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ABSTRACT

We analyze the structure and connectivity of the distinct morphologies that define the
Cosmic Web. With the help of our Multiscale Morphology Filter (MMF), we dissect
the matter distribution of a cosmological ΛCDM N-body computer simulation into
cluster, filaments and walls. The MMF is ideally suited to adress both the anisotropic
morphological character of filaments and sheets, as well as the multiscale nature of
the hierarchically evolved cosmic matter distribution. The results of our study may
be summarized as follows: i).- While all morphologies occupy a roughly well defined
range in density, this alone is not sufficient to differentiate between them given their
overlap. Environment defined only in terms of density fails to incorporate the intrinsic
dynamics of each morphology. This plays an important role in both linear and non lin-
ear interactions between haloes. ii).- Most of the mass in the Universe is concentrated
in filaments, narrowly followed by clusters. In terms of volume, clusters only represent
a minute fraction, and filaments not more than 9%. Walls are relatively inconspicous
in terms of mass and volume. iii).- On average, massive clusters are connected to more
filaments than low mass clusters. Clusters with M ∼ 1014 M� h−1 have on average
two connecting filaments, while clusters with M > 1015 M� h−1 have on average five
connecting filaments. iv).- Density profiles indicate that the typical width of filaments
is 2 h−1Mpc. Walls have less well defined boundaries with widths between 5-8 Mpc
h−1. In their interior, filaments have a power-law density profile with slope γ ≈ −1,
corresponding to an isothermal density profile.

Key words: Cosmology: theory – large-scale structure of Universe – Methods: data
analysis – numerical

1 INTRODUCTION

The Megaparsec matter distribution in the Universe repre-
sents a dynamical system of great structural and topological
complexity, the Cosmic Web.

Early attempts to map the large scale distribution of
galaxies in the universe (Gregory et al. 1978; Geller &
Huchra 1989; de Lapparent, Geller & Huchra 1986; Shect-
man et al. 1996) revealed that galaxies are far from being
evenly distributed across the nearby Universe. On the con-
trary, the mass distribution delineated by galaxies seems
to form an intricate network of compact and dense associ-
ations interconnected by tenuous “bridges” or “filaments”
surrounded by surprisingly vast empty regions (Kirshner et
al. 1981). These preliminary studies suggested that the uni-
verse on the large scales could be described as a cellular
system (Joeveer & Einasto 1978) or a Cosmic Web (Bond
et al. 1996). This has been confirmed in recent times by
large galaxy surveys like the 2dFGRS (Colless et al. 2003),
the Sloan Digital Sky Survey (Tegmark et al. 2004, e.g.) and
the 2MASS redshift survey (Huchra et al. 2005).

The advent of these large 3-D maps of the Local Uni-
verse unveiled a cosmos of considerable richness and com-
plexity, featuring intricate filamentary structures. These
structures can be seen on scales from a few megaparsecs up
to tens and even hundreds of megaparsecs. They include im-
mense elongated and semi-planar patterns (Diaferio & Geller
1997; Tittley & Henriksen 2001; Stevens et al. 2004; Ebeling
et al. 2004; Pimbblet et al. 2004; Pimbblet & Drinkwater
2004; Bharadwaj & Pandey 2004; Pimbblet 2005) and in-
cludes huge wall-like structures like the Coma Great Wall
(Geller & Huchra 1989) and the Sloan Great Wall (Gott
et al. 2005), with its size of more than 400 h−1Mpc the
largest known structure in the nearby Universe. Similar we-
blike structures have also been discovered at high redshifts
(Broadhurst et al. 1990; Ouchi et al. 2004; Cohen et al.
1996).

1.1 Gravitational Formation

The Cosmic Web can be seen as the most salient manifes-
tation of the anisotropic nature of gravitational collapse,
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2 Aragón-Calvo, van de Weygaert & Jones

the motor behind the formation of structure in the cosmos
(Peebles 1980). N-body computer simulations have profusely
illustrated how a primordial field of tiny Gaussian density
perturbations transforms into a pronounced and intricate
filigree of filamentary features, dented by dense compact
clumps at the nodes of the network (Jenkins et al. 1998;
Colberg et al. 2005; Springel et al. 2005; Dolag et al. 2006).
The filaments connect into the cluster nodes and act as the
transport channels along which matter flows into the clus-
ters.

Fundamental understanding of anisotropic collapse
on cosmological scales came with the seminal study by
Zel’dovich (1970), who recognized the key role of the large
scale tidal force field in shaping the Cosmic Web (also see
Icke 1973). In addition to the anisotropic nature of gravita-
tional collapse, the multiscale character of the cosmic mass
distribution is also an important characteristic signature of
the gravitational formation of structure (Zel’dovich 1970;
Icke 1973; Eisenstein et al. 1995; Bond et al. 1996; Eisenstein
et al. 1997; van de Weygaert & Bond 2008a; Shandarin et
al. 2009). Cosmic structure formation is a hierarchical pro-
cess as a result of the amplitude distribution of fluctuations
over the different scales. Small scale fluctuations in scenar-
ios with a primordial power spectrum P (k) ∝ kn, where
n > −3, have a larger amplitude than the ones on larger
scales. As a result, collapsed clumps of matter will aggre-
gate into larger systems and eventually merge to form even
larger structures.

The description of the Megaparsec matter distribution
as an interconnected network or a cosmic web is not a coin-
cidence. While the Zel’dovich approximation describes the
evolution of a cellular distribution made up of pancakes,
it does not really offer an explicit dynamical expalnation
for the observed connectivity between morphologies. Early
computer simulations already indicated the close connec-
tion between each morphological component, namely that
clusters sit at the intersection of filaments and filaments
are formed at the intersection of walls (Doroshkevich et al.
1980; Melott 1983; Pauls & Melott 1995; Shapiro et al. 1983;
Sathyaprakash et al. 1996). Bond et al. (1996) introduced the
“Cosmic Web” theory, which provides a natural explanation
for the emergence of the filamentary network as well as the
relation between the morphological components of the Cos-
mic Web. The theory emphasizes the close relation between
the peaks in the density field and the overall weblike net-
work: knowledge of the tidal field at a few relevant locations
in a region provides all the information needed to predict the
resulting large scale matter configuration. In the primordial
density field this can be traced back to the simple quadrupo-
lar pattern in the density distribution implied by a local
shear configuration (see van de Weygaert & Bertschinger
1996; van de Weygaert & Bond 2008a). This distribution
will naturally evolve into a cluster-filament-cluster configu-
ration, the structural basis of the Cosmic Web.

1.2 Web Analysis

Despite the multitude of elaborate qualitative descriptions
it has remained a major challenge to characterize the struc-
ture, geometry and topology of the Cosmic Web. Quantities
as basic and general as the mass and volume content of clus-
ters, filaments, walls and voids are still not well established

Figure 1. MMF segmentation of the mass distribution in the
Cosmic Web. The cosmic web is delineated by filaments (dark
gray) and walls (light gray). Clusters (dark grey) are located at
the intersection of filaments. Each of these elements is indicated
by isodensity contours (on a Gaussian scale of Rf = 2 h−1Mpc.
Only the largest structures are shown for clarity.

or defined. Since there is not yet a common framework to ob-
jectively define filaments and walls, the comparison of results
of different studies concerning properties of the filamentary
network – such as their internal structure and dynamics,
evolution in time, and connectivity properties – is usually
rendered cumbersome and/or difficult.

The overwhelming complexity of the individual struc-
tures as well as their connectivity, the lack of structural sym-
metries, its intrinsic multiscale nature and the wide range
of densities that one finds in the cosmic matter distribution
has prevented the use of a simple and straightforward tool
box. Over the years, a variety of heuristic measures were pro-
posed to analyze specific aspects of the spatial patterns in
the large scale Universe. Only in recent years these have lead
to a more solid and well-defined machinery for the descrip-
tion and quantitative analysis of the intricate and complex
spatial patterns of the Cosmic Web. Nearly without excep-
tion, these methods borrow extensively from other branches
of science such as image processing, mathematical morphol-
ogy, computational geometry and medical imaging.

The connectedness of elongated supercluster structures
in the cosmic matter distribution was first probed by
means of percolation analysis, introduced and emphasized
by Zel’dovich and coworkers (Zeldovich et al. 1982; Shan-
darin & Zel’dovich 1989; Shandarin et al. 2004, 2009), while
a related graph-theoretical construct, the minimum span-
ning tree of the galaxy distribution, was extensively probed
and analysed by Bhavsar and collaborators (Barrow et al.
1985; Graham 1995; Colberg 2007) in an attempt to de-
velop an objective measure of filamentarity. Finding fila-
ments joining neighbouring clusters has been tackled, using
quite different techniques, by Colberg et al. (2005) and by
Pimbblet (2005).
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More general filament finders have been put forward
by a number of authors. Following specific physical criteria,
Gonzalez & Padilla (2009) recently proposed an interesting
and promising combination of a tessellation-based density
estimator and a dynamical binding energy criterion. A thor-
ough mathematical nonparametric formalism involving the
medial axis of a point cloud, as yet for 2-D point distribu-
tions, has recently been proposed by Genovese et al. (2010).
It is based on a geometric representation of filaments as
the medial axis of the data distribution. Also solidly rooted
within a geometric and mathematical context is the more
generic geometric inference formalism developed by Chazal
et al. (2009). It allows the recovery of geometric and topo-
logical features of the supposedly underlying density field
from a sampled point cloud on the basis of distance func-
tions. Stoica et al. (2005, 2007, 2010) use a generalization of
the classical Candy model to locate and catalogue filaments
in galaxy surveys. This approach has the advantage that it
works directly with the original point process and does not
require the creation of a continuous density field. However,
computationally it is very demanding.

The more recent formalisms that are intent on charac-
terizing the full range of weblike formalisms usually exploit
the morphological information in the gradient and Hessian
of the density field or potential field, i.e. the tidal field (see
e.g. Sousbie et al. 2008a; Aragón-Calvo et al. 2007a,b; Hahn
et al. 2007,b; Forero-Romero et al. 2008; Bond et al. 2009,
2010). Morse theory (see Colombi et al. 2000) forms the basis
of the skeleton analysis by Novikov et al. (2006) (2-D) and
Sousbie et al. (2008a) (3-D). It identifies morphological fea-
tures with the maxima and saddle points in the density field
and results in an elegant and mathematically rigorous tool
for filament identification. However, it is computationally in-
tensive, focusses mostly on the filaments and is strongly de-
pendent on the smoothing scale of the density field. A more
elaborate classification scheme on the basis of the manifolds
in the tidal field – involving all morphological features in the
cosmic matter distribution – has been proposed by Hahn et
al. (2007) (also see Hahn et al. 2007b; Forero-Romero et al.
2008). Its great virtue is that it is based on the structure
of the tidal field, which links it directly to our theoretical
understanding of the formation and evolution of the Cosmic
Web.

Instead of using the tidal field configuration, one may
also try to link directly to the morphology of the density
field itself. Usually, this allows a more detailed view of the
intricacies of the multiscale matter distribution, although it
is usually more sensitive to noise and more indirectly coupled
to the underlying dynamics of structure formation than the
tidal field morphology. A single scale dissection of the large
scale density field into its various morphological components
based on the has been followed by Bond et al. (2009), and
applied to N-body simulations and galaxy redshift samples
(also see Bond et al. 2010; Choi et al. 2010).

In this study we follow the more elaborate multiscale
formalism of the Multiscale Morphology Filter (MMF), in-
troduced by Aragón-Calvo et al. (2007b). The MMF as-
signs a morphology of the local density field in terms of
its multiscale second order variations in the local density
field. Instead of restricting the analysis to one particular
scale, the MMF explicitly adresses the multiscale nature of
the cosmic density field by evaluating the density field Hes-

sian over a range of spatial scales and determining at which
scales and locations the various morphological signatures are
most prominent. It represents a complete and self-consistent
framework that allows us to identify and isolate specific mor-
phologies in an objective way. A somewhat similar multiscale
approach is the Metric Space Technique described by Wu et
al. (2009), who applied it to a morphological analysis of the
DR5 of the SDSS.

A more recent development is that of the Spineweb
procedure (Aragón-Calvo et al. 2008, 2010), which traces
the various features of the cosmic web on pure topological
grounds by invoking the Watershed Transform. The water-
shed transform is a key instrument for the segmentation of
a density field, and as such is also ideally suited for tracing
the boundaries between the identified segments. Spineweb
identifies the filaments and sheets with the boundaries of
watershed basins. The latter are the influence areas in and
around cosmic voids.

1.3 Cosmic Environment and Galaxy Formation

One of the main reasons for our interest in outlining the fil-
amentary cosmic web concerns the question whether and to
what extent the weblike environment influences the proper-
ties and evolution of galaxies. Most studies of environmental
influences limit themselves to the density, but various indi-
cations argue for a more intricate connection.

In at least one aspect we may immediately suspect a
significant relation between the tidally induced morpholog-
ical nature of the cosmic environment and the galaxy. The
tidally induced rotation of galaxies implies a link between
the galaxy formation process and the surrounding external
matter distribution. With the cosmic web as a direct mani-
festation of the large large scale tidal field, we would there-
ofre expect a connection with the angular momentum of
galaxies or galaxy halos. The theoretical studies of Suger-
man et al. (2000) and Lee & Pen (2000) were important in
pointing out that this connection should be visible in the
orientation of galaxy spins with the surrounding large scale
structure.

Equipped with some of the filament and wall detection
techniques described above, recent N -body simulations have
been able to find, amongst others, that the filamentary or
sheetlike nature of the environment has a distinct influence
on the shape and spin orientation of dark matter haloes
(Aragón-Calvo et al. 2007a; Hahn et al. 2007,b; Paz et al.
2008; Hahn et al. 2009; Hahn 2009; Zhang et al. 2009). In
the case of haloes located in large scale walls, they seem to
agree that both the spin vector and the major axis of inertia
lie in the plane of the wall. In the case of the alignment of
halos with their embedding filaments, Aragón-Calvo et al.
(2007a) and Hahn et al. (2007) found evidence for a mass
and redshift dependence, which has been confirmed by the
studies of Paz et al. (2008) and Zhang et al. (2009).

While the Multiscale Morphology Filter Aragón-Calvo
et al. (2007b) proved succesfull in elucidating halo shape and
spin alignment characteristics in filaments and sheets in N-
body simulations (Aragón-Calvo et al. 2007a; Zhang et al.
2009), in recent work (Jones et al. 2010) also succeeded in
identifying and tracing filaments in the SDSS survey which
contained manifestly aligned galaxies. In this paper we use
the Multiscale Morphology Filter (MMF) to look in more
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Name Box size Ωm ΩΛ h σ8 Npart Mpart Softening
[ h−1Mpc] [M�] [kpc]

150High 150.0 0.3 0.7 0.7 1 5123 2.09 × 109 18/6
150Med 150.0 0.3 0.7 0.7 1 2563 1.67 × 1010 36/12
150Low 150.0 0.3 0.7 0.7 1 1283 1.34 × 1011 72/24

Table 1. Parameters of the N-body simulation used in this study.

detail at the intrinsic properties of the weblike structures
themselves.

1.4 Intention and Outline

We address the Cosmic Web in terms of its basic morpholo-
gies – clusters, filaments and walls – identified on the basis
of the Multiscale Morphology Filter (MMF). We will mainly
focus on filaments given the fact that they are the most
prominent components of the cosmic web and largely delin-
eate its outline. Walls are far less prominent, more tenuous
and highly complex. We will therefore pay less attention to
them. In some cases we will also include clusters and voids
in our analysis but always in the context of the filament-
wall network. Instead of seeking to provide a comprehensive
list of properties of the morphologies in the cosmic web,
this work presents a general view of the cosmic web from
the point of view of their morphological components and in-
troduces some tools for their characterization. Some of our
results confirm previous findings, while others have not been
presented before.

This study is organized as follows. In section 2 we de-
scribe the cosmological simulation on which this work is
based, including the resampling of the discrete particle set
into a regular grid of density values using the adaptive and
morphology preserving DTFE technique. Section 3 briefly
describes the steps followed in the morphological character-
ization of the Cosmic Web by means of the MMF. Section 4
contains a qualitative presentation of the various morpholog-
ical components of the Cosmic Web, while the corresponding
quantitative inventory in terms of mass, volume and density
is the subject of section 5.

In section 6 we proceed to describe the filamentary net-
work and some of its global properties such as mass function,
length distribution, and density profiles. Finally, we summa-
rize our findings in section 7.

2 N-BODY SIMULATIONS AND HALO

CATALOGUES

The work presented here is based on a cosmological N-body
simulation containing only dark matter particles. The sim-
ulation follows the evolution of a set of particles “tracing”
the underlying density field from a given set of initial con-
ditions until the present time. We adopted the concordance
ΛCDM cosmological model Ωm = 0.3, ΩΛ = 0.7, h = 0.7 and
σ8 = 1.0. Its size (150 h−1Mpc) makes it suitable to study
large structures comparable to those seen in present galaxy
surveys. The large number of particles (5123) allows us to

achieve a mass resolution of 1.34×109 M� h−1 per particle.
The mass resolution and simulation box were chosen as a
compromise between a box large enough to contain a signif-
icant amount of large structures and at the same time the
ability to resolve haloes down to a few times 1011 M� (given
the computational resources available) . The simulation was
performed using the public version of the parallel Tree-PM
code Gadget2 (Springel 2005), running on 8 double processor
nodes on the Linux cluster at the University of Groningen.
Initial conditions at redshift z = 50 with 5123 dark matter
particles were generated using the transfer function given by
Bardeen et al. (1986).

2.1 The N-body data

We stored 20 snapshots starting at redshift 9 in logarithmic
intervals of the expansion factor until the present time. Ad-
ditionally we generated 2563 and 1283 versions following the
“averaging” prescription described in (Klypin et al. 2001).
These lower resolution simulations were used to compute
the density fields and to get a preliminary impression of the
structures present in the simulation box (see table 1 and
fig. 3).

• The low resolution version (npart = 1283) is used to
compute some properties of filaments such as linear density
and for visualization purposes. This resolution per particle
of this simulation allows us to resolve the main features of
the large scale distribution and at the same time is sparse
enough to allow a clear visualization of the particles (see
figure 3). This is the simulation we use when (in the following
sections) we refer to dark matter particles, unless we state
something different.

• The intermediate resolution (npart = 2563) is used to
compute density fields in order to take full advantage of the
spatial information with the computing resources available.

• The high resolution version (npart = 5123) is used to
produce the HOP and FracHOP halo and subhalo catalogues
(see sect. 2.3).

2.2 The density field

The output of the N-body simulation consist of a discrete
set of particles. This is translated into a continuum volume-
filling density field sampled on a regular three dimensional
grid. Crucial for the ability of the Multiscale Morphology
Filter to identify anisotropic features such as filaments and
walls is the use of a morphologically unbiased and optimized
continuous density field retaining all features visible in a
discrete galaxy or particle distribution.

c© 2008 RAS, MNRAS 000, 1–??



Multiscale Phenomenology of the Cosmic Web 5

Figure 2. N-body simulation. The particle distribution and density fields of the LCDM simulation which form the data sample for the
present study. Particles in a slice of 25 h−1Mpc along the z axis (top left) and its corresponding DTFE density field (top right) shown
in logarithmic scale. The bottom panel shows the zoomed region indicated in the top-right corner of the top-right panel. For details of
the simulation see text.

We therefore use the Delaunay Tessellation Field Esti-
mator (DTFE), introduced by Schaap & van de Weygaert
(2000) (see Schaap (2007); van de Weygaert & Schaap (2009)
for extensive descriptions), to reconstruct the underlying
density field. It uses the Voronoi and Delaunay tessellation
of the particle distribution to obtain a optimal local density
estimate and subsequently interpolate these values linearly
over the simulation volume. For our purpose of detecting
weblike features the DTFE method has several important
characteristics:

• The self-adaptive nature of the Delaunay tessellation,
and resulting sensitivity to all levels of substructure present
in the particle distribution, makes it highly suited for a

multi-resolution analysis of the hierarchically evolved large
scale matter distribution.

• The Delaunay tessellation follows the intrinsic
anisotropies of the spatial matter distribution, resulting in
a density field reconstruction which accurately traces and
outlines the intricate and complex spatial patterns in the
cosmic web.

• It does not introduce significant artificial features. The
main artefacts concern diffuse low-density tetrahedral wings
at the boundary between dense and underdense regions and
a rather noisy reconstruction of the underdense regions.

Figure 2 shows a slice of 25 h−1Mpc along the z axis of
a subbox of 50 × 50 h−1Mpc. The top left panel shows the
particle distribution and the top right panel shows the corre-
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Figure 3. Simulation Particle and Halo distribution. Particles in a slice of 10 h−1Mpc along the z-axis (Top left). The middle panels

show particles from the 1283 and 2563 simulations (left and right respectively) in the zoomed region indicated in the top left panel. The
lower panels show the Haloes identified with HOP (left) and FracHOP (right). The circles are located at the center of mass of the Haloes.
The radius of the circles are scaled with the mass of the Halo as r ∝ M 1/3.

sponding DTFE density field. A zoomed region is shown in
the bottom panel. DTFE yields a density field reconstruc-
tion in which nearly all structures present in the particle
distribution are represented. It finds highly dense clumps of
matter, as well as the tenuous voids. Also note the absence
of artificial blobs in the inner regions of the voids. An ad-
ditional virtue concerns the absence of a gridlike imprint in
the DTFE density field, even while this is still visible in the
particle distribution.

Accordingly, DTFE is used to process the particle dis-
tribution into a continuous density field fDTFE (top centre
frame, fig. 2).

2.3 Haloes and Subhaloes

We used the HOP group finder (Eisenstein & Hut 1998)
for the identification of self-bound virialized haloes. Each
of these haloes is considered a parent candidate which may
contain one or more subhaloes. HOP links particles by asso-
ciating each particle to the densest of its n-closest neighbors,
until it finally reaches the particle that is its own densest
neighbor. For allocating particles to their halos we applied
HOP with standard parameters δout = 80, δsaddle = 120 and
δpeak = 160. Although the groups identified with HOP are
nearly identical to those found with FoF (Davis et al. 1985),
they are less prone to involve artificial bridges between close
groups.

Galactic haloes embedded in groups of galaxies and
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clusters of galaxies are identified with subhaloes in the com-
puter simulation. They are the bound groups that are clearly
defined against the diffuse background particles that form
the halo in which they are embedded. In order to identify
the bound subhaloes inside larger groups otherwise iden-
tified as single virialized objects, we use the FracHOP al-
gorithm developed by Aragón-Calvo et al. (2007). It is an
elaboration of the HOP halo finder Eisenstein & Hut (1998)
and exploits the topological properties of nested local max-
ima smoothed on a fixed scale. It starts by rerunning HOP,
exclusively for the particles identified with parent halos in
the first HOP halo identification step. To this end, it uses
a Gaussian smoothed density field with a kernel size of
Rf = 35h−1 kpc, so that substructure on smaller scale is
suppressed. The subhalo identification is performed with-
out running REGROUP, so that all particles are assigned
to their local maximum in the smoothed density field. The
center of mass of each of the resulting candidate subhaloes
is determined iteratively, while unbound particles are re-
moved. The end product is a listing of the subhaloes within
the simulation box.

Figure 3 shows the distribution of particles in the 1283

and 2563 simulations as well as the distribution of HOP and
FracHop haloes plotted on top of the density field. Both
HOP and FracHOP haloes closely follow the patterns of the
Cosmic Web, revealing that haloes are fair tracers of the
large scale matter distribution. The only difference between
the two is that a given HOP halo can be formed by several
FracHOP haloes. The distribution of haloes delineates the
Cosmic Web in a more sparse and smooth way compared to
the particles.

3 MORPHOLOGICAL SEGMENTATION:

THE MMF FORMALISM

The Multiscale Morphology Filter (MMF) is used for iden-
tifying and characterizing the different morphological ele-
ments of the large scale matter distribution in the Cosmic
Web Aragón-Calvo et al. (2007b). The formalism has been
developed on the basis of visualization and feature extrac-
tion techniques in computer vision and medical research
(Florack et al. 1992). The technology, finding its origin in
computer vision research, has been optimized within the
context of feature detections in medical imaging. Frangi et
al. (1998) and Sato et al. (1998) presented its operation for
the specific situation of detecting the web of blood vessels
in a medical image.

The MMF morphological segmentation takes account of
the multiscale nature of the matter distribution by means of
a Scale Space analysis, looking for morphological structures
of mathematically specified type in a multiscale, scale inde-
pendent, manner. The Scale Space analysis presumes that
the specific structural characteristic is quantified by some
appropriate parameter. Examples are density, eccentricity,
orientation and curvature. The MMF filters these data to
produce a hierarchy of maps having different resolutions,
and subsequently selects at each point the dominant param-
eter value from the hierarchy in order to construct a scale
independent map.

The MMF-based dissection and visualization of the cos-
mic web in its three basic components allows us to concen-

trate on the significant features of the cosmic matter distri-
bution, and reach a level of abstraction by avoiding spurious
details. For the visualization of the intricate filament-cluster
network this is particularly useful. In this section we briefly
summarize the steps involved in the morphological segmen-
tation of the cosmic web obtained from the N-body cos-
mological simulation. A detailed step-by-step description of
the MMF algorithm can be found in Aragón-Calvo et al.
(2007b).

3.1 Scale Space

The DTFE density field fDTFE is the starting point of the
morphological segmentation. The density field is smoothed
over a range of scales by means of a hierarchy of spherically
symmetric Gaussian filters WG having different widths Rn.
The nth level smoothed version of the DTFE reconstructed
field fDTFE is assigned fn,

fn(~x) =

Z

d~y fDTFE(~y) WG(~y, ~x)

where WG denotes a Gaussian filter of width Rn:

WG(~y, ~x) =
1

(2πR2)3/2
exp

„

−
|~y − ~x|2

2R2
n

«

. (1)

Scale Space itself is constructed by stacking these vari-
ously smoothed data sets, yielding the family Φ of smoothed
density maps fn:

Φ =
[

levels n

fn (2)

A data point can be viewed at any of the scales where scaled
data has been generated. The crux of the concept of Scale
Space is that the neighbourhood of a given point will look
different at each scale. There are potentially many ways of
making a comparison of the scale dependence of local envi-
ronment. We address the local “shape” of the density field.

3.2 Local Shape

The local shape of the density field at any of the scales Rn

in the Scale Space representation of the density field can
be quantified on the basis of the Hessian matrix, H̃ij =
∇ijfn(x),

∂2

∂xi∂xj
fn(~x) = fDTFE ⊗

∂2

∂xi∂xj
WG(Rn)

=

Z

d~y f(~y)
(xi − yi)(xj − yj) − δijR

2
S

R4
S

WG(~y, ~x) (3)

where x1, x2, x3 = x, y, z and δij is the Kronecker delta. In
other words, at each level n of the scale space representa-
tion the Hessian matrix is evaluated by means of a convolu-
tion with the second derivatives of the Gaussian filter, also
known as the Marr (or, less appropriately, “Mexican Hat”)
Wavelet. In order to properly compare the values of the Hes-
sian arising from the differently scaled variants of the data
that make up the Scale Space, the Hessian is renormalized,
H̃ = R2

S H, where Rs is the filter width that has been used.
The eigenvalues λi of the Hessian matrix determine the

local morphological signal, dictated by the local shape of
the density distribution. A small eigenvalue indicates a low

c© 2008 RAS, MNRAS 000, 1–??



8 Aragón-Calvo, van de Weygaert & Jones

Structure λ ratios λ constraints

Cluster Node (blob) λ1 ' λ2 ' λ3 λ3 < 0 ; λ2 < 0 ; λ1 < 0
Filament λ1 ' λ2 � λ3 λ3 < 0 ; λ2 < 0
Sheet λ1 � λ2 ' λ3 λ3 < 0

Table 2. Morphology and Eigenvalue configuration. The eigenvalue conditions specify clusters, filaments and walls, each having a density
higher than the background. A negative eigenvalue indicates that the feature reaches a maximum along the corresponding direction (and
vice versa), while a small eigenvalue indicates a low rate of change of the field values in the corresponding eigen-direction (and vice
versa). This leads to the morphological relationships listed in this table.

rate of change of the field values in the corresponding eigen-
direction, and vice versa. We denote these eigenvalues by
λa(~x) and arrange them so that λ1 > λ2 > λ3:

˛

˛

˛

˛

∂2fn(~x)

∂xi∂xj
− λa(~x) δij

˛

˛

˛

˛

= 0, a = 1, 2, 3 (4)

with λ1 > λ2 > λ3

The λi(~x) are coordinate independent descriptors of the be-
haviour of the density field in the locality of the point ~x
and can be combined to create a variety of morphological
indicators. The criteria we used for identifying a local blob-
like cluster, filamentary or sheetlike morphology are listed in
table 2. Evidently, the eigenvalues corresponding to a blob
(cluster) morphology are a subset of the eigenvalue subset
related to filamentary morphologies. In turn, the eigenvalue
set of the latter is a subset of the wall eigenvalues.

3.3 Multiscale Structure Identification

In practice, we are interested in the local morphology as a
function of scale. In order to establish how it changes with
scale, we evaluate the eigenvalues and eigenvectors of the
renormalised Hessian H̃ of each dataset in the Scale Space
Φ.

Since we are looking for three distinct structural mor-
phologies - cluster blobs, walls and filaments - the practical
implementation of the segmentation consists of a sequence
of three stages. Because curvature components are used as
structural indicators, the blobs need to be eliminated before
looking for filaments, after which the filaments have to be
eliminated before looking for walls. This results in the MMF
procedure following the sequence “clusters → filaments →
walls”. At each of these three steps, the regions and scales
are identified at which the local matter distribution follows
the corresponding eigenvalue signature.

In practice, the MMF defines a set of morphology
masks, morphology response filters and morphology filters
for each of the three different morphological components:
clusters, filaments and walls. Their form is dictated by the
particular morphological feature they seek to extract, via
the eigenvalues at each level in scale space and the criteria
for each of the corresponding morphologies (table 2). The
local value of the morphology response depends on the local
shape and spatial coherence of the density field. The mor-
phology signal Ψ(~x) at each location is then defined to be
the one with the maximum response across the full range

of smoothing scales. Formally, we denote Ψ by the name of
Scale-Space Nap Stack.

3.4 Morphology Thresholds

The final step in the MMF feature identification concerns
the removal of noisy structures. To this end, MMF invokes
global morphology thresholds in order to separate the tex-
ture noise from genuine structures (see Aragón-Calvo et al.
2007b). Regions with a morphology response Ψ(~x) lower
than the global threshold τ are omitted from the list of iden-
tified structures.

The value of the thresholds τB , τf and τw for clusters,
filaments and walls is determined on the basis of the mea-
sured dependence of the structure detection rate as a func-
tion of the value of the morphology signal Ψ. All clusters
with a morphology value less than the threshold τB are con-
sidered to be small insignificant blobs. The threshold is cho-
sen such that these are erased, but not yet the the large
gravitationally bound clumps. In the case of filaments and
walls, the threshold value is determined on the basis of the
percolation properties of the network of filaments and walls.
The threshold values τf and τw are defined as the morphol-
ogy signal value Ψ for which the population of filaments
and walls reaches its maximum number: at lower values the
filaments and walls start to percolate.

In a distribution where all filaments or walls have simi-
lar properties such as contrast and physical extent this is the
perfect choice. In the real Universe, however, there is a large
variation in the contrast and size of filaments and walls. The
same global criteria are therefore applied to faint as well as
prominent structures. As a result, there is a systematic in-
clusion of low density regions forming the boundary of faint
structures. While most mass is concentrated in high density
regions, most of the volume of space concerns low-density
regions. As a result, MMF has some bias towards low den-
sity structures. This might be alleviated by the use of more
restrictive threshold values. However, this would imply the
loss of very faint structures. A more preferrable but as yet
not practical approach would be the use of a local threshold
value which would account for the significance of features
within the environmental context.
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Figure 4. Top: Surfaces enclosing regions of space identified as clusters, filaments and walls in the simulation box (left, middle and right
panels). Bottom: The particles enclosed by the surfaces in the top panels. Only the largest objects are shown for clarity.

3.5 MMF Product

The end product of the MMF procedure is a map segmented
in clusters, filaments and walls (fig. 4). These have been
identified as the most outstanding structures and vary in
scale over the full range of scales represented in Scale Space
(eqn. 2). Following the thresholding of the Scale-Space Map
Stack Ψ on the basis of cosmological and astrophysical con-
siderations, we are left with the Object Map O. For each of
the different morphologies - clusters, filaments and walls -
these consist of the physically recognizable objects in the
Cosmic Web.

4 MORPHOLOGICAL SEGMENTATION:

COSMIC WEB COMPONENTS

Figure 1 shows the morphological segmentation of the
150 h−1Mpc simulation (150Low in table 2 obtained with
the MMF. This figure illustrates the large scale distribution
of matter as an interconnected network of filaments (dark
gray) defining the boundaries of walls (light gray), and the
clusters (black) located at the intersections of the network.
The spatial distribution for each of the individual morpho-
logical components is shown in fig. 4, by means of isodensity
surfaces (top column) and by means of the particles enclosed
by these surfaces (bottom column).

For clarity fig. 1 and fig. 4 only show the largest struc-
tures. Including all the objects would quickly have produced
an image saturated with walls and filaments. By restricting
the number of structures included, it is easier to identify
the individual components of the Cosmic Web. Each mor-
phological component is well differentiated and occupies, by
construction, mutually exclusive regions. The variety of sizes
of the clusters is a nice illustration of the ability of the MMF
to identify structures at different scales (also see sec. 4.1).

Careful inspection of figs. 1 and 4 reveals the close phys-
ical affiliation of the different morphological components.
Cluster blobs are located at the tips of filaments, and fil-
aments tend to be found at the boundaries of walls. This
confirms theoretical expectations (Zel’dovich 1970; Bond et
al. 1996).

Following the MMF segmentation of the matter distri-
bution acccording to their intrinsic morphology and scale, it
is straightforward to compute the global properties of each
morphological component, such as mass and volume content.
For other properties, such as the length and density profiles
of filaments, additional post-processing steps are necessary.
These analysis procedures will be described in the next sec-
tions. First, we present a qualitative and illustrative impres-
sion of each of the main morphologies, starting with clusters
and followed by filaments and walls.
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10 Aragón-Calvo, van de Weygaert & Jones

Figure 5. MMF Cluster & Halo Identifications. A).- All particles inside a sub-box of the simulation. B).- Surfaces enclosing regions
identified by the MMF as clusters. Note that projection effects may distort the real size of the surfaces enclosing clusters. C).- Particles
located inside MMF clusters (dark grey). The rest of the particles are shown in light grey color. D).- Halos identified with HOP that
have their center of mass inside regions identified as clusters by the MMF. The MMF manages to identify the dense clusters at their
characteristic scale. This may be appreciated from panels C and D. The match is reasonably good, (although not perfect due to the
intrinsic differences between HOP and the MMF methods).

Figure 6. Halo Identification Comparison. Scatter plot of the radius (left) and mass (right) of haloes identified with HOP and the MMF.
The radius of the HOP haloes corresponds to the virial radius
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Figure 7. MMF Filaments. 3D stereoscopic view (Cross eyed) of the isosurfaces enclosing filaments (bottom panels) and the enclosed
particle distribution (top panels). The box corresponds to the zoomed region shown in Figure 3

4.1 Clusters

A more detailed view of the cluster distribution is presented
in figure 5. We illustrate the cluster distribution by means
of four panels:

A) The particle distribution.
B) Surfaces defining clusters identified with the MMF.
C) Particles identified inside MMF clusters.
D) HOP haloes corresponding to the MMF clusters.

The size of the objects seen in the particle distribution as
well as the HOP haloes is related to the size of the clusters
identified with the MMF. The match is not perfect, as one
may expect due to the intrinsic differences between HOP and

the MMF. This is illustrated in figure 6, where we compare
the radius and mass of clusters identified with HOP and the
MMF.

The radius of HOP clusters is defined as the distance
from the center of mass to outermost particle. For the MMF
clusters, we computed the radius from

R =

„

3

4π
Vblob

«1/3

. (5)

where Vblob is the volume of all pixels defining an individual
blob (cluster). The masses of HOP and MMF clusters are
well correlated. This is not surprising, since most of the mass
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12 Aragón-Calvo, van de Weygaert & Jones

Figure 8. MMF Walls. 3D stereoscopic view (Cross eyed) of the isosurfaces enclosing walls (bottom panels) and the enclosed particle
distribution (top panels). The box corresponds to the zoomed region shown in Figure 3

of the cluster is located in the dense inner regions of the
cluster. On the other hand, the scatter between radius of
HOP and MMF clusters is large. This is a result of the way
in which the radius is estimated. The distance of the most
distant particle from the center of mass is sensitive to small
fluctuations in the perifery of the clusters. Resolution effects
also influence the estimated radius of MMF clusters, since
the density field grid size is large compared to the radius of
the smallest clusters.

The third major effect which influences the radius es-
timate of massive clusters is the often substantial intrin-
sic elongation of clusters. By virtue of the MMF formal-
ism, clusters identified with the MMF tend to be spheri-
cally symmetric. However, in general the shape of virial-

ized clusters tend to depart from sphericity, which can be
most clearly observed in computer simulations (see e.g Araya
et al. 2009). Massive clusters are often highly elongated in
the direction of the filaments connected to them, and along
which most merging clumps are moving in (van Haarlem &
van de Weygaert 1993). In fact, the infall of matter along
the filamentary transport channels amplifies the elongation
and alignments of the clusters with respect to the filaments
and neighbouring clusters (van Haarlem & van de Weygaert
1993). The strongest contribution to this effect is that by
the merging of two or more clusters, which shares the highly
anisotropic nature of the more gradual accretion of most of
the matter.
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Clusters Filaments Walls Voids

Volume filling (%) 0.4 8.8 4.9 85.9
Mass content (%) 28.1 39.2 5.5 27.2
Mean overdensity 73.0 4.5 1.1 0.3
Median overdensity 11.5 1.7 0.9 0.3
Standard deviation 58.8 11.4 2.61 0.52
Kurtosis 58.7 44.8 160.5 142.1

Table 3. Inventory of the Cosmic Web. Listed are volume, mass content and a few statistical characteristics of the density distribution
of the individual structural morphologies. Mean, median, standard deviation and kurtosis are computed from the distribution of the
overdensity 1 + δ = ρ/ρ.

Once all clusters are identified, the corresponding clus-
ter particles are removed from the particle sample. The
cluster-free particle distribution is subsequently analyzed for
its filament population.

4.2 Filaments

On the basis of the “cluster-free” particle distribution, we
compute the DTFE density field. This density field only con-
tains structures associated with filaments and walls, and is
used as input for the identification of filaments in the MMF
pipeline.

The 3D visualization allows us to appreciate the three-
dimensional nature of the filaments, in particular also high-
lighting their connectivity. Figure 7 shows a 3D view of fila-
ments inside a subbox of 50 h−1Mpc of side. The isosurfaces
enclosing regions of space identified as filaments are shown
in the bottom panels. The particles they contain are shown
in the top panels. Note that the regions where clusters are
located (e.g. the large cluster at the top left corner) are also
covered by the filament mask, but that we explicitly exclude
these regions from the filament mask.

Note that there are some small particles and clumps,
which appear to be mostly isolated and bear no relation
to the surrounding structures. These correspond to regions
that have a spurious filamentary nature, and are near the
resolution and filament detection limit of MMF. We discard
these spurious identification from the filament mask.

Filaments identified with the MMF are complex ob-
jects that pervade throughout the sample volume, connect-
ing each of its regions. MMF follows the intrinsic scale of
the real filaments, which feature a large range of lengths
and widths. The corresponding filament particle distribu-
tion is far from homogeneous: along the filaments we find
dense haloes as well as a pervasive medium of diffuse parti-
cles. It is clear that a description of such complex systems
requires advanced methods of analysis which are sensitive to
the anisotropic and multiscale nature of the matter distribu-
tion. The MMF is an example of such a specifically designed
instrument.

4.3 Walls

After removing the particles located inside clusters and fil-
aments we proceed to the last step in the morphological
segmentation, the identification of walls in the density field.
Walls are the most tenuous coherent structures in the large-
scale universe. Their identification poses a major challenge

Figure 9. Pie diagram showing an inventory of the Cosmic Web
in terms of volume (left) and mass (right). We distinguish clusters,
filaments, walls and void regions (or “field”).

(Shandarin et al. 2004), and their tenuous nature and com-
plex topology and shapes makes them the most difficult mor-
phology to characterize.

Figure 8 shows a 3D view of the walls inside a volume of
50 h−1Mpc size. The top panel shows the particles located
within the walls, with the bottom panels depicting the corre-
sponding walls by means of isosurfaces. The DTFE density
field on the basis of the cluster and filament free particle
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14 Aragón-Calvo, van de Weygaert & Jones

sample contains only features of a planar nature, although
it also contains various noisy features that cannot be clearly
identified with any of the three basic morphologies.

In general, walls identified with the MMF are far from
smooth planar objects. They tend to have crumpled shapes
with no obvious topology. Because they are multiply con-
nected objects, it is virtually impossible to isolate individ-
ual walls from the complex web of walls. Evidently, MMF
identifies the walls succesfully. However, as a result of their
complex nature, we restrict ourselves to assessing their basic
properties.

5 COSMIC WEB INVENTORY

5.1 Mass and volume content

In order to understand the role of clusters, filaments and
walls in the shaping of the cosmic web it is crucial to de-
termine their relative abundances in terms of volume and
mass. Such quantities may provide rough estimates of the
dominance of one morphology with respect to the other in
shaping the cosmic web and driving its overall dynamics.

Table 3 lists some basic characteristics for each of the
morphological elements. These include an inventory of the
Cosmic Web in terms of volume and mass content. The mass
content of a particular morphology is measured by adding
the total mass of the particles enclosed within the bound-
aries of that morphology. The fraction of the occupied vol-
ume is determined by adding the volume of all voxels en-
closed within the morphological boundaries.

The resulting cosmic inventory is summarized in the pie
diagrams of fig. 9. The stark contrast between the volume
and the mass share of the clusters, filaments and sheets is
a direct manifestation of the large density differences be-
tween the different morphologies and a direct indication of
the dynamical importance of these elements. The density
contrast differences are also an indication for the different
evolutionary stages in which they reside, as gravitational
collapse proceeds faster as we go from walls → filaments
→ clusters.

Not surprisingly, clusters occupy the smallest volume
fraction in the cosmic web, occupying only 0.38 %. Despite
this, they also represent a major share of the cosmic mass:
28% of the total mass resides within cluster regions. This
not only makes them by far the densest objects of the Mega-
parsec universe, but also the dynamically dominant compo-
nent of the Cosmic Web (see e.g. Bond et al. 1996). The
largest fraction of the mass in the Universe, ≈ 39%, resides
in filaments, which occupy around 10% of the total volume.
Although their density is lower than that of clusters, they
represent the most salient component of the Cosmic Web
via their function as the all-pervasive bridges between all
structural features in the Megaparsec Universe. Walls con-
tain a substantially smaller fraction of the mass, ≈ 5.5%.
They also occupy a relatively small volume, at ≈ 4.9% even
less than that occupied by filaments. It certainly means that
walls have been relatively unimportant in the recent forma-
tion history of the cosmic web.

It is instructive to compare the present-day morpholog-
ical inventory with that in the primordial density field. On
the basis of the (tidal) deformation tensor distribution in

Figure 10. Cumulative (left) and density (right) probability dis-
tribution of the density contrast in clusters (blobs), filaments,
walls and the void regions (dotted, dashed, dotted-dashed and
solid respectively). The thick grey lines indicates the distribution
corresponding to all the volume.

the primordial Gaussian field, (Doroshkevich 1970) showed
that in the linear regime 92 % of the mass will collapse
into walls, filaments or clusters. Filaments and walls would
each take 42% of the share, clusters 8%, while the remain-
ing 8 % would correspond to underdense voids. While we
may already expect that this direct link between primordial
deformation tensor and morphology is too simplistic, it is
the subsequent quasi-linear and nonlinear evolution which
changes these numbers substantially.

The MMF is a density field based criterion, and per-
forms better as the density field becomes more prominent
and non-linear: it selects only those regions with a clear
morphology and contrast. Following the same deformation
tensor criteria with respect to the primordial density field,
(Pogosyan et al. 1998) showed that filaments will be much
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more prominent in the high density regions, which tend to
develop faster in the subsequent nonlinear evolution. Walls
are more biased to lower density regions, and at all times will
therefore occur less prominent than filaments. The MMF
sensitivities will therefore be naturally biased towards the
filaments and clusters in the mass distribution. Moreover,
MMF is less likely to properly identify the outer infall re-
gions of clusters, filaments and walls and instead tends to rel-
egate part of these to the field as they have not yet emerged
as fully developed structures. Here, for simplicity, we iden-
tify these field regions with the larger low density voids.

5.2 Density segregation of the cosmic web

The differences in mass and volume content derived for each
morphology correspond to different density ranges. It is of-
ten assumed that these elements mark out a unique density
regime, with no overlapping values. This assumption is the
basis for the use of overdensity as one of the most widely
used criteria to identify clusters (Lacey & Cole 1994; Eke et
al. 1996) and filaments (Shandarin et al. 2004; Dolag et al.
2006).

Figure 10 shows the cumulative and probability distri-
butions of the overdensity δ within the regions identified
as clusters, filaments, walls and fied. The lower panel shows
that each morphology occupies a characteristic range in den-
sity.

• Clusters are the densest objects, with a median over-
density of ∼ 11.5 and a mean overdensity of ∼ 73. The
range of overdensities extends to more than δ ∼ 100 and
even δ ∼ 1000 within the large virialized clusters.

• Filaments and walls have medium overdensities, with
mean overdensity of 〈1+δ〉 ∼ 4.5 for filaments and 〈1+δ〉 ∼
1.1 for walls and a median overdensity of ∼ 1.7 and ∼ 0.9
respectively.

• The field should be mostly identified with the most un-
derdense void regions. On average, the void regions corre-
spond to underdensities of δ ∼ −0.7.

The density values for filaments and walls partially co-
incide with the density range expected for collapsed objects,
since they concern values δ > 6 at which spherical objects
turn around into collapse. However, in particular for walls a
major fraction of the enclosed space has a substantially lower
density. To a large extent this concerns the lower density in
the outer realms which surround the dense inner regions of
clusters, filaments and walls. There is also a bias towards
low densities in structures identified with the MMF as a re-
sult of the morphology threshold criteria used by MMF to
separate real and noisy structures (see sect. 3.4).

The considerable level of overlap in density between
the various morphologies also means that a pure density
criterion for structural identification does not provide an
accurate description of reality. A morphological segmenta-
tion in terms of density alone would require at least a non-
overlapping low-density tail. However, the fact that this
does not seem to be the case implies there to be a sub-
stantial contamination with other morphological elements if
one would resort to a pure density-based criterion: a (global)
density threshold would be a poor discriminator of morphol-
ogy. Even when each morphology can be associated with a

specific density range, in general an additional, more sophis-
ticated characterization is required.

The use of the MMF method to disentangle the cosmic
web into its basic morphologies, independent of their den-
sity contrast, is clearly justified by the results presented in
figure 10. However, we do have to take care of the fact that
the MMF density estimates of filaments and walls tend to be
systematically lower than the actual values (see sect. 3.4).

6 FILAMENTS IN THE COSMIC WEB

Without doubt, the most salient features of the cosmic web
are the large filamentary networks, which are interconnected
across tens and even hundred of Megaparsecs. In this sec-
tion we focus specifically on the filaments identified with
the MMF and study their general properties such as length,
density profile, connectivity, etc.

6.1 Filament and wall compression

Filaments and walls have a complex topology. Their general
shape may be far from idealized lines and planes. Properties
such as direction, density profiles, extent and other measures
derived from these quantities are difficult to interpret or
meaningless without a proper reference point. We address
this problem by defining their “heartline” in a similar way
as the center of mass in spherical clusters is used as reference
point. We define the one and two-dimensional counterparts
for filaments and walls. They will be referred as the “spine”
of filaments and the “plane” of walls.

In order to infer the idealized lines and planes from the
complex filaments and walls we performed an iterative algo-
rithm that compresses structures along their perpendicular
direction (normal to the spine of the filament or the plane
of the wall) by moving each particle (or halo) to the center
of mass inside a spherical window centered on the particle
until its position converges. The movement of the particles
is restricted along the perpendicular direction to the spine
of the filament or the plane of the wall (see appendix A
for details). This procedure enhances filaments and walls
compressing them closer to idealized structures: filaments
become one-dimensional lines while walls are compressed to
nearly planar two-dimensional planes (see fig. A1).

In the determination of spines and planes we based our-
selves on dark matter haloes instead of particles. Spines and
planes derived from the raw dark matter particles tend to
cross the centers of large haloes since they contain most of
the matter in the neighborhood. This gives a similar result
as with the use of haloes. However, in computing the density
profile the difference between particles and haloes can be-
come important. The density profile is dominated at small
scales by large haloes, giving the false impression of highly
dense cuspy cores or even worst, producing several “cores”
of a single filament (Colberg et al. 2005).

6.2 The filamentary network

Figure 11 shows a slice of the simulation box in which fila-
ments have been compressed to delineate their spines. Gray
circles indicate the location of clusters with masses above
1014 M� h−1. This figure presents the Cosmic Web as a
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Figure 11. Filamentary network in a slice of 20 h−1Mpc. Back dots indicate dark matter particles in filaments after the compression
algorithm. Gray circles indicate the location of clusters with M > 1014M�h−1. The size is scaled proportional to their mass.

network of interconnected filaments spread all over the simu-
lation box. The clusters sit at the intersections or “nodes” of
the network. The filamentary network permeates all regions
of space, even the very underdense voids. One important
aspect of the filamentary network is its cellular nature (Jo-
eveer & Einasto 1978; Zeldovich et al. 1982) which defines
a multiscale system marked by structures over a range of
scales (Sheth 2004; Sheth & van de Weygaert 2004; Shen et
al. 2006). Large voids are delineated by thick large filaments.
Each of these voids contain subsystems of smaller filaments
delineating smaller mini voids which in term form the basis
for even smaller systems (Dubinski et al. (1993); Schmidt
et al. (2001); Sheth & van de Weygaert (2004); Shen et al.
(2006); Aragón-Calvo et al. (2010)). Also, large empty voids

contain extremely tenuous but rich filamentary systems only
seen in high resolution simulations (van de Weygaert & van
Kampen 1993; Gottlöber et al. 2003; Colberg et al. 2005).

6.3 Filamentary Network:

Percolation and Connectivity

The raw output of the MMF is an Object Map O, which de-
fines which pixels belong to a given morphology (see Aragón-
Calvo et al. 2007b). Given the coherence of the filamentary
(and sheetlike) patterns in the Cosmic Web, such pixels con-
nect with each other into large volume pervading complexes.
This network connects filaments of a large variety of sizes, in
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Figure 12. Filament Percolation and Connectivity. The 10 most massive filamentary structures at different density contrast thresholds,
δth = 0.2, 0.4, 0.9, 1.8, 2.9, 4.2 (from top to bottom and left to right). In order to differentiate between them, we plot each structure with
a different gray tone. The lighter shades correspond to more massive structures. See text for the description.
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Figure 13. Mass ratio between the 1th, 2nd up to the 10th largest
filaments and the total mass in the simulation box. The horizon-
tal dotted line indicates the total mass content in filaments (see
table 3).

turn branching into smaller filaments which are often mul-
tiply connected.

Such connectivity information, as well as the individual
properties of filaments, is not explicit in the Object Map.
To this end, we assess the percolation behaviour of the den-
sity field contained in the filamentary network. This avoids
the ambiguity in the segmentation of morphologies based on
density alone (see sect. 5.2).

The percolation analysis studies the change in num-
ber, properties and/or connectivity of objects defined as
regions of space above a given density contrast threshold
δth ≡ ρth/ρ̄ − 1. By varying the threshold across the com-
plete range of density values in the matter distribution, we
obtain a systematically evolving population of structures,
each characteristic for the value δth (Zeldovich et al. 1982;
Shandarin & Zeldovich 1983; Shandarin 1983; Klypin 1988).

We assess the change in filamentary complexes as a
function of the density contrast threshold:

1 + δth ≡

„

4

3
πl3link

«−1

, (6)

where llink is a linking length between two dark matter
particles. By iteratively associating particles with separa-
tions d 6 llink we produce a catalogue of filamentary com-
plexes. This procedure is rather similar to the identification
of clusters using the friends of friends algorithm. Following
their identification, we rank the filamentary configurations
by their mass, ie. the number of particles they contain. This
results in a mass ordered list consisting of the most massive
filament, second most massive filament, third most massive,
etc.

At high densities, filaments are isolated objects with a
simple shape and topology. As the value of δth decreases,
the filaments grow steadily while more mass from their sur-
roundings is added to them1. While they grow they branch
into increasingly complex structures. At some point, at the

1 By restricting ourselves to the filament pixels, the structures
remain confined to filaments and do not flood into walls or voids.

merging threshold δth ∼ 2, there is an rather sudden tran-
sition in the way the filaments grow. No longer the steady
inclusion of mass from adjacent lower density regions consti-
tutes the main growth process. Instead, the merging of ex-
isting filamentary complexes into super-filaments becomes
the main mode of structure growth. Descending to even
lower densities, the filaments continue to merge until, rather
abruptly, at one particular density value a single superstruc-
ture emerges which spans the entire volume: this marks the
percolation transition. As a result, opposite faces of the sim-
ulation box are connected.

The growth process is illustrated in figure 12. It follows
the development of the 10 most massive filaments along a
range of decreasing density thresholds δ > δth (going from
top left to bottom right). The figure shows the filaments at
thresholds 1+δth = 0.2, 0.4, 0.9, 1.8, 2.9 and 4.2 (from top to
bottom and left to right). In order to distinguish them, each
of the filaments is plotted with a different gray tone, with
the lighter shades corresponding to more massive structures.
The panels highlight the non-linear nature of the percolation
process, with the initial gradual growth suddenly transiting
into the merging of filaments and the emergence of super
complexes.

The corresponding growth in mass of the 10 most mas-
sive filaments, as a function of threshold density δth, is plot-
ted in figure 13. It depicts the mass fraction of each of these
filaments. At high values of δth, the 10 filaments have simi-
lar masses, confirming the impression obtained from fig. 12.
At low, percolating, density values there is a distinct differ-
ence between the largest filament and all other filaments.
Towards the lowest density values, δ ≈ −0.8, the most mas-
sive filament has absorbed the major share of filamentary
objects. It asymptotically attains a mass of ∼ 40% of the
total mass, which is the entire mass enclosed by the fila-
mentary network (see table 3). Meanwhile, the mass of the
remaining filaments decreases continuously. As their more
massive peers get absorbed into the percolating principal fil-
ament, the remaining isolated objects represent ever smaller
specimens of the filament population.

The largest structure in the percolation process, re-
ferred to as the principal percolating filament, 2. carries im-
portant information on the topology of the density field
(Shandarin et al. 2004). The principal percolating filament
has significantly different properties than the rest of the
(much smaller) filaments. It is a space-covering network con-
necting all regions of space and hardly changes significantly
once it has reached the percolation threshold.

6.4 Isolating Individual Filaments

The ability to recognize individual features such as filaments
is natural to the human brain. However, the analogue for
computational recognition still represents a major challenge.
To identify and isolate the individual elements forming the
interconnected network, we need to invoke post-processing
procedures. This involves the definition and introduction of
user-specified measures.

2 We use the term filament since it is contained inside the filament
Object Map (see Aragón-Calvo et al. 2007b)
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Figure 14. Filament Diversity. Top: three orthogonal projections of typical line (top) and star (bottom) filaments. Dark matter
particles are indicated by filled gray circles. The spine of the filament is also shown, by black dots, in order to better delineate the shape
of the filaments. Bottom: three orthogonal projections of typical grid (top) and complex (bottom) filaments. Dark matter particles
are indicated by filled gray circles. The spine of the filament is also shown, by black dots, in order to better delineate the shape of the
filaments.
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As we have seen in previous sections, strictly speak-
ing the filamentary network is a system that connects all
filamentary features. In this sense it does not constitute a
sample of individual isolated structures, so that any attempt
towards the identification of individual filaments necessarily
involves a level of subjectivity. And even though the MMF
formalism provides us with an objective measure of filamen-
tariness at each position of space, it remains far from trivial
for MMF to dissect the filamentary network into objectively
defined individual filaments.

One strategy to dissect the filamentary network into in-
dividual objects is by exploiting its percolation properties.
Following the argument of Shandarin et al. (2004) that in-
dividual objects identified by means of density thresholds
should be studied before percolation occurs, we use the same
principle to select the density threshold for defining individ-
ual filaments.

From figure 13 we see that the merging density thresh-
old, below which the identified features start to merge with
each other, is in the order δth ∼ 1. In practice, we use a
somewhat larger value of the threshold in order to elim-
inate the possibility of filament mergers via thin tenuous
bridges whose significance might be questioned (this is a
known problem of the friends of friends algorithm for halo
detection (Eisenstein & Hut 1998)). Visual inspection indi-
cates that the differences are small, a consequence of the
restriction to regions identified by MMF as filaments. After
some experimentation, we use the value δth = 3 as the den-
sity threshold for the identification of individual filaments.

6.5 Filament classification

Figures 14 show four examples of typical filaments. For visu-
alization purposes we plot dark matter particles taken from
the 1283 simulation in grey color. Superimposed on these
we plot the spine of the filament by means of the black
particles. Haloes delineate the same structures, be it more
diluted. In general we find that the level of complexity of
filaments is related to the surrounding large scale matter
configuration. Filaments in the vicinity of massive clusters
form more complex systems than the ones connected to less
massive clusters.

The fractal nature of the filamentary network makes
it difficult to classify individual filaments since in princi-
ple they form a percolating network that includes all fila-
ments. Also, the branching properties of our filaments ul-
timately depends on the resolution limit of our simulation.
This is a natural consequence of the hierarchical develop-
ment the Cosmic Web (Sheth 2004; Sheth & van de Wey-
gaert 2004; Shen et al. 2006). Ultra-high resolution N-body
simulations show that even in the most underdense regions
one can find systems of tenuous filaments extending along
the whole physical extent of the voids (van de Weygaert &
van Kampen 1993; Gottlöber et al. 2003; Platen et al. 2007).

On the basis of a rough phenomenological inventory of
the shape and morphology of the filaments in our simula-
tions, we distinguish four basic types of filaments:

• Line filaments do not have branches (or very few)
and are mostly straight with lengths in the order of
5-20 h−1Mpc. They are often found as “bridges” between
massive clusters. Shorter filaments are also straighter than

Figure 15. Polynomial fit (solid line) of two of the largest fila-
ments in the simulation. Dark matter haloes are represented by
gray circles.

large ones. They may be identified with the intracluster fil-
aments studied by Colberg et al. (2005) and filaments type
0,I,and II in the classification of Pimbblet & Drinkwater
(2004).

• Grid filaments are often found crossing vast regions
with no massive clusters crossing them. They form the
surrounding “net” enclosing large voids and are almost
invariably two dimensional, suggesting that walls are in
fact delineated by these kind of filaments. Even when they
consist of several branches one can often identify a main
“path” with smaller filaments running almost perpendicular
to it.

• Star filaments have a well defined “center”, usually
a cluster or large group from which several “arms” stretch
out. Star filaments can be considered a smaller version of
grid filaments. They are also two dimensional structures,
suggesting that grid and star filaments represent the same
kind of structures.
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Figure 16. Probability density distribution of length (top panel)
and mass (bottom panel) of filaments (see text for details). Only
filaments with more than 10 haloes were considered.

• Complex filaments do not have a clear shape, they
are often multiply connected and it is difficult to define a
main path or direction. These filaments can be found in
almost any environment.

6.6 Length of filaments

While describing filaments in terms of their mass is straight-
forward (see section 6.3), the determination of their length
and related physical properties involves several complica-
tions because of the branching nature of the filamentary
network. The length of complex systems composed of several
interconnected branches is not straightforwardly or uniquely
defined. One may even argue that it is a rather meaningless
concept in the case of filaments with strong branching such
as grid and star filaments, for which it is almost impossible
to define a main spine.

We may consider various options for the definition of
the length of a filament:

• The total length of all the branches of filament, related
to the fractal nature of the filamentary network (Martinez
et al. 1990). Its definition presents several practical compli-

cations such as the identification of the branching points in
the main path.

• The length of the main path of the filament (Colberg
et al. 2005; Pimbblet & Drinkwater 2004). This definition
presumes the existence of such a main path, whose definition
introduces an arbitrary choice of defining criteria.

Given the high level of complexity of the algorithms used to
identify the total length of filamentary systems we postpone
their study for future work. Instead, here we concentrate on
the length of the main path of the filament. To first order
this can be identified with the thickest or longest branch.

We are particularly interested in the length of filaments
connecting to clusters. These do not only appear as the
nodes of the Cosmic Web, but they also define the forma-
tion sites of filaments (Bond et al. 1996). They therefore
provide a natural way of dissecting the filamentary network.
Accordingly, we proceed different than in the percolation-
based dissection described in sect. 6.4. For the construction
of the filament catalogue, we use the haloes instead of the
dark matter particles to trace the filamentary network. This
has the advantage of being faster when computing the length
of the filaments and of ignoring the irrelevant small details.

We start by collecting all clusters with a mass M >

1014M� h−1. Around the locations of these clusters, we cut
spheres with radius 2 h−1Mpc. The filaments contained in
these spheres involve smaller individual objects, which are
easier to handle. From this set of isolated filaments we pro-
duce a catalogue using a friends of friends algorithm with
a linking length corresponding to a density threshold of
δth + 1 = 4. Note that in this way we exclude large super-
structures, as the filaments are broken up at cluster nodes.

To analyze the length of the identified filaments, we use
a 3rd order polynomial fit to describe and quantify their
shape (see appendix. B for details). Two representative fil-
aments are shown in fig. 15, along three mutually orthogo-
nal directions. The best polynomial fit is superimposed on
the related halo distribution. The fit manages to closely fol-
low even the most intricate filaments and also ignores small
branches. This is particularly visible in the case of the grid
filament in the top panel, whose main branch is crossed by
several smaller filaments.

The length and mass distribution of the resulting fila-
ment sample is shown in fig. 16. Small filaments are clearly
more abundant than the large ones, as we may expect for a
hierarchically evolved distribution. Filaments with lengths
in excess of a few tens of Megaparsecs are extremely rare.
In terms of their mass, we also see that there are hardly any
filaments with masses larger than ∼ 1014 M� h−1. In other
words, while the largest and most massive filaments are the
most prominent structures in the Cosmic Web, they repre-
sent only a minor fraction of the entire filament population.

6.7 The density profiles of filaments

Filaments are far from being smooth uniform structures. In
most cases it is possible to identify a highly dense spine
surrounded by more diffuse matter. Filaments are also pop-
ulated by compact dense haloes. This yields a resemblance
of filaments to a pearl necklace, with haloes suspended along
the bridging spine between massive clusters. Despite the
prominence of the inner realms of filaments, there are only
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Figure 17. Filament Density Profile. Left: average enclosed density profile of haloes inside a filament. The dotted line corresponds to
a power-law fit N(r) ∝ r−2. Right: density profiles of 15 individual filaments. Superimposed (thick gray line) is the average enclosed
density profile. To enable their mutual comparison, all density profiles are scaled to a value N(r = 0) = 1 at the center of the filament.

a handful of studies adressing their density profile with re-
specty to the filament’s spine (e.g. Colberg et al. 2005; Dolag
et al. 2006). This is even more true for the density distribu-
tion of walls, which has only been adressed in a few theoreti-
cal studies (see e.g. Zel’dovich 1970; Shandarin & Zel’dovich
1989).

Visual inspection of the observed Cosmic Web reveals
that there are indeed filaments spanning across several tens
of Megaparsecs. Examples of these are the “spine” of the
Pisces-Perseus supercluster (Gregory et al. 1981; Giovanelli
& Haynes 1985) and the planar filamentary system known
as the Sloan Great Wall (Gott et al. 2005; Platen 2009).
However, such massive systems are marked by a substantial
degree of substructure, containing numerous clusters and a
filigree of small-scale filaments.

In general, large haloes dominate the density profile.
This manifests itself in a cuspy profile centered at the spine
of the host filaments, and even occasionally involving sev-
eral peaks near the centre. Following this observation, we
use haloes instead of dark matter particles, thereby avoiding
contamination of the radial profile at small scales. The den-
sity profiles of the filaments are determined by counting the
enclosed number of haloes, weighted by their mass, in bins
of increasing radial distance from the spine of the filament.
The radial distance of a halo with respect to the spine of its
host filament is defined as the displacement of a halo before
and after we apply the compression algorithm described in
section 6.1 (see appendix A for details). To enable the mu-
tual comparison of the density profiles of all filaments, they
are all scaled to a value N(r = 0) = 1 at the center of each
filament. The resulting density profile, averaged over all fila-
ments, is shown in the left panel of fig. 17. A similar analysis
for walls reveals that they have less well defined boundaries
with widths ranging between 5-8 h−1Mpc.

The average filament profile has a power-law shape,

N(r) ∝ r−2, beyond a radius of r ∼ 2 h−1Mpc. For a one-
dimensional entity like a filament this implies that no more
mass is attached to the filament at larger radii. In other
words, the radius r ∼ 2 h−1Mpc marks the average max-
imum extent of a filament. Within this range, the profile
turns to a power-law shape with a slope γ ≈ −1, which cor-
responds roughly to an isothermal profile for a filamentary
entity. The profile slope transition at around r ∼ 2 h−1Mpc,
provides a simple criterion for defining the width of fila-
ments. The fact that there appears to be only a small vari-
ation in this width (see fig. 17), means that we may have
some confidence in using this one particular value.

To provide an impression of the variation in the density
distribution around filaments, we show the density profile
for 15 individual filaments in the right panel of the same
figure. While the individual profiles differ, their variation is
restricted to a rather small range. We also find some vari-
ation in the maximum extent of filaments, which confirms
the impression obtained from the observed Cosmic Web and
had already been noticed in previous studies (Colberg et al.
2005; Dolag et al. 2006).

6.8 Cluster Bridges

Filaments are closely affiliated to clusters. According to the
Cosmic Web theory (Bond et al. 1996), filaments are the
transport channels along which clusters accrete mass (see
van Haarlem & van de Weygaert 1993; Diaferio & Geller
1997; Colberg et al. 1999). Massive clusters are formed at the
sites of rare high density peaks in the primordial matter dis-
tribution (Bardeen et al. 1986), and dominate the dynamical
evolution of the cosmic matter distribution. Particularly in
the high-density areas, the overwhelming coherent gravita-
tional tidal forces between two cluster peaks are responsible
for anisotropic collapse of the surrounding matter towards
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Figure 18. Three examples of clusters and the filaments to which

they are connected. The three clusters have masses in the range
1013−1014 M� h−1. Top: a grouplike cluster, with M ∼ 1013 M�
h−1, connected to two filaments. Centre: A medium sized cluster,
with M ∼ 2 − 3 × 1013 M� h−1, connected to several filaments.
Bottom: a massive cluster, with M ∼ ×1014 M� h−1, at the
centre of a highly complex environment of filamentary branches.

Figure 19. Cluster Mass and Filament Connections. The figure
plots the mean number of filaments, 〈N〉, connected to a cluster as
a function of the mass Mcl of the cluster (solid line). The dotted
line indicates the 1σ dispersion of the data around the mean (see
text).

elongated filaments (Bond & Myers 1996; Bond et al. 1996).
The strength of the filamentary bridges is expected to de-
pend on the mass of the generating cluster, their mutual
distance and their mutual orientation (Bond et al. 1996).
This has been confirmed by numerous numerical simulations
(see e.g. Colberg et al. 2005; Sousbie et al. 2009; Gonzalez &
Padilla 2009). A visual assessment of observations as well as
simulations also suggests that the more prominent clusters
are associated with filamentary systems of a higher com-
plexity (Pimbblet & Drinkwater 2004; Colberg et al. 1999,
2005).

Figure 18 shows three examples of groups and clusters
with masses in the range 1013−1014 M� h−1. A first impres-
sion is that massive clusters appear to be embedded within
a more complex filamentary environment. On the basis of
this figure, we may make a few direct observations:

• The top panel shows a cluster connected to two fila-
ments. Its mass, M ∼ 1013 M� h−1, is characteristic for a
group of galaxies consisting of a few tens of galaxies. Such
filaments may be the result of a gravitationally induced frag-
mentation of a longer filament. The infall pattern of matter
into these clusters is highly anisotropic, and is mainly re-
stricted to the direction of the connecting filaments.

• The cluster in the middle panel has a mass of M ≈
2 − 3 × 1013 M� h−1. It is connected to several filaments.
It is also indicative that we find several other clusters in its
vicinity.

• The cluster in the bottom panel is embedded in a highly
complex environment. Several filaments can be seen branch-
ing in a range of different directions. It is not possible to
identify a main filament to which the cluster is connected.

Following these observations along with others obtained
from the simulation, we find that the number filamentary
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% Clusters % Filaments % Walls % Voids

Volume filling 0.38 8.79 4.89 85.94
Mass content 28.1 39.2 5.45 27.25
Relative density 73 4.45 1.11 0.31

Table 4. Inventory of the Cosmic Web in terms of volume and mass content.

extensions of a cluster is closely related to the mass of the
cluster.

6.8.1 Cluster Mass and Filament Connections

In order to quantify the relation between the mass of a clus-
ter and the number of connected filaments we used the fila-
ment catalogue described in sect. 6.6. To this end, we applied
the following criteria:

a) A filament is connected to a cluster if it has at least one
halo within a sphere of radius 3 h−1Mpc from the center of
the cluster.

b) Only clusters with M > 1014 M� h−1 were considered
in our analysis.

Figure 19 suggests an almost linear relation between
the mass of a cluster and the number of filaments that are
connected to the cluster, although the dispersion around the
relation is rather large. The most massive clusters, the ones
with a mass in excess of M ∼ 1015 M� h−1 may form a
node connecting to 5 or even 6 different filaments. Low mass
clusters with a mass 6 1014 M� h−1, on the other hand, tend
to have rather simple connections of 2 and not more than 3
filaments.

The figure suggests that some clusters may even have
only one filament connected to them. However, this is not
observed in the Cosmic Web, and would be difficult to justify
from a physical point of view. It is mainly the result of the
method used to assign filaments to clusters, which may in
some situations miss a few faint filaments which would be
connected to these low-mass clusters.

The large dispersion in figure 19 reflects the complex-
ity of the Cosmic Web. The final matter configuration in
the neighborhood of a cluster depends not only on its mass
but also on the geometrical configuration of the surround-
ing clusters (Bond et al. 1996). Other studies have found a
similar relation based on intracluster filaments found in N-
body simulations (Colberg et al. 2005) and visually identi-
fied filament-cluster connections from the 2dF galaxy survey
(Pimbblet & Drinkwater 2004).

7 CONCLUSIONS

We provide a qualitative and quantitative description of the
Cosmic Web in terms of its morphological constituents. We
focused on filaments, to a lesser degree on walls. The ba-
sis for this work is a large N-body simulation of a ΛCDM
cosmology with dark matter particles. The morphological
segmentation was done with the Multiscale Morphology Fil-
ter.

• The mass content, volume content and mean density of
the cosmic web is quantitatively summarized in table 4.

• Each morphology of the cosmic web has a characteris-
tic density. The distribution of densities however, has a large
overlap. Density alone can give an indication of the morphol-
ogy but it can not be used to unambiguously segment the
Cosmic Web into its morphological constituents.

• We offer a qualitative classification of filaments based
on their visual properties in four types: line, star, grid and
complex.

• The density profile of filaments indicates that their typ-
ical radial extent is of the order of 2 h−1Mpc, although there
are significant variations between filaments. In their inte-
rior, filaments have a power-law density profile with slope
γ ≈ −1, corresponding to an isothermal density profile.

• We find a relation between the mass of a cluster and the
number of filaments it has connected. More massive clusters
have more filaments in average. Clusters with a mass of ∼
1014 M� h−1 have on average two connecting filaments while
clusters with mass of ∼ 1015 M� h−1 have on average five
connecting filaments.

Having analyzed and described the structure of the fila-
mentary network, in the subsequent paper we will adress the
velocity flows and the dynamics of the network and of indi-
vidual clusters. Also, we plan to experiment with the MMF
detection technique, and instead of adressing the multiscale
character of the density field develop a version based on the
dynamically more relevant gravitational potential field.

In a related study (Jones et al. 2010), we have applied
the MMF to detecting filaments in the SDSS galaxy redshift
survey and identified edge-on galaxies within their realm.
This allowed us to adress and answer the question whether
there are significant alignments of galaxy spins along the
spine of the SDSS filaments. This is expected following the
tidal torque theory for galaxy angular momentum genera-
tion. MMF indeed allowed us to identify a subset of galaxies
and filaments conforming to a significant alignment.

The application of MMF to real galaxy surveys intro-
duces a few important additional challenges. One aspect con-
cerns the survey volume selection. While a volume-limited
survey would guarantee an ideal homogeneous coverage, in
practice it involves a severe reduction of spatial resolution
and hence the feasibility of identifing crucial aspects of the
anisotropic features in the Cosmic Web. For magnitude-
limited galaxy redshift surveys, the DTFE density field re-
construction enables a correction for the diminishing sam-
pling density at higher density. Nonetheless, an appropriate
MMF web analysis will still be restricted to the more densely
sampled regions out to the peak of the radial survey selec-
tion function. A recent meticulous analysis by Platen et al.
(2010) has assured us that our web analysis tool box can be
succesfully tuned towards controlling this issue.

An additional artefact that may severely affect the iden-
tification of filaments is the imprint of redshift distortions.
The large peculiar motions in and around the virialized clus-
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ter cores generate artificial radially directed elongated fea-
tures, better known as the Fingers of God. In practice, we
remove all filaments within a limiting angle ηc around the
line of sight. Jones et al. (2010) show that this succesfully
recovers a statistically proper filament distribution. Large
scale cosmic flows are known to enhance the contrast of
anisotropic filamentary features (see e.g. Shandarin et al.
2009). However, a proper correction for this would at least
demand a densely sampled environment so that one may
model the corresponding force field. This is work in progress
and has not yet been implemented in our tool box.
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Gottlöber S.,  Lokas E.L., Klypin A., Hoffman Y., 2003,
MNRAS, 344, 715

Graham M.J., Clowes R.G., 1995, MNRAS, 275, 790
Gregory S. A., Thompson L. A., Tifft W. G., 1978, BAAS,
10, 622

Gregory S. A., Thompson L. A., Tifft W. G., 1981, ApJ,
243, 411

Geller M. J., Huchra J. P., 1989, Science, 246, 897
Hahn O., 2009, Galaxy Formation in the Cosmic Web,
Ph.D. thesis, ETH

Hahn O., Porciani C., Carollo C. M., Dekel A. 2007, MN-
RAS, 375, 489

Hahn O., Porciani C., Carollo C. M., Dekel A. 2007, MN-
RAS, 381, 41

Hahn O., Porciani C., Carollo C. M., Dekel A., 2009, MN-
RAS, 398, 1742

Huchra J., et al. 2005, In: Nearby Large-Scale Structures
and the Zone of Avoidance, ASP Conf. Ser. Vol. 239, eds.
K.P. Fairall, P.A. Woudt (Astron. Soc. Pac., San Fran-
cisco), p. 135

Icke V., 1973, A&A, 27, 1
Jenkins A., et al., 1998, ApJ, 499, 20

c© 2008 RAS, MNRAS 000, 1–??



26 Aragón-Calvo, van de Weygaert & Jones

Joeveer M., Einasto J., 1978, Large Scale Structures in the
Universe, 79, 241

Jones B.J.T., van de Weygaert R., Aragón-Calvo M.A.,
2010, MNRAS, subm., arXiv:1001.4479

Kirshner R. P., Oemler A. Jr., Schechter P. L., Shectman
S. A., 1981, ApJ, 248, L57

Klypin A. A., 1988, Acta Cosmologica, 15, 101
Klypin A., Kravtsov A. V., Bullock J. S., Primack J. R.,
2001, ApJ, 554, 903

Lacey C., Cole S., 1994, MNRAS, 271, 676
de Lapparent V., Geller M.J., Huchra J.P., 1986, ApJ, 302,
L1

Lee J., Pen Ue-Li, 2000, ApJ, 532, L5
Martinez V. J., Jones B. J. T., Dominguez-Tenreiro R., van
de Weygaert R., 1990, ApJ, 357, 50

Melott A. L., 1983, MNRAS, 204, 7P
Novikov D., Colombi S., Doré O. 2006, MNRAS, 366, 1201
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APPENDIX A: FILAMENT AND WALL

COMPRESSION

In order to enhance filaments and walls and to morph them
closer to idealized lines and planes, we developed a com-
pression algorithm. The algorithm displaces particles in the
direction of increasing density, towards the spine of the fila-
ments or the planes that define the walls. The algorithm can
be applied to particles as well as to haloes, after weighing
them by their mass.

The compression procedure exploits the information
produced by the MMF. Not only does it identify the fila-
ments and walls in the cosmic web, but also their local di-
rection represented by the eigenvectors of the Hessian matrix
(see Aragón-Calvo et al. (2007b) and sect. 3). The smallest
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Figure A1. Filament compression illustrated. Haloes in filaments before (left) and after the application of the compression algorithm
(right). Haloes are indicated as white circles whose sizes are scaled according to their mass. The gray background delineates the density
field plotted in logarithmic scale.

Figure A2. Cartoon illustrating the compression steps for an
individual galaxy. It shows how the galaxy is displaced towards
a position on the heartline of the filament, along a direction per-
pendicular to the filament in which it is embedded.

eigenvector of the Hessian matrix traces the local direction
of a filament, while the largest eigenvector locally defines
the normal to the wall. This information is exploited to iter-
atively displace particles to the local center of mass within
a given radius. It is a widely used method for computing the
center of mass in spherical or semi-spherical haloes (van den
Bosch 2002).

We start by defining the heartline of filaments and walls
in a similar way similar to determining the center of mass
in spherical haloes. This heartline is used as reference point.
The one and two-dimensional heartlines for filaments and
walls are referred as the spine of the filaments and the plane
of the walls.

Our compression algorithm involves the crucial con-
straint that the displacement of particles to the center of

mass follows the direction perpendicular to the filament or
wall. As a result, this process transforms thick structures
into thin lines or planes without affecting their length.

In summary, the algorithm has the following steps (for
simplicity we only refer to particles, haloes will be treated
equivalently):

• For each particle i we find all neighbours inside a top-
hat window of a given radius Rtop, centered at the particle’s
position xi. The tophat radius should be large enough to
enclose the filament or wall in order to minimize the number
of iterations needed.

• The center of mass mi of the particles inside the tophat
window is computed, along with the vector defined by the
particle’s position and the center of mass mi.

• The particle is displaced to the center of mass along the
perpendicular direction of the filament/wall :

p = (e ∗ m) ∗ e sin(θ) (A1)

where e is the vector indicating the direction of the spine
of the filament or the normal to the plane of the wall. The
angle θ is the angle between the vector e and the center of
mass m (see fig. A2).

The eigenvectors e are computed from the Hessian ma-
trix smoothed at the characteristic scale of filaments, ∼
2 − 3 h−1Mpc (see sect. 6.7).

• After having performed the process for all particles, we
compute the dispersion between the “original” and “com-
pressed” positions. We repeat the complete process until the
dispersion between consecutive iterations changes by a given
factor, or until the total dispersion is less than a prescribed
value. This value specifies the convergence of the method.

The compression algorithm is rather insensitive to the size
of the tophat window, which may be in the range of Rth ∼
1 − 5 h−1Mpc for filaments and Rth ∼ 2 − 8 h−1Mpc for
walls. The lower limit depends on the mean interparticle
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separation, because there must be at least two particles in-
side the search window in order to displace the particle. The
maximum value of Rth depends on how close the filaments
and walls are to each other. If we would chose for a larger
radius, particles from adjacent structures would be included
which would invalidate the compression procedure.

We continue the compression algorithm recursively un-
til the dispersion between consecutive compressed positions
is less than 0.25 h−1Mpc. It is important to note that in the
compression algorithm we only account for particles con-
tained in the morphological population under consideration.

APPENDIX B: LENGTH OF FILAMENTS

The determination of the length of filaments involves two
steps. The first is the compression of the filaments, follow-
ing the procedure outlined in the appendix A. The second
step consists of fitting a polynomial to the particle or halo
distribution along the filament.

By fitting to a polynomial, we smooth the small-scale
variations that may remain following the compression proce-
dure. If we would not include this step, and instead chose to
add the segments of the mimimum spanning tree defined by
the particle distribution, we would end up with a filament
whose size would be larger than strictly representative.

As a compromise between simplicity and the ability to
follow intricate and complex filament shapes, we chose to use
polynomials of 3rd order. A visual inspection of several fila-
ments assured us that the 3rd order polynomials are indeed
sufficient for modelling even the most intricate filaments.
They manage to follow each change in direction.

The positions ri = (xi, yi, zi) of each of the parti-
cles/haloes i belonging to a filament are fitted to a poly-
nomial of the form

x = a1 + b1t + c1t
2 + d1t

3 ,

y = a1 + b1t + c1t
2 + d1t

3 , (B1)

z = a1 + b1t + c1t
2 + d1t

3 ,

where the parameter t is defined as the distance from an
arbitrary location (x0, y0, z0):

t =
p

(x − x0)2 + (y − y0)2 + (z − z0)2 (B2)

In practice we chose a set of values for (x0, y0, z0), usually
the corners of the simulation box, and select the one that
gives the best fit according to the criterion of having the
smallest mean square difference,

ε =
1

N
χ2. (B3)

If ε turns out to be larger than a given threshold, whose
value is determined by means of experimentation, we reject
the fit.

One remaining technical difficulty is the determination
of the extreme points of the filament for the fitting curve.
This is a non-trivial task, and if not considered properly may
lead to wrong length determinations. We follow a simple but
effective method to identify the extremes:

• The polynomial curve is closely sampled and distances

Figure B1. Identification of extreme of a filament: The fitting
curve (gray line) is closely sampled at points a, b, c, d, e. Haloes
are represented as large black dots. The closest halo to points
a, b, c and d is halo 1. At point e the closest halo changes to halo

2 indicating that the fitting curve is “inside” the filament.

to all the particles in the filament are computed starting
from one extreme of the fitted curve.

• For each point in the fitting curve the closest halo is
identified.

• We identify the point in the fitting curve at which the
identity of the closest halo changes. This indicates that the
fitting curve is no longer “outside” the filament but “inside”
it (see fig. B1).

• We repeat the procedure for the second extreme of the
fitting curve.

Following the previous steps, the fitted polynomial is used
to compute the length of the filament.
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