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Stellar energy sources
Or, Why does the Sun shine?
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Gravitational energy

• Can the Sun power itself just by releasing 
energy from gravitational collapse?

• Let’s examine the gravitational potential 
energy of a uniform sphere with constant 
density

• Note that the Sun is ~spherical but 
doesn’t have constant density; this isn’t a 
problem if we use the average density
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• The mass of a sphere with radius R and 
density ρ is

• The gravitational potential energy of a 
sphere is the work required to bring all of 
its material from infinity to the final 
configuration, independent of the way that 
the sphere is assembled!

M =
4π

3
ρR3
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• Let’s consider the sphere as 
being broken up into shells, and 
let’s focus on the shell at radius 
r in the sphere with width dr

• The volume of this shell is its 
surface area times its thickness:

• and its mass is its volume times 
its density:

• The mass assembled out to r is

r

dr

dV = 4πr2dr

dM = 4πr2ρ dr

M(r) =
4π

3
r3ρ
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• Remember that material at r only feels 
force from the mass M(r) within it -- and 
then as if all that mass were concentrated at a 
point in the center of the sphere!

• Now, what is the gravitational potential 
energy?

• For any two masses m1, m2 separated by 
a distance r, this is

U = −G
m1m2

r
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• Let m1=M(r) and m2=dM.  Then the work 
need to bring this shell to r from infinity is

• Now we need to add up the work need to 
bring all the shells from infinity to r=0 out 
to r=R:

U =
∫ R

0
dU(r) = −16π2

3
Gρ2

∫ R

0
r4dr

= −16π2

3
Gρ2 R5

5
= −3

5

[
4π

3
ρR3

]2 G

R

= −3
5

GM2

R

U = −G
M(r)dM

r

= −16π2

3
Gρ2r4dr

Note that the factor of 
3/5 is only true for a 
sphere, but other 
configurations have 
similar constants, given 
some average length “R”
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• So how long can this gravitational potential 
energy power the Sun?

• The Sun is losing energy from its surface at 
a rate of 4x1033 erg/s (its luminosity), so the 
lifetime of the Sun would be

tg =
E

dE/dt
=

E

L

= −U

L
=

2× 1048 erg
4× 1033 erg/s

= 5× 1014 s ≈ 2× 107 yr

assuming that E=-U --- 
i.e., the only energy 
source is gravitational 
potential energy
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• This is 20 million years...

• ...but we know the Sun has been around for 
4.5 billion (4.5x109) years, so gravitational 
potential energy is insufficient (by a factor 
of >200) to power the Sun for so long!

• However, in the “protostar” phase, when a 
star is collapsing, gravitational potential 
energy is the only heat source.
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• Clearly we need much more energy than 
gravitational collapse can provide!

• Chemical reactions are less energetic, so 
not useful (could power the Sun for ~20 
thousand years!)

• How much energy do we need?

Nuclear reactions
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• We need enough energy to power the Sun 
for at least 4.5 billion years:

E > 4.5× 109 yr× 3× 107 s/yr× 4× 1033 erg/s
≈ 5× 1050 erg
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• Now let’s consider how much energy this is 
per nucleon (proton or neutron) in the Sun:

• The Sun has a mass of 2x1033 g, and it is  
made up of almost entirely hydrogen and 
helium, so the Sun has about 1057 
nucleons 

• Converting ergs to MeV, we find that the 
Sun needs to produce at least 0.3 MeV/
nucleon

• What can produce these sorts of energies?
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• An atomic nucleus has some number Z of 
protons (with charge +e, where -e is the 
charge of an electron) and some number N 
of neutrons (without charge), bound by the 
“nuclear strong force”

• The binding energy of a nucleus is equal to 
the difference between the rest-mass energy 
of the protons and neutrons and the 
nucleus:

Mnucleusc
2 + BE = Zmpc

2 + Nmnc2
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• Consider the binding energy of deuteron 
(D), an isotope of hydrogen with one 
proton and one neutron:

• So if we turned all the H into D in the Sun, 
we’d have more than enough energy to 
power it for 4.5 billion years!

BE = (mp + mn −mD)c2

= (1.6726 + 1.6749− 3.3436)× 10−24 g
×(3× 1010 cm/s)2

= 3.6× 10−6 erg = 2.2 MeV
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• There is a problem, 
however!

• Electrostatic repulsion 
between two positively-
charged protons makes 
forcing them together 
difficult: have to get over 
the “Coulomb barrier” 
to get to them to bind 
together.
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• For an average particle to get over the 
Coulomb barrier, it would need to have a 
temperature of

• Thankfully, things aren’t that bad...

3
2
kT >

e2

rnuc

T >
2e2

3krnuc

≈ 1010 K
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• Particles at some 
temperature T will have 
a distribution of velocities 
called the “Maxwell-
Boltzmann” distribution.  
The probability of finding 
a particle with energies 
between E and E+dE is

• Note that this 
distribution has a long 
tail to high energies...

P (E) ∝
√

Ee−E/kT dE
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• Quantum mechanics 
comes to our rescue!

• A particle can “tunnel” 
through a potential 
barrier a distance x with 
a probability

• where the particle has a 
wavelength λ=h/mv

P (x) ∝ e−ax/λdx = e−axmv/hdx
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• If the particle has a velocity v and mass m 
has to penetrate an electrostatic barrier 
with energy

• then the probability of tunneling that 
barrier is

E =
mv2

2
=

Z1Z2e2

rnuc

P (rnuc) ∝ e−aZ1Z2e2/2hv ∝ e−b/E1/2
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• By combining the 
Maxwell-Boltzmann 
“tail” and the QM 
tunneling, we find that 
the probability for the 
particles to bind is 

• This enhanced probability 
at some energy is called 
the “Gamow peak”, after 
George Gamow

Note that the Gamow peak has been 
enhanced by a factor of 106 here!

P (E) ∝ e(−E/kt−b/E1/2)dE
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• This means that two protons with energies 
of 3-10 keV can bind --- and there are lots 
of protons with that energy in the center 
of the Sun, where the temperature is ~16 
million K (1.6x107 K, not 1010 K!)
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• In fact, combining two protons together is 
just the first step in making helium out of 
hydrogen in the Sun:

• The amount of energy released is

} x2

Note that this is actually 
the first pp chain, 
contributing ~85% of the 
time in the Sun; there are 
two other chains that 
work at higher 
temperatures

(4mp −m4He)c2 = 0.007(4mpc
2)

p + p → D + e+ + ν

D + p → 3He + γ
3He +3 He → 4He + p + p
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• If all of the hydrogen in the Sun were 
converted into helium, the available energy 
would be

• and so the Sun could live for

• ...but only about 10% of the hydrogen in 
the Sun becomes helium before the Sun 
becomes a red giant, so the Sun has lived 
about half of its lifetime so far!

E = 0.007M!c2 = 1.3× 1052 erg

tnuc =
E

L
= 1× 1011 yr
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• There are other nuclear reactions in stars, like the 
CNO (bi)cycle: it also makes a helium nucleus out of 
four hydrogen nuclei, but because the CNO nuclei 
are strongly charged, it requires higher temperatures to 
get over the Coulomb barriers

• ~15% of the Sun’s luminosity comes from CNO

“n
or

m
al

” 
C

N
O
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• At even higher temperatures, the “triple-
alpha” (3α) process occurs: 3 helium nuclei 
become one 12C nucleus:

• But there’s a problem: there’s no stable 8Be 
nucleus -- it wants to break up into 2 α’s!

• That’s ok, because it takes a short time 
(3x10-16 s) for this to happen, and there are 
so many helium nuclei that there is some 
chance for another collision before breakup

4He +4 He → 8Be + γ
8Be +4 He → 12C + γ
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• The 3α process is much less efficient per 
unit weight than hydrogen burning: only 7.3 
MeV/3α

• and it happens at high temperatures: 
T~108 K

• at even higher temperatures, other 
helium-burning reactions can happen

• we’ll return to this in a while!
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reaction typical log (T/K) temperature 
sensitivity

pp 6.7-7.3 T6-3

CNO 7-7.5 T18

3α 8 T40
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Stellar structure
Or, how four equations (+four relations) tell us about 

the structure and evolution of stars
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Conservation of mass
• Remember our spherical star, 

with a density that depends on 
radius, ρ(r)

• Then the mass contained in a 
shell of thickness dr at r is 

• We can then determine the rate 
at which we add mass as we go 
out from the center:

• This is the equation of mass 
conservation: how the mass 
changes with radius and density

r

dr

dM = ρ(r)dV = 4πr2ρ(r)dr

dM

dr
= 4πr2ρ(r)

remember that the force 
at r depends ONLY on the 
mass within r!
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Hydrostatic equilibrium

• The star should not collapse under its own 
mass! (under normal circumstances)

• This support is provided by hydrostatic 
equilibrium, the pressure difference between 
the top and bottom of each shell in our 
star
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r

dr

• How much pressure difference 
is needed?

• Consider a small cylinder with 
height dr and area dA, with mass

• The gravitational force acting on 
this cylinder is

• Remember that pressure is the 
force per unit area, so the 
buoyant force on the cylinder is

dAP+dP

P

dm = ρ(r)dr dA

Fg = −GM(r)dm

r2
= −GM(r)

r2
ρ(r)dr dA

FB = PdA− (P + dP )dA = −dP dA

note that dP is negative, 
because there’s more 
pressure from the 
bottom than from the 
top!

31



• Hydrostatic equilibrium requires the 
buoyant force to balance the gravitational 
force, so that FB+Fg=0:

• Dividing by dA and dr and rearranging, we 
have the equation of hydrostatic equilibrium:

• where g(r) is the local gravitational 
acceleration

−dP dA− GM(r)
r2

ρ(r)dr dA = 0

dP

dr
= −GM(r)

r2
ρ(r) = −g(r)ρ(r)
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• This equation says that the denser the fluid 
(here, the star) is, the faster the pressure 
changes with radius

• denser fluid ➔ higher mass shell ➔ 
stronger gravitational force ➔ bigger 
pressure difference required

• also, bigger g(r) ➔ stronger gravitational 
force ➔ bigger pressure difference 
required
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Energy generation

• The luminosity produced in our shell of mass 
dm is equal to the energy released by the 
nuclear reactions per unit mass per second, ε, 
minus the energy that goes into heat per 
second, dQ/dt:

• From the first law of thermodynamics, dQ=dE
+PdV, where E is the internal energy and V is 
the volume, so we divide by dm and convert 
to dr:

dL = εdm− dQ/dt

dL

dr
= 4πr2ρε− dE

dt
− P

dV

dt

last two terms represent 
gravitational heating
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Energy transport
• Now we need to get that energy out of the 

star!

• There are three processes by which this can 
happen:

• Radiation: photons escape through diffusion

• Convection: blobs of gas rise and fall, 
carrying heat energy

• Conduction: electrons carry energy
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• Let’s consider radiative transport first.

• For moving particles, special relativity tells 
us that the energy of a particle in motion is

• A photon has no mass, but it does have a 
momentum p=E/c ➔ must exert force on 
particles it encounters ➔ exerts a pressure 
on its surroundings

E2 = p2c2 + m2c4

36



• Consider a flux Frad of photons leaving our little 
cylinder (so with units erg/s/cm2): the 
momentum transferred from the photons to 
the volume element is

• where l is the mean free path of photons --- the 
average distance a photon will travel before 
being absorbed or scattered

• In the Sun l~1 cm!  Because this distance is 
so short, it takes 5x105 years for a photon to 
get from the center of the Sun to its surface!

dp =
dFrad

c
=

Frad

c

dr

l
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• Now, the momentum transferred is actually 
the radiation pressure, so

• and therefore 

• We define the opacity as the probability per 
unit mass that the photons experience 
absorption or scattering over one mean 
free path:

• and we can write

dp = −dPrad

dPrad = −Frad

c

dr

l

κ̄ρ ≡ 1/l

dPrad

dr
= − κ̄ρ

c
Frad
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• Now if the radiation obeys a blackbody 
distribution of energies, we can compute 
that the radiation pressure depends on the 
temperature through

• where a=4σ/c is the radiation constant 
(here σ is the Stefan-Boltzmann 
constant)

• Then we can take the derivative with 
respect to r:

Prad = aT 4/3

dPrad

dr
=

4
3
aT 3 dT

dr
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• Then we can combine these equations for 
dPrad/dr together and solve for dT/dr to find 
the radiative temperature gradient

• Now, the flux at r is just the luminosity at r 
spread out over the entire shell:

• So if radiation is carrying all the energy 
flux, the temperature must change across 
the shell as

dT

dr
= − 3κ̄ρ

4acT 3
Frad

L = 4πr2Frad

dT

dr
= − 3

4ac

κ̄ρ

T 3

L

4πr2
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• If the temperature difference is too steep 
across a shell --- for example, when the 
CNO cycle (with its strong temperature 
dependence) is dominating the energy 
production at the core of a high-mass star, 
or near the surface of the Sun, where the 
gas is cool enough to absorb energy 
through ionization of the elements --- then 
radiation does not transport all of the energy
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• Then we need convection!

• In convection, hot blobs of fluid (or gas) 
carry energy to low-pressure regions and 
then cool and fall back to high-pressure 
regions
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• Convection is important to the structure and 
evolution of stars because convective regions 

• make stars bigger: it takes a lot of “room” 
to carry the energy in this way --- the star 
will expand and cool to allow this to 
happen

• mix material through stars: any convective 
region is completely mixed with the stuff in 
that region, so any new elements made in 
some region will be mixed throughout the 
region
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• Finally, in white dwarfs (which we’ll come 
to shortly), energy is actually carried by 
conduction

• conduction is the transfer of energy by 
electrons: the heat you feel when you 
touch hot metal (like the hot surface of a 
clothes iron) is being transferred through 
conduction
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The equation of state & 
other relations

• Now we have four equations but eight(!) 
unknowns: m(r), T(r), L(r), P(r), ρ(r), κ(r), ε(r), 
E(r)

• So we need four other relations!

• κ=κ(ρ,T,composition): from pre-computed 
opacity tables 

• ε=ε(ρ,T,composition): from nuclear physics
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• P=P(ρ,T,composition) and 
E=E(ρ,T,composition): these come from the 
equation of state of the matter

• For an ideal gas, PV=NkT implies

• where m is the average mass per 
particle in the gas and k is the 
Boltzmann constant

• and the internal energy E is

• For, say, degenerate matter, there is a 
different equation of state, which we’ll 
see later

P =
ρ

m
kT

E =
3

2m
kT
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Summary of stellar 
structure equations

dM

dr
= 4πr2ρ(r)

dP

dr
= −GM(r)

r2
ρ(r)

dL

dr
= 4πr2ρε− dE

dt
− P

dV

dt
dT

dr
= − 3

4ac

κ̄ρ

T 3

L

4πr2

Mass conservation:

Hydrostatic equilibrium:

Energy generation:

(Radiative) energy 
transport:

+equation of state, opacity tables and nuclear energy 
generation
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Stellar Models

• To generate a model of a star, we write a 
computer program that uses these four 
equations + the four supporting relations, 
assumes an initial mass, a composition, and 
some boundary conditions

• Then we get the structure of the star at 
some time t
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Structure of the Sun
• These equations allow us to 

“peer inside” the Sun

• We can identify three major 
regions “inside” the Sun:

• The core, where most of the 
luminosity is produced

• The radiative zone, where the 
temperature gradient is small

• The convective zone, where 
the temperature gradient is 
large
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• To get the present-day Sun, we have to make 
the Sun at the time t=0, which is defined at 
the time at which the star first starts 
burning hydrogen in equilibrium: that is, the 
time when all the elements involved in 
hydrogen burning have reached their 
“equilibrium abundances”
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• We then let the Sun burn hydrogen for some amount of 
time, then we compute a new model with the new 
composition after the burning has gone on for some time

• As burning proceeds, the amount of helium will 
increase and the amount of hydrogen will decrease

• This will change the structure because energy 
generation in the pp-chain and CNO cycles depends 
on the amount of hydrogen available, and the mass of a 
typical particle will change, which changes the equation 
of state

• We keep following this evolution until the Sun is 4.5 
billion years old and then compare the properties of 
the model -- its radius, luminosity, and temperature, 
which all increase with time -- to our Sun
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• Let’s turn to the observations now!

• We can classify stars by their colours and 
their luminosities, which we rank using 
magnitudes:

• Colours are given as the ratio of luminosity 
in two different bands, expressed as a 
magnitude:

The colour-magnitude 
diagram of local stars

M = −2.5 log(L) + constant

C = −2.5 log(L1/L2)
= −2.5 log(L1) + 2.5 log(L2)
= M1 −M2
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• Hotter stars are bluer: their spectra peak 
farther into the blue (shorter wavelengths)

• Cooler stars are redder: their spectra peak 
farther into the red (longer wavelengths)
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• When we look at the 
colours and magnitudes of 
local stars, we see a clear 
main sequence of 
stars along with a distinct 
red giant branch

• we also see very hot, 
very faint stars: these 
the white dwarfs, which 
we’ll come back to 
soon!

bright

faint

blue red

m
ain sequence

re
d 

gia
nt

 b
ra

nc
h

white dwarfs
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A note about 
astronomical terms

• There are two almost equivalent diagrams 
of the evolution or photometric properties 
of stars:

• Colour-magnitude diagram (CMD): a plot 
of (absolute or apparent) magnitude as a 
function of colour

• Hertzsprung-Russell (HR) diagram: a plot 
of stellar luminosity as a function of 
temperature
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The “zero-age main 
sequence”

• If we make models of stars of 
many different masses (but 
the same composition) at t=0, 
when equilibrium hydrogen 
burning first begins, we find a 
distinct pattern of luminosities 
and temperatures that looks 
like the observed main 
sequence:

• this is the “zero-age main 
sequence”
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Stellar evolution

• All stars will go through (at least) two 
major burning phases:

• Hydrogen burning

• Helium burning

• ...but for stars with masses less than ~0.8 
M⊙, hydrogen burning takes longer than the 
current age of the Universe, so they never 
get to helium burning!
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Stellar evolution

• As stars process their 
hydrogen into helium, they 
evolve in the Hertzsprung-
Russell diagram, roughly from 
right (hotter) to left (cooler)

• Because the energy released 
from hydrogen burning is so 
efficient, stars spend ~90% of 
their lives on the main 
sequence

1992A&AS...96..269S

like the Sun, stars still 
evolve on the MS, which 
is why the observed MS 
has some thickness

core H
 burning
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Stellar evolution: low 
mass stars

gravitational
energy
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Stellar evolution: low 
mass stars

core hydrogen 
burning
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Stellar evolution: low 
mass stars

shell hydrogen
burning + 

degenerate core
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Stellar evolution: low 
mass stars

helium
“flash”
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Stellar evolution: low 
mass stars

core helium+
shell hydrogen

burning
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Stellar evolution: low 
mass stars

shell helium+
shell hydrogen

burning
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Stellar evolution: low 
mass stars

cooling
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High-mass stars: H- and He-burning
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High-mass stars: H- and He-burning

ZAMS
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• If we make many stellar 
evolution models of stars 
of different masses (but 
the same composition) 
and then plot all the 
living stars of the same 
age, we produce an 
isochrone (“same age”)

• It is clear that the older 
the isochrone, the fainter 
and cooler the main-
sequence turnoff of the 
stars

Solar-metallicity isochrones 
from Marigo et al. 2008

4.5 Myr

14 Gyr

age ➔

main-sequence
turnoff
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Stellar death: 
low-mass stars

• When a low-mass star 
finally exhausts its fuel, 
it’s just a cooling cinder 
of carbon and oxygen: a 
white dwarf
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• It first passes through 
the planetary 
nebula phase, which is 
just a white dwarf 
surrounded by 
expanding, cooling gas 
that used to be the star’s 
envelope

• It then sheds its 
envelope completely and 
becomes a white dwarf
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• White dwarfs have no internal energy to 
heat them, so the gas pressure is not high 
enough to prevent gravitational collapse

• this collapse would continue forever...

• ...except that quantum mechanics steps in 
(again) to save us: the Pauli exclusion 
principle prevents complete collapse

White dwarfs: quantum 
physics on the sky
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• The Pauli exclusion principle states that

• no two fermions --- like electrons or protons 
or neutrons --- can occupy the same 
quantum state

• like the same orbit number, the same 
orbital angular momentum or the same 
spin

• If the matter is dense enough, the Pauli 
exclusion principle forces the electrons into 
many quantum states and gives rise to 
degeneracy pressure
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• We can see this in the following rough 
calculation:

• A particle with uncertainty in its position 
∆x has an uncertainty in its momentum 
∆p given by the Heisenberg uncertainty 
principle:

• so the uncertainty in its momentum is

∆x∆p ≥ h/2π

∆p ≥ h

2π∆x
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• When the density is very high, the spacing 
between electrons is very small, so the 
momentum must be large

• The pressure of a gas of electrons with 
density n moving with velocity v against the 
wall of a box is

• If we have ne electrons per unit volume, we 
have one electron per 1/ne, and therefore 
the average spacing between electrons is

P = nvp

∆x = (1/ne)1/3
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• The typical momentum of each electron 
must be at least that given by the 
uncertainty principle:

• and the velocity of each electron is then its 
momentum divided by its mass:

• So the pressure of the degenerate gas is

v = p/me

note that this is about a 
factor of 2 too low 
compared to a more 
accurate calculation, and 
it only applies to non-
relativistic electrons

p =
h

2π∆x
=

h

2π
n1/3

e

P =
(

h

2π

)
n5/3

e

me
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• Converting this from electron density to 
mass density, we have

• This is the equation of state for non-relativistic 
degenerate matter

P ∝ ρ5/3
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• Now we can integrate the equation of 
hydrostatic equilibrium,

• from the outside of the white dwarf to its 
centre, assuming (not quite correctly!) 
constant density to find 

• We then substitute our equation for 
degeneracy pressure to find

dP

dr
= −GM(r)

r2
ρ(r)

P0 =
2
3
πGρ2R2

WD

ρ5/3 ∝ ρ2R2
WD

70



• Now, since 

• We have that 

• or, collecting terms, 

• and thus

• Therefore, as white dwarfs get more 
massive, they get smaller!

ρ = MWD/
4π

3
R3

WD

M5/3
WD

R5
WD

∝ M2
WD

R4
WD

RWD ∝M1/3
WD

MWDVWD = constant
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• When the star gets so dense the electrons 
are moving at near the speed of light, the 
degeneracy pressure becomes

• and therefore, following a similar 
derivation, the mass of this white dwarf is 
constant!

• The maximum mass it can attain is called 
the Chandrasekhar mass, and for a pure-
helium white dwarf, MCh=1.44 M⊙

P ∝ ρ4/3
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• Note that most known white dwarfs have 
masses <1 M⊙, so the Chandrasekhar limit 
isn’t violated for these objects

• There is a kind of supernova, the type Ia 
supernova, that is very likely the explosion of 
a white dwarf in a binary system that 
accretes enough material from its 
companion to come near or exceed the 
Chandrasekhar limit, releasing ~1053 erg of 
energy and lots of elements in the periodic 
table around iron (the “iron-peak” elements)
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• The fate of the most massive stars depends 
on a number of parameters:

• rotation

• mass loss during evolution

• details of convection

Stellar death:
high-mass stars
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• Near the end of the life of 
any high-mass star, the core is 
an “onion skin” of burning 
layers surrounding an iron 
(Fe) core

• iron has the highest 
binding energy and is thus 
the most stable nucleus in 
the periodic table: very 
hard to “burn”

• every layer has exhausted 
fuel of layer above

Fe

Si burning

H burning
He burning
C burning
O burning
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• As the core gets hotter and hotter, 
photodisintegration breaks up nuclei, 
especially iron and helium:

• Photodisintegration is highly endothermic 
and removes thermal energy from the gas 
that could have been used to support the 
core

56
26Fe + γ → 13 4

2He + 4n
4
2He + γ → 2p + 2n

76



• At the same time, the protons suffer 
inverse β-decay and become neutrons:

• The released neutrinos stream away from 
the core, carrying a large amount of energy 
and the core collapses extremely rapidly, 
while the envelope sits there as if nothing 
has happened...

p + e− → n + ν
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• ...until the core reaches a density high 
enough to cause the neutrons to become 
degenerate...

• ...which causes a shock wave to propagate 
out through the envelope, which is ejected 
at high speed as a supernova 
explosion
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• A supernova explosion can be brighter 
than an entire galaxy: a core-collapse 
supernova explosion releases 1053 erg of 
energy!

• During the supernova explosion, 
temperatures and pressures in the 
expanding envelope become so high that 
many elements much heavier than iron 
can be formed
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• These supernova 
remnants spread the 
newly-formed elements 
into the interstellar 
medium, the space 
between the stars in a 
galaxy (which we’ll 
discuss soon)

• The strong magnetic 
fields in supernova 
remnants cause high-
energy electrons to 
travel on helical (spiral) 
paths, therefore 
accelerating and giving 
off synchrotron radiation, 
which is how we see 
these remnants

Kepler’s SNR: all these 
images are of 
synchrotron radiation!

Kepler’s Supernova Remnant
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• If the mass of the core is not too high, the 
core remains as a neutron star, like a white 
dwarf but with neutrons providing the 
degeneracy pressure...

• ...or else, for higher masses, the core 
collapses into a black hole, releasing even 
more energy
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• The leftover core of the massive star (if it’s 
not too massive) will become a neutron 
star, a star made up only of degenerate 
neutrons

• Following our discussion of white dwarfs, 
these (non-relativistic) neutrons have a 
degeneracy pressure of

• But the star is all neutrons, so 

• And therefore 

Neutron stars

P ∝ n5/3
n /mn

P ∝ ρ5/3/m8/3
n

ρ = nnmn
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• Therefore there is a mass-radius (or mass-
volume) relation like for white dwarfs

• For a 1 M⊙ neutron star, the radius is ~15 
km!
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• How fast might this neutron star be 
rotating?

• The angular momentum of an object is

• For a uniform sphere, this is

• If the NS once had the angular momentum 
of the Sun, then

• The Sun rotates once every 30 days, so the 
period of the NS is then

J = Iω

J =
2
5
MR2ω

I is the rotational inertia

ω/ω! = (R!/R)2 = 2× 109

P = (2.6× 106 s)/(2× 109) = 1.3× 10−3s

84



• That’s more than 1000 times per second!

• We can perform a similar calculation, 
conserving magnetic flux: then 
BR2=constant, where B is the magnetic field

• If we conserve the Sun’s field, the 
magnetic field of a neutron star could be 
(in excess of!)

BNS ∼ B!(RNS/R!)2 = 2G× 2× 109

= 4× 109 G note that typical NS 
magnetic fields have 
B~10^12!
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• Now why did we just go through all of this?

• Because we (usually) cannot see neutron 
stars in the optical region of the spectrum!

• Instead, we detect these stars either 
through their effects on a companion star, 
when they are part of a binary system, or 
as pulsars

Pulsars
there are only 7 or 8 
known “optical 
counterparts” of isolated 
neutron stars
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• In 1967, Jocelyn Bell 
Burnell and her PhD 
supervisor,  Antony 
Hewish, were looking for 
the scintillation of radio 
sources caused by 
charged particles in the 
interstellar medium

• Instead, they found the 
first pulsar, a regularly-
pulsating radio signal 
with a period of 
1.3373011 seconds
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• After much thinking, it was 
determined that the only 
sensible mechanism for 
powering these pulsars was a 
magnetised, spinning neutron 
star

• If the magnetic field is not 
aligned with the rotation axis 
of the NS, then charged 
particles trapped along the field 
lines emit synchrotron 
radiation that acts like a 
“lighthouse”: a beam of 
radiation that can be seen if we 
look (nearly) along the 
magnetic axis 

88



• Because of this “lighthouse” effect, we only 
see ~20% of all the pulsars on the sky

• Since we know >1000 pulsars already, there 
should be at least 5 times as many that we 
haven’t seen
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• As pulsars emit radiation, they must be 
losing energy

• This means that they must be slowing down, 
so the periods get longer

• Therefore, the fastest pulsars are the 
youngest
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• As an example of this 
process, the rate at 
which the Crab Nebula 
is losing energy via 
synchrotron radiation is 
equal to the rate at which 
the Crab pulsar is losing 
energy due to its pulses

• Supernova remnants are 
generally powered by 
pulsars!

The Crab Nebula
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Black holes

• Just as there is an upper limit to the mass 
of a white dwarf, there is an upper limit to 
the mass of a neutron star: 3-8 M⊙

• This limit is very uncertain because the equation 
of state of neutron matter is not well-
understood

• If the mass of the neutron star exceeds this 
limit, we know of no other pressure source 
to stop its collapse

See Kutner, Chapter 8
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• To understand the basic idea behind a black 
hole, we need to quickly review general 
relativity

• General relativity begins with the 
equivalence principle: a uniform gravitational 
field in one direction is indistinguishable 
from a constant acceleration in the 
opposite direction

• This can be thought of also as  
“gravitational and inertial mass are the 
same for any object”
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• The implication of the 
equivalence principle 
allowed Einstein to write 
down an equation that 
describes gravity as the 
bending of spacetime by 
mass
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• Now, because photons 
(light) follows the 
shortest path (the 
“geodesic”) in spacetime, 
mass causes light to bend 

95



• A clock traveling on this photon would 
slow down as the space becomes more 
curved

• So the photon actually changes it frequency 
to an outside observed: it slows down and 
therefore becomes redder

• This is known as gravitational redshift (and it 
has been tested many times!)
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• Let’s consider a photon emitted from an 
object of mass M, first at a distance r1 and 
second at a distance r2

• Conservation of energy in general relativity 
then says that the ratio of wavelengths 
received at these two distances is

λ2

λ1
=

[
1− 2GM

r2c2

1− 2GM
r1c2

]1/2
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• Now we see something funny here!

• If                            , then λ2 is infinite, no 
matter what r2  is!

• This defines the Schwarzschild radius: no 
light (i.e., no information) can escape from 
any object with radius R<RS -- there is a 
singularity inside that radius

• We call such an object a black hole

r1 <
2GM

c2
= RS
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• We cannot detect isolated black holes directly, because 
they give off no radiation

• Rather, we detect them by their effects on matter 
around them

• For stellar-mass black holes in binary systems, we 
detect them via their gravitational effect on their 
companion

• For black holes of all masses, we can also detect the 
radiation from their accretion disks, matter that has 
been ripped from nearby stars and radiates due to 
liberated gravitational potential energy

• We will discuss supermassive black holes later, when we 
talk about Active Galactic Nuclei
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