Zeeuw & D. Lynden-Bell, Mon.Not.R.A.S. 215, 713 (1985); P.T.
de Zeeuw, Mon.Not.R.A.S. 216, 273 (1985)
“T.S. Statler, Ap. J. 344, 217 (1989)
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If the density is specified on the z-axis and if the potential is of the
Stackel-form in a specified ellipsoidal coordinate system, then the
density at any point can be calculated with the so-called
generalized Kuzmin formula®.

A set of models with simple density profiles has been calculated® to
illustrate the usefulness.

A nice example is the modified Hubble model, which has

p(z) = poll + 22) 32

Then the coordinate system determines what the axis ratio's are in
the density distributions and these change with radius.

°P.T. de Zeeuw, Mon.Not. R.A.S. 216, 599 (1985)
®P.T. de Zeeuw, R. Peletier & M. Franx, Mon.Not.R.A.S::221, 1001 (1986)
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Here are isodensity curves for a typical triaxial modified Hubble

model (contour interval log 3).

So, this density distribution has smooth isodensity surfaces and has

in a potential of Stackel form!

Elliptical galaxies: Dynamical structure
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The perfect ellipsoid

Every orbit in a Stackel potential is the sum of three motions, one
in each coordinate.

As a result motion is bounded by coordinate surfaces.

It is of use to study the types of orbits that arise in triaxial
potentials.

A beautiful illustration is the case of the perfect ellipsoid”, which is
both stratified on concentric (triaxial) ellipsoids and produces
exactly a Stackel potential.

"P.T. de Zeeuw, Mon.Not.R.A.S. 216, 273 (1985)
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The perfect ellipsoid has the density distribution

+—+Z— ; a>b>c

Po : ~2_Xj Y
==

2 2
2

/’:( 2

1+ m2)?
This has semi-axes ma, Mmb and fmc and falls off as m—* at large

distances.

The function F(7) in the equation for the potential then is

"0 vu—p du

o V(—a)lu—y)utT

F(7) = nGpoabe(t + o) (T +7)
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There are exact solutions for the (isolating) integrals of motion:
H=X+Y+Z

J= (p+ )X+ @AY + (A + p)Z
K = pvX +vAY + A\uZ

where
PR RN L @R F
A sy 1wy, B A S e Ry
7 _ R?1/? 3 F(v)
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These integrals are all quadratic in velocity and have the dimension
of an energy.

It is more insightfull to write the integrals as the energy (as usual)
and two non-classical integrals:

h=H
| 70(2H+(MJ+K
T a—y
vH+~J+ K
=117
¥ -«
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Special case |: the prefect prolate spheroid. Here v = (3 (so the
long axis is the x-axis). Since

—v<v< < u<—a<A

we have
v=—y=p0

The third integral then becomes the (classical) angular
momemtum along the x-axis

ls=3(yz - 2y)* = L3

The integral /5 remains a non-classical one.
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Special case Il: the perfect oblate spheroid. Then we have
p=—0p0=—a.

In this case the angular momentum around the z-axis is an
isolating integral:

b =3(xy—yx)?=1L2

I5 is the well-know third integral of Galactic dynamics.

I3 remains a non-classical integral.

Piet van der Kruit, Kapteyn Astronomical Institute Elliptical galaxies: Dynamical structure



Outline

Central kinematics and black holes SlErld) premiE

The perfect ellipsoid
Types of orbits

Dynamical models
Dark matter

Special case Ill: If we collapse the perfect oblate spheroid along the
symmetry axis we get the Kuzmin disk.

With ;= —(3 = —«a and 7 = 0 we get the same /5 as above and in
addition
Iy =312 + 315 + Laz® — a|z|®

(2 is the coordinate system focal distance above and below the
plane)

Is has the property of an energy associated with the zaxis.

In this case we then have three isolating integrals E, /5 and /5.
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Special case IV: the perfect sphere. Then
p=v=—-—y=—-0=—a. So

J=3%1>-2aH : K=o*>—1al® ; h+Il3=117
with L the total angular momentum vector (L, o L))o

Then there are four isolating integrals of motion , namely the total
energy E and the three components of the angular momentum L,
Ly and L,.
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Types of orbits

For dynamical studies it is important to investigate the possible
general types of orbits in the kind of potential considered. Here we
look at orbits in triaxial potentials using the perfect ellipsoid.

It can be shown that the equations of motion become
E = 2(7 + B)pz + Peqr(7)

with _
pr=PX ; p=Q% ; p,=R%

I n I3
T+« T+

Depending on the values of the integrals there are four general
types of orbits.
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Next consider orbits in the (x, y)-plane.
This is for v = —y and p2/2R? = 0.
It can be shown that for orbits in this plane we have
I3 =0
Then two types of orbits remain, which are versions of the orbits
earlier, but now collapsed onto the (x, y)-axis.

These orbits turn out to be stable for perturbations perpendicular
to this plane.
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The two types of orbits that remain are butterflies (collapsed box
orbits with /; < 0; left) and loops (collapsed short axis tubes with
I, > 0; right), resp. inside or outside the foci.
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The orbits can be distinguished according to the integrals.

eliiptic closed orbits.

The limiting cases are x-axis orbits, y-axis orbits (which are
unstable for x-perturbations) and elliptic closed orbits.
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Then orbits in the (x, z)-plane.

Since y=—fForv=-0

) 'k

I =[5y =
a—ﬂ+~/—/)’

The fundamental orbits are again butterflies and loops.

The butterflies can either be stable (and then are collapsed box
orbits) or unstable for perturbations in the y-direction. When
stable they are collapsed box orbits.

The loops are all unstable.
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Unstable butterfly
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Classification of (x, z)-orbits (shaded is stable, dashed is unstable
periodic orbits).
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Orbits in the (y, z)-plane.
Now A\ = —av or = —au.

Now we have
I, =0

We have again butterflies and loops, but these can now be both
stable and unstable.

The stable butterfly is a collapsed box orbits. There are two types
of stable loops, either collapsed inner or outer long axis tubes.
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Classification of orbits
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In the case of a prolate spheroid only two types of orbits are
possible.
Here is the inner long axis tube.
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The vertical axis indicates that this is any meridional plane
perpendicular to x.
The other possibility is the outer long axis tube
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In the case of the oblate spheroid only short axis tube orbits are
possible.

€j

Piet van der Kruit, Kapteyn Astronomical Institute Elliptical galaxies: Dynamical structure



Outlir
Central kinematics and black holes

Dynamical models
Dark matter

Dark matter

Kapteyn Astronomical Institute

al galaxies: Dynamical structure



(o]

Central kinematics and black

Dynamical models
Dark matter

Solutions for isotropic models usually have gradients in M /L, while
for triaxial models solutions with constant M/L are usually
possible.

The manner to proceed and make progress then is to consider
higher order moments of the observed velocity profiles.

For example Carollo et al.® show that at least three out of their
four ellipticals must have dark haloes.

8C.M. Carollo, P.T. de Zeeuw, R.P. van der Marel, |.J. Danziger & E.E.
Qian, 441, L25 (1995)
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X-ray halos

X-ray emission at large radii can also be used to measure masses of
large ellipticals and clusters.

Measure the X-ray emissivity distribution ¢(r) from the distribution
on the sky and the X-ray energy distribution.

Infer from the distribution of ¢ the density distribution of the gas
peas(R) and the distribution of temperature T(r).
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Then the hydrostatic equation gives for the pressure P

dP GM( < R)
drR —T/)gaS(R)

The ideal gas equation gives

kT

P = s——
Pea My

Then

_ kT(R)R [dlog pgas n dlog T
Gum, | dlogR dlogR |~
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Dark matter

Here are X-ray distributions in two clusters of galaxies.

The next two graphs show the analysis of the giant elliptical M 87
in the center of the Virgo cluster®.

°Fabricant & Gorenstein, Ap.J. 267, 535 (1983)
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Shells can also be used. Simulations show that their spacing
depends on the mass profile.

Finally we can measure masses of whole clusters of galaxies.

The Virial Theorem 2T + € ~ 0 for equilibrium for a uniform,
spherical distribution gives

M
2T:va2~M<V2>~fQ~35iR

Thus

Ro?2 R Oy 2
M ~ i ~ v 1015 h'[(?
G <1 Mp0> <103 km sl>
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This indicates masses of up to 10'° M.

Nowadays also gravitational arcs can be used (e.g. in Abell
221810,

=

Gravitational Lens in Abéll 2218 HST - WFPC2

PF95-14 « ST Scl OPO : April 5, 1995 - W. Couch (UNSW), NASA

10 P. Kneib et al., A.&A. 303, 27 (1995)
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Here are the inferred distributions.
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STRUCTURE AND DYNAMICS OF GALAXIES

22. Chemical evolution

Piet van der Kruit
Kapteyn Astronomical Institute

University of Groningen, the Netherlands
www.astro.rug.nl/~vdkruit

Beijing, September 2011
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Bulges have color gradients (become bluer with radius).

This is due to metallicity changes.

For a low [Fe/H] in an old population:

» The effective temperature of the giant branch is higher
» There is less line-blanketing

» The horizontal branch is more extended towards the blue.

Piet van der Kruit, Kapteyn Astronomical Institute
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The relation between color and metallicity can be calibrated using
the integrated light of Galactic globular clusters.

The range in (U-B),(B-V) in bulges is roughly that in globular
clusters.

So the range in metallicity in bulges is 1 - 2 dex in [Fe/H]. }
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Abundance gradients

There is such a pronounced color gradient in the bulge of NGC
78141
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Disks have gradients in emission line ratio’'s in HII regions.

Some prominent emission lines in spectra of Hll-regions are the
following:

lon | Wavelength
[Ol] | 3726/3729

Ho 4101
Hy 4340
HpG 4861
[Olll] | 4959/5007
Ho 6562

[NII] | 6548/6583
[SII] | 6716/6731
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An often used parameter is the “excitation”, which is the ratio of
the strengths of the [Olll] and H/3 lines.

These are at about the same wavelength, so this ratio is not
sensitive to extinction corrections.

The exitation could change due to a number of effects:
» Changing dust content and therefore radiation field

» Changing stellar temperatures; increasing T.g gives increasing
excitation

» Changing abundance because of cooling through O- and
N-ions:
A lower oxygen abundance gives an increased T, and then we
get stronger O-lines; thus [Olll]/HG increases with decreasing
metallicity.
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Detailed studies? have shown that
the effect of abundance gradients is
probably the most important.

As an example we have a detailed
look at measurement in M81°
between 3 and 15 kpc.

L. Searle, Ap.J. 168, 327 (1973)
’D.R. Garnett & G.A. Shields, Ap.J.
317, 82 (1987)
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Abundance gradients

This is the spectrum of an Hll-region at R = 7 kpc.

4 : T T - T -
M8l -4
_ o .
% T ok
» L
§ S ar 4
w 2} 1 &
£° s
P b
o <}
= 22} ]
it o i
MM LAVJUWLJA\ of M M
o : . L i
3500 4000 4500 5000 4000 4500 5000 55;00 6000 6500
AA) MA)

Piet van der Kruit, Kapteyn Astronomical Institute Chemical evolution



Abundance gradients

This is the spectrum of an Hll-region at R = 15 kpc.
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Abundance gradients

Here we see the gradients in [Olll]/H/3 ratio and the
([OHI]+[ON])/Hp ratio.
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Outline
Abundance gradients
Theory of chemical evolution

Bi-modal star formation
Comparison to observations

The use of [Olll] and [Oll]] has the advantage that two levels of
ionisation of the oxygen are taken.

The disadvantage is that the extinction corrections are important.

The line ratio’s must be transformed into abundances. The
calibration of excitation into abundance can be done in two ways:

18, 01472
e Measure the weak [Olll] line at A 4363 in enit
addition to the lines at A 4959 and 5007. 3
Then lines are measured involving the same T
level and from this the electron 'D,J—m-m

temperature T, can be calculated. This
allows the determination of the

oxygen-hydrogen ratio. S 1
3P ——————— s 545
3Py, ————— 1651
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Abundance gradients

e The second possibility is to calculate full sets of photoionization
models of HII regions.
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Outline
Abundance gradients
Theory of ch i

Bi-modal ¢
Comparison to observations

The result for these measurements in M81 is a gradient of -0.08
dex kpc~! in [O/H].

This is a typical value for spiral disks, including our own.

Piet van der Kruit, Kapteyn Astronomical Institute Chemical evolution
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The Simple Model
The Extended Simple Model
The Inflow Model

Bi-modal star formation The Simpe Model with Bells and Whistles

Comparison to observations

Theory of chemical evolution
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Outline
Abundance gradients
Theory of chemical evolution

The Simple Model

. . The Inflow Model
Bi-modal star formation

Comparison to observations

The Extended Simple Model

The Simpe Model with Bells and Whistles

Take a volume (either a whole galaxy or a part of it) and define

within that volume:

My = Mass in gas

M., = Mass in stars

My, = Mass in heavy elements

Z(t) = My(t)/M,(t) = Abundance

Mass injected in new metals

= Mass locked in long — lived stars

?Searle & Sargent, Ap.J. 173,25 (1972)

Piet van der Kruit, Kapteyn Astronomical Institute Chemical evolution
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Outline
Abundance gradients
Theory of chemical evolution

The Simple Model
The Extended Simple Model
The Inflow Model

Bi-modal star formation The Simpe Model with Bells and Whistles

Comparison to observations

The Instantaneous Recycling Approximation (IRA) says that star
evolution of heavy stars is instantaneous and that the products are
mixed instaneously into the interstellar medium.

Assume the system is closed (no inflow or outflow of gas).

Then the fundamental equations are:

dM,  dM, dM,
il _ Z(t
da 7 dt (g
dM,  dM,
dt ~ dt

Piet van der Kruit, Kapteyn Astronomical Institute Chemical evolution
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Abundance gradients
Theory of chemical evolution

The Simple Model
The Extended Simple Model
The Inflow Model

Bi-modal star formation The Simpe Model with Bells and Whistles

Comparison to observations

The Simple Model
This assumes that Z(t = 0) = Z, = 0.
Define

X =

Mtot

The fundamental equations can then be solved to give

Z(t) = yln (i)

The metal abundance of the gas is an increasing function of the
gas fraction x and time.

Stars have the abundance of the gas at the time of their birth.

Piet van der Kruit, Kapteyn Astronomical Institute Chemical evolution
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Comparison to observations

The fraction of stars at time ¢ with abundance Z < Z;(< Z(t)) is:

1*X]
F(2)=7—

(5)
X1 = exp — ( —
y

So
1—x(1—-1Inx)

Use up all the gas (x — 0), then (Z) — y.

So: Abundance of gas — oc.

The mean abundance of stars — y.

Chemical evolution

Piet van der Kruit, Kapteyn Astronomical Institute



The Simple Model

The Extended Simple Model

The Inflow Model

The Simpe Model with Bells and Whistles

Theory of chemical evolution

The observations in M81 can be used to test this model.

For that purpose the radius has been replaced by the gas fraction
(from the HI and the photometry) u(R).

Piet van der Kruit, Kapteyn Astronomical Institute Chemical evolution



The Simple Model

The Extended Simple Model

The Inflow Model

The Simpe Model with Bells and Whistles

Theory of chemical evolution

1.0 T T =
The thick line shows the
observed distribution o8
and Simple Model is the ol
full-drawn line. _gl
04
The Simple Model
suffers from the G-dwarf o2r
problem: .
It predicts far too ‘ " 22,
many stars of low el o i L R i

. dance (except as noted below). Heany line: schematic representation of the data after

metall |ty removing an estimated dispersion due to observational errors (after Pagel & Patchett 1975).
Light solid line : the “simple model” [Equation (3)]. Dashed line: effect of a finite initial
abundance, Zo = 0.17Z,. Dash-dotted line: an infall model [Equation (4)]. Dotted line:
the infall model with a log gaussian distribution of Z at all times, with o(logZ) = 0.2.
In this case, Z, is the value at which §/S, ~ 1 {cf Tinsley 1975)
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Outline
Abundance gradients
Theory of chemical evolution

The Simple Model
The Extended Simple Model
The Inflow Model

Bi-modal star formation The Simpe Model with Bells and Whistles

Comparison to observations

The simple model predicts that of the G-dwarfs in the solar
neighborhood more than 40% should have a metallicity less than
0.2 of solar.

This fundamental problem was first noted by Maarten Schmidt3.

There are two general ways to cure this; namely a non-zero
abundance in the gas at the beginning or an extended inflow of
unenriched material.

We will now explore these two options.

3M. Schmidt, Ap.J. 137, 758 (1963)
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Outline
Abundance gradients
Theory of chemical evolution

The Simple Model
The Extended Simple Model
The Inflow Model

Bi-modal star formation The Simpe Model with Bells and Whistles

Comparison to observations

The Extended Simple Model.

The assumptions are the same as in the simple model, except that
Zs == ).

This is also known as Prompt Initial Enrichment (PIE).

Then everywhere replace y with y + Z, and the equations look the
same.

The solution then is

Z(t)=Zs+ yln (i)

Piet van der Kruit, Kapteyn Astronomical Institute Chemical evolution
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Abundance gradients
Theory of chemical evolution

The Simple Model
The Extended Simple Model
The Inflow Model

Bi-modal star formation The Simpe Model with Bells and Whistles

Comparison to observations

So, now when we use up all gas, we get
Abundance of gas — oc.
Mean abundance of stars — y + Z.

Because the metallicity of the gas is initially finite, there are
(much) fewer metal-poor stars.

Piet van der Kruit, Kapteyn Astronomical Institute Chemical evolution



Theory of chemical evolution

The Simple Model

The Extended Simple Model

The Inflow Model

The Simpe Model with Bells and Whistles

The Prompt Initial
Enrichment Model now
is the dashed line.

This is a better
representation of the
observed distribution.

(The thick line was the
observed distribution
and the full-drawn line
the simple model) .

Piet van der Kruit, Kapteyn Astronomical Insti

2/2,

Figure 5 Metallicity distributions. §/S, is the fraction of G-K dwarfs in the solar neigh-
borhood with metal abundance less than Z, where Z, is the present interstellar abun-
dance (except as noted below). Heavy line: schematic representation of the data after
removing an estimated dispersion due to observational errors (after Pagel & Patchett 1975).
Light solid line : the “simple model” [Equation (3)]. Dashed line: effect of a finite initial
abundance, Z, = 0.17 Z,. Dash-dotted line: an infall model [Equation (4)]. Dotted line:
the infall model with a log gaussian distribution of Z at all times, with o(logZ) = 0.2.
In this case, Z, is the value at which /S, ~ 1 {cf Tinsley 1975a)
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Abundance gradients
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The Simple Model
The Extended Simple Model
The Inflow Model

Bi-modal star formation The Simpe Model with Bells and Whistles

Comparison to observations

The Inflow Model.

Assume an inflow f(t) of unprocessed material.

This means that there is less gas in the beginning compared to the
simple model and the enrichtment then proceeds much faster and
therefore decreases the predicted number of G-dwarfs.

The second fundamental equation becomes

dM,  dM,
i
dt g T

This model cannot be solved analytically in the general case, but it
can be done fore the extreme inflow model, where M, = constant.

Piet van der Kruit, Kapteyn Astronomical Institute Chemical evolution



Outline
Abundance gradients
Theory of chemical evolution

The Simple Model
The Extended Simple Model
The Inflow Model

Bi-modal star formation The Simpe Model with Bells and Whistles

Comparison to observations

Define

Then

It can then be found that

Piet van der Kruit, Kapteyn Astronomical Institute Chemical evolution



Theory of chemical evolution

Bi-modal star formation
Comparison to observations

If we now use up all gas, we get
p— oo and (Z) — y.
Abundance of gas — y.

Mean abundance of stars — y.

Piet van der Kruit, Kapteyn Astronomical Institute

The Simple Model

The Extended Simple Model

The Inflow Model

The Simpe Model with Bells and Whistles

Chemical evolution



The Simple Model

The Extended Simple Model

The Inflow Model

The Simpe Model with Bells and Whistles

Theory of chemical evolution

The extreme infall model ;
is the dash-dotted line. o8

0.6

(The thick line wass the
observed distribution, o4l
the full-drawn line
simple model and the
dashed line the Prompt

wln

0.2

Initial Enrichment 272,
M o) d el Figure 5 Metallicity distributions. S/S, is the fraction of G-K dwarfs in the solar neigh-
- borhood with metal abundance less than Z, where Z, is the present interstellar abun-

dance (except as noted below). Heavy line: schematic representation of the data after
removing an estimated dispersion due to observational errors (after Pagel & Patchett 1975).
Light solid line : the “simple model” [Equation (3)]. Dashed line: effect of a finite initial
abundance, Z, = 0.17 Z,. Dash-dotted line: an infall model [Equation (4)]. Dotted line:
the infall model with a log gaussian distribution of Z at all times, with o(logZ) = 0.2.
In this case, Z, is the value at which /S, ~ 1 {cf Tinsley 1975a)

Piet van der Kr Kapteyn Astronomical Institute al evolution
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Abundance gradients
Theory of chemical evolution

The Simple Model
The Extended Simple Model
The Inflow Model

Bi-modal star formation The Simpe Model with Bells and Whistles

Comparison to observations

The extreme inflow model is much too extreme in that it now
predicts too few metal-poor stars.

So, My.s must have decreased with time.

The dotted line in the previous figure is an example of an adapted
infall model.

The inflow is possibly seen in our Galaxy as the high-velocity
clouds.

The best fit can be found for the Solar Neighborhood with a
combination of prompt initial enrichement and inflow.

Piet van der Kruit, Kapteyn Astronomical Institute Chemical evolution



The Simple Model

The Extended Simple Model

The Inflow Model

The Simpe Model with Bells and Whistles

Theory of chemical evolution

When the time is made explicit (e.g. by assuming that the SFR is
constant) this model can reproduce the metallicity - age relation®.

020

1 Il | 1

4 o 8
YEARS AGO (IO yrs)

“B.A. Twarog, Ap.J. 242, 242 (1980)
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The Simple Model
The Extended Simple Model
The Inflow Model

Bi-modal star formation The Simpe Model with Bells and Whistles

Comparison to observations

The Simple Model with Bells and Whistles.®

This term is now used for any model that relaxes the assumptions
of the simple model, but was used originally for models with
outflow of processed material.

Let there be an outflow of processed material g(t).

Then the fundamental equations become

dM,  dM, dM.
Z _ _ 7 _7
T =y S~ 20T~ Z(0a()
dM,  dM,
_ 5 _ _ _ t
dt g &)

®J.R. Mould, P.A.S.P. 96, 773 (1984)
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The Simple Model
The Extended Simple Model
The Inflow Model

Bi-modal star formation The Simpe Model with Bells and Whistles

Comparison to observations

For an illustrative case that can be solved analytically, take

Then we have the fundamental equations back with y replaced
with an effective yield

The solution is then

Piet van der Kruit, Kapteyn Astronomical Institute Chemical evolution
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Abundance gradients
Theory of chemical evolution

The Simple Model
The Extended Simple Model
The Inflow Model

Bi-modal star formation The Simpe Model with Bells and Whistles

Comparison to observations

Use up all gas, then:
Abundance of gas — oc.
Mean abundance of stars — y' = y/(1 + «).

For elliptical galaxies there is a mass - metallicity relation®.
This can be explained if elliptical galaxies have (had) outflow of
processed material, which must haven been more pronounced in
smaller systems.

®J.R. Mould, P.A.S.P. 96, 773 (1984)
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The Simple Model
Theory of chemical evolution Utir2 (e ) Sple (Mo

The Inflow Model
The Simpe Model with Bells and Whistles
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FIG. 2—A mass-metallicity relation for elliptical galaxies. The unla-
beled point shows the metallicity inferred for the brightest ellipticals
from integrated light models.
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Bi-modal star formation
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Outline
Abundance gradients
Theory of chemical evolution

Bi-modal star formation
Comparison to observations

It is possible to relax the continuity constraint in the determination
of the IMF and assume bi-modal star formation’.

This is based on the idea of two modes of star formation, that are
independent.

This continuity constraint can be relaxed and that also is a possible
solution of the G-dwarf problem, since it uncouples the formation
of lighter stars from the enrichtment by the massive stars.

"R.B. Larson, Mon.Not.R.A.S. 218, 409 (1986)
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modal star formation

Scalo (l985)/

log & (log m) ( Mg pc?)
log & (log m) (Mg, pc2)
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2 o I
log m (Mg)
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Abundance gradients
Theory of chemical evolution

Bi-modal star formation
Comparison to observations

If C is the number of stars formed (log M) ! pc=? Gyr *:

C(log M, t) = SFRy(t) - IMFy(log M) + SFRy(t) - IMFy(log M)

M

3/2
IMFy(log M) = 2.55M M2 exp [_ <M) ]

SFRx(t) = Ak exp (—t>

Tk
e Low mass: 71 = 0o, M; = 0.30My, A; = 1.85Mypc2Gyr?

e High mass: 7 = 3.4 Gyr, My = 2.2M, Ay = 41Mgpc2Gyr !

Piet van der Kruit, Kapteyn Astronomical Institute Chemical evolution



Outline
Abundance gradients
Theory of chemical evolution

Bi-modal star formation
Comparison to observations

Effects of bi-modal star formation:

e This explains in a natural way the occurrence of two types of
associations; the O-associations having OB-stars and the
T-associations having only T Tauri stars.

e A smaller amount of mass has gone into long-lived stars per unit
luminosity of newly formed stars during the whole history.
This solves the problem of the gas consumption time-scale (why do
all galaxies use their gas in another Hubble time or less?).

Piet van der Kruit, Kapteyn Astronomical Institute Chemical evolution
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Abundance gradients
Theory of chemical evolution

Bi-modal star formation
Comparison to observations

e More mass is in invisible remnants of massive stars (white
dwarfs, etc.).

For Miemnant = 0.38 + 0.15M.,. this adds up to about 3/4 of the
mass density.

This solves the local missing mass problem (Oort limit), but is only
compatible with observations if the fading time is less than 10 Gyr.

e Rapid early increase in [Fe/H| combined with low relative SR in
low-mass stars. This solves the G-dwarf problem of the simple
model for chemical evolution.

Piet van der Kruit, Kapteyn Astronomical Institute Chemical evolution



Bi-modal star formation
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Comparison to observations

Comparison to observations
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Outline
Abundance gradients
Theory of chemical evolution

Bi-modal star formation
Comparison to observations

» Abundance gradients in bulges:
This results from a change in the effective yield with radius
due to changing escape rates of processed gas.
» Overall abundances of ellipticals:
There is a correlation of [Fe/H] with My, which follows if for
more massive systems the gas has more difficulty to escape.
» Disk abundance differences between galaxies:

Earlier types have higher metallicities, because more gas has
been used in star formation.

Piet van der Kruit, Kapteyn Astronomical Institute Chemical evolution



Outline
Abundance gradients
Theory of chemical evolution

Bi-modal star formation
Comparison to observations

» Gas abundance gradients in disks:
This results from radial gradient in relative gas consumption
and content.

» Stellar abundance gradients in disks:
No gradients should result if most of the gas is used up (the
mean stellar abundance is then equal to the yield); at least it
should be smaller than in the gas.

Piet van der Kruit, Kapteyn Astronomical Institute Chemical evolution
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The disk population

Eggen, Lynden-Bell and Sandage collapse model
The thick disk

Globular clusters
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The disk population
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The disk population

The local Mass Function e R
(density in M pc=3 per mass
interval of 0.1 log Mg, as a
function of stellar mass)
derives from the observed
Luminosity Function (number
of stars per magnitude interval
per pc3) using the
Mass-Luminosity Relation.

log ¢ (stars mag=* pc-3)

Piet van der Kruit, Kapteyn Astronomical Institute
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The disk population
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Outline
The disk population
Eggen, Lynden-Bell and Sandage collapse model

The thick disk
Globular clusters
The Sagittarius dwarf

Subgiants and giants have emission (“chromospheric”)
components in the Call K-line. The strength of this component
gives the absolute magnitude and hence the distance.

This has been done for a sample of about 700 bright stars!.

The line in the figure (next frame) is the (sub-)giant branch of
NGC 188 (age ~ 10 x 10° years).

This shows that the old disk population contains stars with ages at
least up to that age.

10.C. Wilson, Ap.J. 205, 823 (1976)
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Eggen, Lynden-Bell and
Sandage collapse model
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Outline
The disk population
Eggen, Lynden-Bell and Sandage collapse model

The thick disk
Globular clusters
The Sagittarius dwarf

This classical paper ELS? contains a study of properties of samples
of high- and low-velocity dwarfs.

These samples have determinations of parallax, proper motion,
radial velocity and photometry and spectral type.

They determined the three components of the space velocity and
computed from that the “excentricity” (from the radial excusion in
the plane) and the angular momentum.

The ultraviolet excess 6(U — B)3 is an indication of the metallicity,
since for these stars it results from line blanketing (more absorption
lines in the UV than in the visual).

20.J. Eggen, D. Lynden-Bell & A. Sandage, Ap.J. 136, 748 (1962)
3Difference in color observed from that expected from the spectral type

Piet van der Kruit, Kapteyn Astronomical Institute Formation of galaxies: The Milky Way Galaxy



Eggen, Lynden-Bell and Sandage collapse model

e The vertical velocity, orbital excentricity and angular momentum
correlate with the UV-excess.
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Eggen, Lynden-Bell and Sandage collapse model
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Outline
The disk population
Eggen, Lynden-Bell and Sandage collapse model

The thick disk
Globular clusters
The Sagittarius dwarf

» The continuous progression of metal content from halo to disk
stars provides evidence that the Galaxy collapsed.

» Metal-poor stars go up to z &~ 10 kpc while the old disk only
goes up to z ~ 400 pc. The vertical collapse is thus about a
factor 25.

» The occurence of very high excentricities among halo stars
indicates rapid disk collapse. A strong increase in gravitation
will elongate circular orbits when the collapse proceeds on
timescale less than the orbital period (=~ 10° years).

» From the observed angular momentum the estimated radial
collapse factor is about 10.

ELS described the process as a continuous one, but even their
figures can be interpreted as showing two discrete components.

Piet van der Kruit, Kapteyn Astronomical Institute Formation of galaxies: The Milky Way Galaxy



Eggen, Lynden-Bell and Sandage collapse model

However, their graphs may be interpreted differently.
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Lynden-Bell and Sandage collapse model

250

200

150

[w]

100

Piet van der Kruit, Kapteyn As

306 [382
bt

o

° o § ©

go
o 950

° 00

2 &,

S0
o0
J o 8°o o

°
0e®s °808 © ©
b 8

o3,

oo
111

0.20
8(u-B)

0.30

nomical Institute

Zmax
9000 psc

8000
7000
6000

5000

4000

3000

2000

1000

600
400

200
100

Formation of galaxie:

100 kpc km sec—')

h(UNIT

e ©

3

06

o
o8®
090 50 ©

o

(e}le} 0
S(u-8)

20 0.30

The Milky Way Galaxy



Eggen, Lynden-Bell and Sandage collapse model

There is more evidence for the basic discreteness of Galactic
structure.

One example is the asymmetric drift (the lagging behind in
rotation of components with higher velocity dispersion) as a
function of metallicity [Fe/H].
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Eggen, Lynden-Bell and Sandage collapse model

Here we see the rotation velocity with respect to an inertial frame.

Also the upper limit of the distribution of metallicity of disk and
halo RR Lyrae stars* does not show a gradual decline with height
above the plane.
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*T.D. Butler, T.D. Kinman & R.P. Kraft, A.J. 84, 993 (1979)
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The surface photometry of NGC 7814° reveals some important
information.

This galaxy is bulge-dominated, but the photometry showed bulge
isophotes with all identical axis ratios.

Analysis of the data then showed that it is possible to separate the
surface brightness distribution into two distinct components
(spheroid and disk) with discretely different flattenings.

This seemed to indicate that star formation occured in two discrete
epochs, one before and one after disk collapse.

°P.C. van der Kruit & L. Searle, A.&A. 110, 79 (1982)
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Eggen, Lynden-Bell and Sandage collapse model
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We see also the basic two-component structure in the colors at
faint star counts.
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» Few stars bluer than (B — V) ~ 0.4. This corresponds to the
MS turn-off of the extremely metal-poor halo population.

» The peak at (B — V) ~ 0.6. This is the MS turn-off of the
halo population.

» The peak at (B — V) ~ 1.5. This is the cool MS of the disk
population.

» The absence of stars redder than (B — /) ~ 2.0. This
indicates the absence of large amounts of M-dwarfs to provide
the missing local mass.
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The old situation (before about 1980) was that there was no clear
evidence for a substabtial Intermediate Population Il and there
were basically two discrete components (halo and disk).

Bahcall & Soneira® built a Galaxy model with distinct disk and

halo components. This was later improved as the Standard Galaxy
Model”.

®Ap.J. Suppl. 44, 73 (1980)
"Bahcall & Soneira, Ap.J.Suppl. 55.67 (1984)
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The thick disk

They showed that it could very well reproduce faint star counts and
color distributions in two “Selected Areas”, for which deep data
were available, namely SA 57 (/, b) = (65,86) and SA 68 (111,-46).
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The thick disk
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Gilmore & Reid® did deep star counts in South Galactic Pole.

They selected only those stars near the MS turn-off on the basis of
their colors. For these turn-off and subgiants they determined
photometric parallaxes.

They found two components in the disk:

» The “thin disk” (really the old disk) with exponential
scaleheight h, ~ 300 pc

» A new component that they called the “thick disk” with
h, ~ 1350 pc.

» The local normalisation was such that the thick disk has in
the plane ~ 2% of the stars and this corresponds to ~ 9% of
the face-on surface brightness.

8G. Gilmore & N. Reid, Mon.Not.R.A.S. 202, 1025 (1983)

Piet van der Kruit, Kapteyn Astronomical Institute Formation of galaxies: The Milky Way Galaxy



The thick disk
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Bahcall and collaborators® conclude that the Standard Galaxy
Model BS84 is consistent with counts in all fields available and
inconsistent with a model including a thick disk and inconclusive
when a metal-rich Luminosity Function (LF) is used for the thick
disk.

Gilmore and collaborators'® present a model with a thick disk
(G84) and claims consistency with the count: for the thick disk
they use the LF of the globular cluster 47 Tuc ([Fe/H] ~ —0.7).

°J.N. Bahcall & R.M Soneira, Ap.J.Suppl. 55, 67 (1984) (BS84); J.N.
Bahcall et al., 299, 616 (1985)

19G. Gilmore, Mon.Not.R.A.S. 207, 223 (1984) (G84); G. Gilmore et al.,
Mon.Not.R.A.S. 213, 257 (1085)
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So the earlier disagreement due to choice of the LF of the
intermediate component; BS84 and G84 reproduce star counts only
if the LF of metal-rich globular cluster is used for it.

The conclusion then is that star counts by themselves are not
conclusive evidence for a thick disk or Intermediate Population Il.

We first look at external galaxies.
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Thick disks in external galaxies

We can look at edge-on external galaxies, such as NGC 891, which
is very similar to our Galaxy!! and construct equivalent “BS84"
and “G84" models.

H [ Galaxy [ NGC 891 [ Galaxy [ NGC 891 ”

“BS84" old disk “G84" old disk

h (kpc) 45-5 4.9 45-5 4.9

2, (kpc) 0.6 - 0.7 0.99 0.6 - 0.7 0.99

Rmax (kpc) 22 21 22 21

Liot (Lo) ~ 1.1 x101° | 6.7 x101% | ~ 1.1 x10% | 6.7 x 10'°
“BS84" thick disk “G84" thick disk

hr (kpc) no thick disk | no thick disk ~ 45 5

h, (kpc) no thick disk | no thick disk ~ 13 1.5

Liot (L) no thick disk | no thick disk | ~ 2 x 108 2 x 108
“BS84" spheroid “G84" spheroid

Re (kpc) ~27 2.3 ~27 23

(1—e?)l/2 ~ 0.7 ~ 0.6 ~ 0.7 ~ 0.6

Liot (Le) ~ 1.5 x 10° 1.2 x 10° ~ 1.0 x10° | 4.9 x 108




Both these models fit
the surface photometry
well.

et van der Kri

NGC 891
R=0

ResBkpe Re110kpe

NGC891
R=0

R=58kpc R=TL0Kpe
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Kinematical evidence for a thick disk

Hartkopf & Yoss'? compiled DDO photometry and vertical
velocities of G & K giants.

The distribution is separable into two components, each about
isothermal:

e ([Fe/H]) ~ —0.4 ; (W?)1/2 =20 km s~?

e ([Fe/H]) ~ —1.5 ; (W?)1/2 =~ 40 km s~?

12\W.1. Hartkopf & K.M. Yoss, 87, 1679 (1982)
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Rosel3 found Red Horizontal Branch stars in the North Galactic
Pole field similar to the ones in globular cluster M71 ([Fe/H]
~ —0.6).

old disk stars.
13J.A. Rose, A.J. 90, 787 (1985)
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They constitute 5% of all non-halo giants in the field and have
h, < 0.5 kpc and (W?)1/2 ~ 40 km s71,

This is fully consistent with the thick disk of Gilmore & Reid.
Norris et al.}* found stars with [Fe/H] < —1.0 ; e < 0.4.

This area is empty in the ELS study and would correspond to
positions of stars in an Intermediate Population II.

These stars have (W?)1/2 = 61+ 9 km s~ 1,

). Norris, M.S. Bessel & A.J. Pickles, Ap.J.Suppl. 58, 463 (1985)
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The thick disk
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At the left the ELS diagram. The rectangle gives corresponding
areas in both diagrams.

The thick disk is real and could be an Intermediate Population II.

It is probably discrete from the Old Disk Population and possibly
also from the Halo Population II.
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In face-on surface brightness is only of the order of 10% compared
to the disk in the solar neighborhood.

So we may distinguish the following components'® (lengths in kpc
and velocities in km/s).

Component | Pop | | Old Disk | Thick disk | Halo
h, 0.1 0.3 ~ 15 ~ 4
([Fe/H]) ~ 0.0 -0.3 -0.6 -15
U[Fe/H] ~ 0.15 ~ 0.2 ~ 0.3 ~ 0.5
Asym. Drift | small ~ 10 ~ 40 ~ 150
(W?)1/2 ~ 10 25 45 100

1See also G. Gilmore, R.F.G. Wyse & K.H. Kuijken, Ann.Rev.A.&A. 27, 555
(1989)
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The thick disk

It is possible to make an estimate of the cumulative distribution
M(h)/Miqiar of specific angular momentum?® h in each of these

components.
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The solid line is the
bulge, the dashed-dotted
line the halo, the dotted
curve the thick disk and
the dashed curve the old
(thin) disk.

The bulge is related to
the halo, but the thick
disk to the disk.
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Globular clusters
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Globular clusters have long been known to be made up of two
sub-systems, one following the traditional halo and with metal-poor
clusters and one flattened and with less metal-poor systems.

These have been called G- and F-clusters or disk- and
halo-clusters.

They also display a bi-modal metallicity distribution with a division
at [Fe/H] =~ —0.8.

Also there is a clear difference in asymmetric drift (or rotation
velocity of the group as a whole) and velocity dispersion.

This is seen in the radial velocity with respect to the Local
Standard of Rest (LSR) as a function of the angle A with the apex
of the LSR.

Piet van der Kruit, Kapteyn Astronomical Institute Formation of galaxies: The Milky Way Galaxy
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Globular clusters
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The metal-rich clusters form a disk-system with properties much
like the thick disk!”.

"R, Zinn, Ap.J. 293, 424 (1985)
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disk-clusters | halo-clusters
[Fe/H] > —0.8 < —038
h, (kpc) 0.5-1.5 -

Viot (km/s) 152 + 29 50 + 23
O10s (km/s) 72 + 11 116 £ 9
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Globular clusters

A summary picture of the structure of the Galaxy is given in this

18

age-metallicity relation=°.

[Fe/I0]
-1

Age (Ga) *°

TDO = thin disk open
clusters

TDG = thick disk
globular clusters

B = bulge

YHG = young halo
globular clusters

OHG = old halo
globular clusters

18K.C. Freeman & J. Bland-Hawthorn, Ann.Rev.A.&A. 40, 487 (2002)
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The Sagittarius dwarf

In the course of a study of the kinematics of a sample of stars in
the Galactic bulgel® a curious feature in the distribution was found.
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R.0. Ibata, G. Gilmore & M.J. Irwin, Mon.Not.R.A.S. 277, 781 (1995)
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The Sagittarius dwarf

Tracing it accross the sky mapped out the Sagittarius Dwarf.

The distance is about 24 kpc and it is comparable in size and
luminosity to a large dwarf spheroidal galaxy.

It apparently is approaching the disk of the Galaxy.
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Detailed follow-up studies?® indicate that it is on an orbit with a
period of about 1 Gyr and it must have gone through the disk a
few times before.

R A. Ibata, R.F.G. Wyse, G. Gilmore, M.J. Irwin & N.B. Suntzeff, A.J.
113, 634 (1997)
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STRUCTURE AND DYNAMICS OF GALAXIES

24. The formation of galaxies

Piet van der Kruit
Kapteyn Astronomical Institute

University of Groningen, the Netherlands
www.astro.rug.nl/~vdkruit

Beijing, September 2011

Piet van der Kruit, Kapteyn Astronomical Institute The formation of galaxies



Outline
Galaxies at high redshift

y formation

Outline

Galaxies at high redshift

Galaxy formation
Background
Bulge formation
Disk formation

Piet van der Kruit, Kapteyn Astronomical Institute The formation of galaxies



Outline
Galaxies at high redshift

Galaxy formation

Galaxies at high redshift

Piet van der Kruit, Kapteyn Astronomical Institute The formation of galaxies



Outline
Galaxies at high redshift

Galaxy formation

First we look at some results of the Sloan Digital Sky Survey
(SDSS)?, that surveyed a large part of the northern sky outside the
Galactic Plane in five optical wavelenght bands.

In the SDSS there is a routine to identify galaxies and do
photometry and of many objects low-resolution spectra are taken.

The following is from a study? of the colors a sample of almost
150,000 galaxies at high Galactic latitude, of which 287 have been
studied for morphology and 500 have spectra.

'D.G. York et al.. A.J. 120, 1579 (2000)
2Strateva et al., Ap.J. 122, 1861 (2001)
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Galaxies at high redshift
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Galaxies at high redshift

The important result is that the red peaks correspond to early
types (E, SO, Sa) and the blue peak to late types (Sb, Sc, Irr).

% of galaxies

c is a concentration index; triangles early, squares late types.
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Galaxies at high redshift

It is possible to study the time evolution of both groups from
samples at different redshifts.

An extensive study? shows that the luminosity density of blue
galaxies has decreased by 0.6 dex since z ~ 1, while that for the
red galaxies has remained constant.

T T T TTT T TTT T T
(a) 4 | Al (b) Blue | () Red
| | 1 2dF (Madgwick) _|
= DEEP2 (SDSS (Blanton)

? * * + ®COMBO—17  YrSDSS (Bell)

0L K lu—‘ OB
giw ‘[Jf‘rh‘ﬂ? + ] ‘

'0) +
()
Lol (1 I

ji;DF {HWDS G + * * |
£ CFRS #2dF (Norberg) P 2dF (Madgwick) | &' ®
fj |-m DEEP2 (SDSS (Blanton) = DEEP2 ()SDSS (Blanton) - # =
@COMBO-17  7rSDS$ (Bell) | | §COMBO-17  YrsDS§ (Bell) | | | i "y g
0 0.5 1 150 0.5 1 1.5 0 0.5 1 1.5
Redshift

3S.M. Faber et al., Ap.J.665, 265 (2007)
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When one looks in detail* there is little change in the mass
function of massive galaxies with redshift out to z ~ 1.

However, the morphological mix changes, with more early-types at
later times.

E/SO galaxies dominate the higher mass population, spirals that at
lower masses. The transition changes from (1 —2) x 10** M, at
z~1t03x10° Mg at z=0

This “downsizing” phenomenon means that the most massive
galaxies stop forming stars first and lower mass galaxies later.

*K. Bundy, R.S. Ellis & C.J. Conselice, Ap.J. 625, 621 (2005)
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Galaxies at high redshift

More massive galaxies then evolve into spheroidal systems at
earlier times, and this morphological transformation may be
completed 1-2 Gyr after star formation ceases.

It is possible now to derive velocity fields of star-forming galaxies
5

at large redshift through emission lines.
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®Cresci et al., Ap.J. 697, 115 (2009)
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Galaxies at high redshift
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Galaxy formation

The disks at high redshift have regular velocity fields and result
most likely not from mergers, but rather from smooth, but rapid
gas inflow.

» In most massive galaxies star-formation ceased early and the
result was elliptical galaxies.

» Many of the current disks in large galaxies are basically
already in place at redshifts of about 2, when the Universe
was only 1 — 2 Gyr old.

» Bulges probably formed later and are still forming from
merging and capturing of satellites.
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Galaxy formation

Important is the concept of down-sizing.

It says that star formation in the early Universe took predominantly
place in larger systems; currently in smaller galaxies.

This may be connected to merging, which was extensive and early
in massive galaxies.
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Galaxies at high redshift
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Background
a. Two paradigms

ELS® studied the motions of stars in the solar neighborhood and
found correlations between metal abundance and the kinematics.

They concluded that the Galaxy was formed during a relatively
rapid collapse.

SZ7 studied the abundance distributions of globular clusters.

0.J. Eggen, D. Lynden-Bell & A.R. Sandage, Ap.J. 136, 748 (1962)
L. Searle & R. Zinn, Ap.J. 225, 357 (1978)
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Beyond 8 kpc from the center the distribution over abundance is
fairly wide, but does not change with galactocentric distance.
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The extent of the Horizontal Branch depends in first instance on
metallicity.

However, it has been known that the HB-morphology varies also
among clusters of the same metallicity.

This is called the second parameter.
It is characterized by the parameter B/(B + R). B is the number

of HB-stars to the blue of the RR-Lyrae gap and R the number to
the red.
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SZ found that in the tightly bound inner regions B/(B + R)
correlates well with abundance, but in the outer halo there is a
great diversity of HB-morphology at a given abundance.

They suggested that the second parameter is age.

They concluded that all the above is consistent with a picture in
which the build-up of the halo occurs over an extended period
during which small fragments (of up to ~ 10% Mg, or so) continue
to fall in.

These fragments loose gas after a while (due to supernova
explosions) and will have a mean metal abundance equal to the
effective yield.

The effective yield will have a range and distribution that is
stochastic and should show no correlation with galactocentric
distance.
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b. Basic two-component structure.

In spite of the possible presence of a thick disk (which has of order
10% of the disk mass), spiral galaxies are basically consist of two
distinct components with discrete flattening®.

This seems to point to two discrete epochs of star formation:

Before collapse — dissipationless — Population |l

After collapse — dissipational — Thick and thin disk; Population |

8P.C. van der Kruit & L. Searle, A.&A. 110, 79 (1982)
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Bulge formation

The observed properties of bulges are:
> RY*law.
» Generally color (=abundance) gradients
> Isochromes have the same shape as isophotes (in NGC 7814)

Color gradients are often interpreted as evidence for dissipational
collapse.
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However, then the more metal-rich parts should be more flattened
than the metal-poor parts.

Further numerical experiments® of dissipationless collapse with
violent relaxation shows:

e From irregular initial conditions follows an R/# distribution
e Statistical conservation of binding energy and thus gradients.

The properties of bulges are consistent with them forming early on
in a dissipationless collapse over a longer timescale with fragments
falling in for a few Gyr.

°T.S. van Albada, Mon.Not.R.A.S. 201, 939 (1982)
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Disk formation
Disk formation is of course dissipational.

First we have to look into the question of the origin of angular
momentum.

The angular momentum in disks is due to tidal torques between

(proto-)galaxies in the early universel®,

It can be described by a dimensionless parameter
A= JIEIM?2GIM5/2 ~ 0.08

where J is the total angular momentum, E the total energy and
M the total mass.

1°p JE. Peebles, A.&A. 11, 377 (1969)
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Numerical experiments give

A =0.07£0.03

This predicts insufficient angular momentum to explain rotation of
disk galaxies in traditional models without dark matter.

The canonical working model has the following characteristics *!:

» Disk and dark halo have the same distribution of specific
angular momentum (= angular momentum per unit mass).

» Disks collapse with detailed conservation of angular
momentum.

For tidal torques to work one needs ~ 10 times as much mass in
dark halo as in the disk.

M. Fall & G. Efstathiou, Mon.Not.R.A.S. 193, 189-(1980)
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Finally we need Mestel's hypothesis!?.

Mestel noted that the rotation and mass distribution in the disk of
the Galaxy gave a distribution of specific angular momentum
similar to that of a uniformly rotating, uniform sphere.

The hypothesis then is that disks form from such a Mestel-sphere
with detailed conservation of angular momentum.

The normalized distribution of specific angular momentum A in
the Mestel sphere is

M(h) _ | (1 hy )3/2

12| Mestel, Mon.Not.R.A.S. 126, 553 (1963)
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Freeman!3 has noted already that the self-gravitating exponential
disk also has roughly this distribution.

1 The curve is for the

1 exponential disk and the

1 points for the Mestel sphere.
e B e

13K.C. Freeman, Ap.J. 160, 811 (1970)
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Gunn' noted that in a flat rotation curve the Mestel distribution
would in centrifugal equilibrium give an approximately exponential
radial surface density distribution.

On this basis we can consider the following scenario for disk galaxy

formation1®.

We make the following assumptions based on the discussion above:

» The protogalaxy is a Mestel sphere.

» The angular momentum results from tidal torques and
A~ 0.07.

» There is a uniform mix of dark and luminous matter (so they
have the same specific angular momentum distribution).

14J E. Gunn, in “Astrophysical Cosmology”, ed. Briick, Coyne & Longair,
Pont. Acad. Scient, Vatican, p. 233 (1982)
15p C. van der Kruit, A.&A. 173, 59 (1987)
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For the protogalaxy the total mass is M, and at maximum
expansion the density is p, and the radius R, = (3M/47rpo)l/3.

At maximum expansion then the potential energy is

_ 3GMm?

- 5Rﬂl
and the total angular momentum
2

J= thmax

At maximum expansion the energy is essentially gravitational
(|E| = |€]; in virial equilibrium it is a factor 2 smaller). Then

5 5 1/2
hma‘x — 5 <3> G1/2/\M1/2R11n/2
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Now first consider the halo formation.

There is some star formation in the inner regions to form the
Population |l stars. These settle dissipationlessly in the bulge.

So we get an R/*-bulge with an abundance gradient.

The dark matter settles dissipationlessly in something like an
isothermal sphere.

Assume the amount of dark matter to be
My=(1-T)M

Let this settle in an isothermal sphere with radius Riy. Then the
potential energy can be calculated as

Rl

=GP
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The viral theorem requires (after completion of the collapse of the
dark halo) that

Q
EII:%:—G(l—F) —

But originally the energy was

Energy is conserved during dissipationless collapse, so

Piet van der Kruit, Kapteyn Astronomical Institute The formation of galaxies
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Now look at the disk formation.

The remaining gas has a mass ['M (minus bulge stars, but assume
this to be small).

This then settles in a disk with dissipation, but conserves the
specific angular momentum distribution.

The force field in which this happens is that of the dark halo.
Parametrize the final (flat) rotation curve is as

R?2 R2
2 /2 ,
VrotfvangRQ |:1_7|n<R2 +R2)]

m m

From real galaxies we know that the precise value of v is not
important (but v ~ 0.1) and Ry, ~ (0.1 — 0.5)h.
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Then calculate the surface density distribution of the disk that

results; this is a roughly exponential disk with an edge at
~ 4.5(= )h.

r/h r/h
05 1 2 & 2 4
Mlhg[ T T T T 0y T T T T ln(Gsz)
M \ M
101 = K \\\ —4-6
= // -1 \\
L & N
- < _
- | N
N
N
05 T N 4-8
L s N
N
. 4 N
.y I ]
/ p
> <
1 1 1 1 1 1 1 1
Z A hf 10 20
he/hVp e ity
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On the left we have the specific angular momentum distribution
(dashed line is the Mestel distribution; fulldrawn lines are
exponential disks with a flat rotation curve for an edge at infinity
and 4.5h).

On the right we see the surface density distribution from the
Mestel distribution in the flat rotation curve (dashed) and a pure
exponential truncated at 4.5h.

Assume for simplicity that I' < 1, so the disk does not seriously
affect the force field.

The figure shows an inner excess; this may in reality be the bulge.
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How does the thick disk originate? Is at a relic of the violent
processes at the moment of disk collapse?

The outer HI beyond the optical truncation and the observed
warps may be the result of later infall. Is that why warps start at
the optical edge?

From an examination of the figure we deduce the resulting

scalelength
hmax _ 25/\ Rlﬂ

T BV 6v23(1-T)1/2

and the central surface density

oo 36 (A NP (BY T aimppys
° 625 \ 37 AN)o1-1"°

h
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In models of hierarchical clustering, galaxies form at about the
same time and X
0P -(B+n)/e

with n =-1.5 to 0.

So p, is about constant and has only a small dependence on M.
Then we get o, about constant for [ constant.

For A = 0.07 and 3 = 4.5 we get (V in km s™1, M in Mg, R in
kpc, pin Mg pc~3, etc.):

r ooh h
=152 R,=2——— Ry=18(1-)h
-nw- v G- 1
V2
M=42x10%1—-N)Y2V2h  p, =97 x 10%(1 —T)? 3
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Now apply this to our Galaxy, which has h = 5 kpc, Vi, = 220 km
sl o, =400 Mg, pc*2.

[ =0.06 Rm = 115 kpce Ry =90 kpc = 18h

M=10x102My po=2x10"*Mg pc 3

For other galaxies we find I = 0.04 - 0.11 and p, ~ 10~* Mg,
-3
pc—.
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For €2 = 1 it has been deduced that

@_9%2

p 16

For H = 75 km s~ Mpc™! this then implies a redshift of galaxy
formation of about 3.5.

Finally calculate the disk luminosity

L .
Ldisk — Mrz(l - r) Vrifl’o !

So with Freeman's law, constant (M /L) and I we get the
Tully-Fisher relation.
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This schematic model has been greatly improved by Dalcanton et
219,

They do more realistic calculations, taking all gravitation into
account, take a range in ), etc.

The assumption of a range in A now translates in a range of
predicted central surface densities.

The resulting disk density profiles and rotation curves are in the
following figure.

16).J. Dalcanton, D.N. Spergel & F.J. Summers, Ap.J. 482, 659 (1997)
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On the left we have models for A= 0.03 - 0.18; M = 10> M. On
the right we have A= 0.06; M = 10'° — 10'? M.
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The dashed line are lines of equal expected density in this plane for
M/L=3in B, T =0.05and H =50 km s~ kpc~!. This is based
on an assumed mass distribution as a Schechter function.

The solid lines with positive slope are of equal mass and those of
negative slope of constant angular momentum.

In the hatched region gas pressure is expected to prevend the
galaxies from collapsing.

The data are various not statistically complete samples (the filled
triangles are Local Group spheroidals).
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The disk stability and stellar velocity dispersion as a function of
radius gives the following results.
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Although in broad terms probably still applicable, this model will
have to be augmented to incorporate the effects of infall of
companions, such as the Sagittarius Dwarf into our own Galaxy.
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