
Sterrenstelsels en Kosmos
Assignment 1 — Solutions

1. To give you an idea of the conditions in the center of the Sun, use

(a) the equation of hydrostatic equilibrium to estimate the pressure at the center of the
Sun, Pc, and

Solution This is just Example 9.4 in Section 9.4 of Kutner. The equation of hydro-
static equilibrium is

dP

dr
= −GM(r)ρ(r)

r2

Assume that the pressure at the outer edge of the Sun is zero. Then assume that
dP/dr = Pc/R and that the Sun has a uniform density of ρ = ρ̄. Then we see
that

Pc

R
∼ GMρ̄

R2

(the negative sign has gone away because of the direction of integration: the
pressure is Pc at r = 0 and 0 at r = R, but you integrate along increasing r) so

Pc ∼
GMρ̄

R
= 2.7× 1015 dyn/cm2.

Note that this is about 3 times less than the value in Kutner, because he ignored
the factor of 4π/3 in the conversion from density to mass and radius.

(b) the equation of state for an ideal gas to estimate the temperature at the center of the
Sun, Tc.

Solution We can rewrite the ideal law at the center of the Sun,

Pc =
ρ̄

m
kTc,

where m is the average mass per particle, m = 0.62mH , in terms of T as

Tc =
mPc

kρ̄
= 1.4× 107 K.

The average density of the Sun is ρ̄ = 1.4 g/cm3 and the typical mass of a particle in the
Sun is 0.62mH , where mH is the mass of a hydrogen atom. You can find other constants,
like the Boltzmann constant, the mass of the hydrogen atom, and the mass and radius of
the Sun on page 553 of Kutner.

Compare the numbers you estimated above with the values inferred from accurate models:
Pc = 2.3 × 1017 dyne/cm2 and Tc = 1.6 × 107 K. Do your estimates agree with these
numbers? Examine your assumptions and try to figure out why they agree or disagree.

Solution Clearly the central pressure of the Sun disagrees with the accurate models by a
factor of nearly 100. This is because the assumption of constant density is a very poor
assumption for the Sun! Therefore the assumption of constant mass as a function of
radius is also a very poor assumption, and since these terms each enter linearly into
into the differential equation, they make a strong effect on the pressure structure of
the Sun. The denisty gradient in the Sun is very, very strong in order to support the
structure of the Sun.
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However, the central temperature agrees very well! Is this suprising? Well, no, not if
you actually plug the equation for Pc into the equation for Tc:

Tc ∼
m

kρ̄

GMρ̄

R
=

GMm

kR
.

You see that the average density ρ̄ has dropped out! This means that the central
temperature of the Sun (to first order) does not depend on its density structure. This
isn’t quite true, but the effect of the structure on the central temperature is small.

2. Derive the relation between stellar mass and luminosity for stars on the main sequence.
Below you will use this relation to estimate how long stars live at a given mass.

First, write down the “order of magnitude equivalent” equations for mass conservation,
hydrostatic equilibrium, and radiative transfer equations of stellar structure, as well as the
equation of state for an ideal gas. Make sure you keep terms in the opacity κ̄ as you write
down these equations!

To get you started, the equation of mass conservation,

dM

dr
= 4πr2ρ(r), (1)

can be rewritten as
M

R
∝ R2ρ, (2)

where M and R are the radius of the star and ρ is some measure of its density. We then
have

ρ ∝MR−3. (3)

Use this relation to eliminate ρ from the other equations.

Solution Next is the equation of hydrostatic equilibrium,

dP

dr
= −GM(r)ρ(r)

r2

or
P ∝ R× GMρ

R2
∼ GM2R−4

after substituting in the relation for density derived above. This must equal the
equation of state for an ideal gas,

P =
ρ

m
kT ∝ k

m

MT

R3
,

so solving for T ,
MR−4 ∝MTR−3

and
T ∝MR−1

(i.e., T ∝M/R).
The radiative transfer equation can be written as

L(r) ∝ − r2

κ̄ρ
T 3 dT

dr
.
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Next, use the approximation
dT

dr
≈ T

R
(4)

at L(r) = L(R) and your previous equations to write the radiative transfer equation in
terms of luminosity L as a function of mass M and opacity κ̄.

Solution Then using the equation for radiative transfer above, we can write

L = L(R) ∝ R2

κ̄ρ
T 3 T

R

Substituting in our scalings for density ρ and temperature T from above, we have

L ∝ R2R3

κ̄M

M4

R4R

and therefore

L ∝ M3

κ̄
.

(Note that here I’ve surpressed terms in the mean mass of the particles, which is an
important driver of the luminosity during the evolution of the stars but not on the
zero-age main sequence.)

(a) For hot—that is, high-mass—stars, the opacity is a constant. What is the relation
between luminosity and mass for these stars?
Solution If κ̄ = constant, then

L ∝M3.

(b) For cooler stars (like the Sun), the opacity goes as κ̄ ∝ ρT−3.5. What is the relation
between luminosity, mass, and radius for these stars?
Solution If κ̄ ∝ ρT−3.5 (this is called Kramer’s law), then

L ∝ M3T 3.5

ρ
∝M3M3.5R3.5 R3

M

and

L ∝ M5.5

R0.5

For solar mass stars, R ∝M (roughly). What is the relation between luminosity and
mass in this case?
Solution Then we have

L ∝ M5.5

R0.5

M5.5

M0.5

and
L ∝M5.

Observationally, L ∝M3.8, so L ∝M4 is a reasonable approximation for the main sequence
(except for the highest- and lowest-mass stars).

Now, the higher the luminosity, the more nuclear burning is required. The amount of fuel
available is ∼M , and the timescale for nuclear burning is

τ ∝ M

L
. (5)

Then how does the timescale for nuclear burning vary with mass on the main sequence?
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Solution If L ∝M4, then
τ ∝M−3.

If the Sun will live 1010 years on the main sequence, how long will a star with M = 10M�
live on the main sequence?

Solution A Mbig = 10M� star will live

τbig

τ�
=

(
Mbig

M�

)−3

= 10−3,

times the lifetime of the Sun or ∼ 107 (10 million) years.

3. The Hyades open cluster has a radial velocity of vr = 35 km/s, a proper motion of µ =
0.078 arcsec/yr, and its convergent point is located at an angle of A = 26◦ from the line-
of-sight to the Sun.

(a) How far away is the cluster from the Sun in parsecs (pc)?

Solution Using equation (13.8) in Section 13.2 of Kutner, we have

d =
vr tanA

4.74µ
,

where d is in parsecs, vr is in km/s, A is in degrees, µ is arcsec/year. Then

d =
35 tan(26)

4.74× 0.078
= 46.2 pc

What is its distance modulus m−M?

Solution Recall that
m−M = 5 log(d [pc])− 5

so
m−M = 3.32 mag

for the Hyades cluster.

(b) The cluster’s colour–absolute magnitude diagram (sometimes known as the “Hertzsprung-
Russell diagram”) is shown in Figure 1. Use the distance modulus you found above
to write down the apparent magnitude scale on the right-hand side of the diagram.

Solution Since m−M = 3.32, m = M + 3.32, so an absolute magnitude of Hp = 0
mag corresponds to an apparent magnitude of mHp = 3.32 mag.

(c) What is the cluster’s space motion (velocity)?

Solution The space motion v of the Hyades cluster is, inverting equation (13.2) of
Kutner,

v = vr/ cos A

so v = (35 km/s)/ cos(26◦) ≈ 39 km/s.
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