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Types of star clusters
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Open or Galactic 
Clusters

• “Open” or Galactic clusters 
are low mass, relatively 
small (~10 pc diameter) 
clusters of stars in the 
Galactic disk containing 
<103 stars

• The Pleiades cluster is a 
good example of an open 
cluster

• the “fuzziness” is 
starlight reflected 
from insterstellar dust
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• Because open clusters live in the disk of 
our Milky Way, they are subject to strong 
tides and shearing motions (which we’ll 
discuss later)

• Because they are so small and contain few 
stars, they also evaporate quickly

• Therefore they do not live very long unless 
they are very massive --- so most of them 
are quite young, as we’ll soon see
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Globular clusters

• Globular clusters are 
named for their 
spherical shape and 
contain ~104-106 stars 
and are bigger than open 
clusters, with diameters 
of 20-100 pc

• In the Milky Way, all 
globular clusters are 
old: >10 Gyr! M15 imaged with JKT at 

La Palma
core of M15 observed 
with HST

5



Globular clusters

• Globular clusters are 
named for their 
spherical shape and 
contain ~104-106 stars 
and are bigger than open 
clusters, with diameters 
of 20-100 pc

• In the Milky Way, all 
globular clusters are 
old: >10 Gyr! M15 imaged with JKT at 

La Palma
core of M15 observed 
with HST

5



Distances to clusters

• First, a quick review of distances in 
astronomy...

• The fundamental distance measure in 
astronomy is based on parallax, the change 
in angle a (stationary) star makes when 
seen from opposite sides of the Earth’s 
orbit around the Sun
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• Consider the Earth, 1 
AU away from the Sun at 
position E1.  Six months 
later, the Earth is at 
position E2, but the star 
has remained in the 
same place relative to the 
Sun.  Then, as seen from 
Earth, the star appears 
to have subtended an 
angle 2ϖ on the sky.

E1 E2
Sun

1 AU

d

ϖ
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• Then if r (=1 AU) is the radius of the 
Earth’s orbit, we find

• because ϖ is clearly small; converting to 
seconds of arc,

• Defining 1 AU such that

• and 1 parsec as the distance at which a 
star would have a parallax of 1″:

• The distance to a star with observed 
parallax ϖ″ is then

r

d
= tan! ≈ ! rad

!′′ = 206265! rad

d =
206265

!′′ AU

d =
1

!′′ pc

1 pc = 2062065AU = 3.086× 1013 km = 3.26 light years
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• Now, if we have an object with some flux F at 
some distance D, then the inverse-square law for 
flux tells us that the flux f we receive at some 
other distance d is

• Therefore, if we pick a standard distance D to refer 
to all objects, we can define an absolute 
magnitude M to be the magnitude object of 
apparent magnitude m would have at that distance:

• The standard distance D is always taken to be 10 
pc, which gives us the distance modulus:

f =
(

D

d

)2

F

m−M = −2.5 log(f/F ) = 5 log(d/D)

m−M = 5 log d− 5
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• Now let’s imagine a cluster 
receding from the Sun

• It first occupies a large 
area on the sky and then 
slowly shrinks to a 
convergent point

• If the cluster has a constant 
physical diameter d and is at 
a distance D, then its 
angular diameter on the sky 
is

The “moving-cluster” 
method

convergent
point

θ =
d

D
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• Let’s take the logarithm of both sides: 

• Now let’s take the derivative with respect 
to time:

• Rearranging and letting vr=dD/dt and          
we have

• So if we can measure the radial velocity vr 

and the rate          at which the cluster 
appears to be shrinking, we can measure 
the distance D to the cluster

ln θ = ln d− lnD

d ln θ

dt
= −d lnD

dt

D = −θ

θ̇
vr

θ̇ = dθ/dt,

−θ̇/θ
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• We can measure the direction to the 
convergent point by measuring the 
proper motions of the cluster stars: the 
transverse motion of the stars across (i.e., 
on the plane of) the sky over some amount 
of time

• Once we know this direction, we can use 
this to determine the distance to the 
cluster stars
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• The vector v is in the 
direction of the 
convergent point

• Then the star’s radial 
velocity is

• and its transverse 
velocity is

• But             , where μ is 
the star’s proper motion 
and d is its distance

• So

• and then

to convergent
point

Sun

star

ψ

ψ
vr

vt

v

vt = v sinψ

vr = v cos ψ

vt = µd

µ =
vr tanψ

d
d =

vr tanψ

µ
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Cluster Distance (pc)

Hyades 45

Ursa Major group 24

Pleiades 115

Scorpio-Centaurus 170
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The Virial Theorem

• A key concept in astronomy, from stars to 
star clusters to galaxies to galaxy clusters 
to the formation of galaxies, is the concept 
of virialization

• gravitationally-bound systems in 
equilibrium obey the remarkable 
property that their total energy is always 
one-half of their (time-averaged) 
potential energy
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• First, let’s consider, for some system of N 
particles, the quantity

• where pi and ri are the linear momentum 
and position vectors of some particle i, and 
the sum is taken over all N particles

Q =
∑

i

pi · ri

16



• The time derivative of Q is

• and the left-hand side of this expression is

• where the moment of inertia is

dQ

dt
=

∑

i

(
dpi

dt
· ri + pi · dri

dt

)

dQ

dt
=

d

dt

∑

i

mi
dri

dt
· ri =

d

dt

∑

i

1
2

d

dt
(mir

2
i ) =

1
2

d2I

dt2

I =
∑

i

mir
2
i

(1)
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• Substituting this back into (1), we have

• where the second term on the left-hand 
side is just twice the negative of the kinetic 
energy K of the system:

• Newton’s second law (F=dp/dt) then allows 
us to write

1
2

d2I

dt2
−

∑

i

pi · dri

dt
=

∑

i

dpi

dt
· ri

−
∑

i

pi · dri

dt
= −

∑

i

mivi · vi = −2
∑

i

1
2
miv

2
i = −2K

1
2

d2I

dt2
− 2K =

∑

i

Fi · ri (2)
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• Now let Fij be the force on particle i due 
to particle j, then, considering all possible 
forces acting on i,

• Rewriting the position vector of i as

• we find

• where Newton’s third law, Fij=-Fji, means 
the first term on the right-hand side is zero 
by symmetry

∑

i

Fi · ri =
∑

i




∑

j,j !=i

Fij



 · ri

ri = (ri + rj)/2 + (ri − rj)/2

∑

i

Fi · ri =
1
2

∑

i




∑

j,j !=i

Fij



 · (ri + rj) +
1
2

∑

i




∑

j,j !=i

Fij



 · (ri − rj)
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• So we can now write

• If only gravitational forces between 
particles with mass are at work in the 
system, then

• where                       is the separation 
between particles i and j, and      is the unit 
vector from i to j:

∑

i

Fi · ri =
1
2

∑

i




∑

j,j !=i

Fij



 · (ri − rj)

Fij = G
mimj

r2
ij

r̂ij

rij = |ri − rj |
r̂ij

r̂ij =
rj − ri

rij

(3)
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• Substituting the gravitational force into (3), 
we have

• where the potential energy between 
particles i and j is

• and so the potential energy has been 
double-counted

∑

i

Fi · ri = −1
2

∑

i

∑

j,j !=i

G
mimj

r3
ij

(ri − rj)2

= −1
2

∑

i

∑

j,j !=i

G
mimj

rij

U = −G
mimj

rij
= −G

mjmi

rji
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• Taking this into account, we have

• Finally substituting this into (2) and taking 
the average with respect to time we have

• In an equilibrium system over a long-
enough period of time, the first term on 
the left-hand side is zero, so we have the 
virial theorem for a system in gravitational 
equilibrium: 

∑

i

Fi · ri = −1
2

∑

i

∑

j,j !=i

G
mimj

rij
=

1
2

∑

i

∑

j,j !=i

Uij = U

1
2

〈
d2I

dt2

〉
− 2〈K〉 = 〈U〉

−2〈K〉 = 〈U〉
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• Since

• we can also write the virial theorem as

• Note that the virial theorem applies to a 
wide variety of systems, from an ideal 
gas to a cluster of galaxies to a star in 
equilibrium!

〈E〉 = 〈K〉 + 〈U〉,

〈E〉 = 〈U〉/2
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• In a cluster, stars will orbit around the 
centre of mass of the cluster

• Pairs of stars can exchange energy and 
momentum via gravitational encounters, 
which we call collisions

• But these are not true collisions: the 
distance between stars even in dense 
clusters is much larger than their radii

Cluster dynamics
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• If their are enough collisions (encounters), 
the cluster will reach an equilibrium 
velocity distribution

• Note that this is a distribution: not all stars 
will be moving at the same speed

• some will be moving faster, some will 
be moving slower than the mean 
velocity
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• Recall from our discussion of stars that the 
potential energy of a uniform-density 
sphere of mass M and radius R is

• For a typical globular cluster with 106 
stars of typical mass 0.5 M⊙ and core 
radius 5 pc, U=-2.5x1051 erg

U = −3
5

GM2

R
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• If the cluster has N stars each with mass m, 
the kinetic energy of the random motion of 
its stars is

• The total mass of the cluster is M=Nm, so

• where the mean square velocity is

K =
N∑

i=1

mv2
i /2 =

m

2

N∑

i=1

v2
i

K =
Nm

2

N∑

i=1

v2
i

N
=

M〈v2〉
2

〈v2〉 =
N∑

i=1

v2
i

N
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• Now we can use the virial theorem to 
write

• Solving for the mean squared velocity we 
find

• For the globular cluster discussed earlier, 
the root mean square (RMS) velocity is 

• ...the typical velocity of star in the cluster

M〈v2〉 =
3
5

GM2

R

〈v2〉 =
3
5

GM

R

vRMS =
√
〈v2〉 =

√
−U/M = 16 km/s
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• How fast does a star have to be moving to 
escape the cluster?

• For this to happen, the particle must be 
moving fast enough to be unbound from the 
cluster, so its total energy must be zero or 
greater when it is launched

• The escape velocity ve is defined as the 
velocity of a particle that has zero total 
energy at the edge of the system: K+U=0
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• At the edge of the cluster (radius R, mass 
M), the potential energy of the star is

• and the star’s kinetic energy is

• Therefore the escape velocity is

• ...a bit more than √3 times the RMS 
velocity for the system

U = −G
mM

R

K = mv2
e/2

ve =
√

2GM/R
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• As the highest-velocity stars escape the 
cluster, the other stars must adjust their 
velocities to re-establish an equilibrium 
velocity distribution

• How long does this take?

• We need to compute the amount of time 
for a star to suffer one strong encounter 
and therefore adjust its velocity: this will 
define the relaxation time of the cluster
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• Let’s suppose that our star has a “sphere of 
influence” with a cross-sectional area of

• If any other star enters this sphere, it 
could be said to have experienced a 
strong encounter

πr2
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• If the velocity of the star is v and the 
number density (number per unit volume) 
of stars is n, then we want the volume 
swept out by the star in time trelax to 
contain one other star

• This volume is a cylinder with area       and 
length

• Therefore we want

• which defines trelax to be

(πr2vtrelax)n = 1

vtrelax

πr2

trelax = 1/(πnr2v)
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• But we haven’t actually chosen r yet!

• A sensible choice would be the radius at 
which the gravitational potential energy of 
the pair of stars is equal to the typical 
kinetic energy of each star:

• So

• Then trelax is

Gm2

r
=

mv2

2
r =

2Gm

v2

trelax =
v3

4πG2m2n
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• A more careful analysis shows that this 
relation needs to be reduced by a factor of 
1/[ln(N/2)], where N is the number of stars 
in the cluster

• Now, the number of stars per unit volume 
is just

n =
N

(4/3)πR3
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• Then the relaxation time is

• Let’s use the virial theorem now: if the 
average separation between any two stars 
in the cluster is R, then the gravitational 
potential energy between these two stars is

• and there are N(N-1)/2 possible pairs of 
stars in the cluster, so

Upair = −Gm2/R

U = −N(N − 1)Gm2/2R

trelax =
R3v3

3G2m2N ln(N/2)
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• The total kinetic energy of the cluster is

• Since virial theorem tells us that K=-U/2, 
we can write

• and then, if N is sufficiently large,

K = Nmv2/2

Nmv2/2 = N(N − 1)Gm2/4R

v2 =
GNm

2R
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• Finally, we can write the relaxation time as

• where 2R/v is the crossing time of the 
cluster: the typical time it takes for a star 
to cross from one side of the cluster to the 
other

trelax =
2R

v

N

24 ln(N/2)
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• For our example globular cluster, the 
crossing time is tcross=2x1013 s=6x105 yrs

• ...and the relaxation time is N/[24ln(N/2)] 
times this, so with N=106, trelax=6x1016 s = 
2x109 yrs = 2 Gyr

• comfortably within the age of the 
Universe!
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• The evaporation time is the time is takes 
for the cluster to lose more than half of its 
stars: tevap~100 trelax

• For a globular cluster, this is significantly 
longer than the current age of the 
Universe

• But for open clusters, tevap~3x109 yr=3 
Gyr --- which is the primary reason we 
only see the richest, most compact old 
open clusters
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• For a dynamically-relaxed cluster, we can use 
the virial theorem to estimate the cluster’s 
mass if we can measure the cluster radius 
and the line-of-sight velocity dispersion

• For our spherical cluster of mass M and 
radius R with N stars each of mass m, the 
total gravitational potential energy is

• If the stars have a mean square velocity of 
⟨v2⟩, the total kinetic energy is

U = −3
5

GM2

R

K =
M〈v2〉

2
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• Then the virial theorem gives

• We can measure R, but how do we measure 
⟨v2⟩?

• What we can measure is the radial 
velocity of the stars in the cluster, which 
gives the component of the motion along 
the line-of-sight through the cluster, so we 
can measure ⟨vx

2⟩ if x refers to this 
direction

M =
5
3
〈v2〉R

G
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• Let’s resolve the motion of a star in the 
cluster into rectangular (x,y,z) coordinates:

• where              are the unit vectors in the 
three directions

• Then

• and the average value ⟨v2⟩ is 

v = vxx̂ + vyŷ + vz ẑ
(x̂, ŷ, ẑ)

v · v = v2 = v2
x + v2

y + v2
z

〈v〉2 = 〈vx〉2 + 〈vy〉2 + 〈vz〉2
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• But if the motions are random, as we might 
expect in a cluster, then

• so

• and therefore the mass can be estimated 
from

〈vx〉2 = 〈vy〉2 = 〈vz〉2

〈v2〉 = 3〈vx〉2

M =
5〈v2

x〉R
G
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• Our test cluster then has an estimated 
mass of M=6x105 M⊙

• Note that this only works for spherical, 
relaxed systems with uniform density

• If the system is out of equilibrium or is 
elliptical, or has a density gradient, it 
won’t be strictly correct --- but it’s always 
a good first estimate!
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• As mentioned earlier, open 
clusters are typically young 
due to the effect of tidal 
shear in the Galactic disk 
and cluster evaporation

• This is reflected in their 
colour-magnitude diagrams

• remember that cooler 
and fainter main-
sequence turnoffs are 
older

Colour-magnitude 
diagrams of clusters
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• Globular clusters, on the 
other hand, are very old 
(>10 Gyr), at least in the 
Milky Way

A
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t 
m
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ni

tu
de
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• Globular clusters in the 
Milky Way are generally 
very old (>10 Gyr), with 
only a few younger, 
metal-rich globular 
clusters

• It isn’t clear why these 
clusters are younger, 
but they are the 
clusters that are 
closest to evaporation

M. Salaris and A. Weiss: Ages of a large sample of Galactic globular clusters 497

Fig. 3. Distribution of the absolute ages (in Gyr) as function
of [Fe/H] (upper panel) and Rgc (lower panel). Filled circles
correspond to clusters in the R99 sample, while open squares
denote the remaining ones.

Fig. 4. As in Fig. 3, but assuming the ZW84 [Fe/H] scale for
the clusters instead of the CG97 one in the previous figure.

in our sample. When deriving errors in age differences
within the same metallicity group, we have just to take
into account the error coming from the use of ∆(V − I) as
the relative age indicator, without adding the contribution
of the error in the absolute age of the template cluster (as
is done in Table 1), because for typical absolute age errors

of ±1 Gyr, the differential properties of ∆(V − I) as a
function of metallicity and age are negligibly affected.

For the pair NGC 288-NGC 362 we obtain an age dif-
ference of 2.6 ± 1.5 Gyr (NGC 288 being older), in good
agreement with the results by Bellazzini et al. (2001), but
in contrast to SW97, where the two clusters appeared to
be coeval. The reason for this change lies in the new pho-
tometric data. According to the simulations by Catelan
et al. (2001), this age difference, coupled with the abso-
lute ages we obtain and the use of the CG97 [Fe/H] scale,
can explain the overall different HB morphology; however,
canonical HB models appear unable to reproduce the de-
tailed morphology of the red end of NGC 288 HB (Catelan
et al. 2001).

In case of M 3-M 13 we obtain a difference of 0.6 ±
1.0 Gyr (M13 older), much less significant than the 1.7±
0.7 Gyr as obtained by Rey et al. (2001) from their BV
photometry. M 13 was not contained in our previous work.
The same negligible age difference we obtain from the ∆V
values derived by R99; it seems therefore that the discrep-
ancy between our and Rey et al. (2001) result is due to
real differences in the photometric data, and not to the
use of different passbands for the TO-RGB colour differ-
ences and inconsistency in the colours of the theoretical
isochrones. Problems with the calibration of the photom-
etry may possibly lead to this kind of discrepancy. Rey
et al. (2001) noticed, for example, that their derived fidu-
cial line for M 13 agrees well with those obtained by Richer
& Fahlman (1986) and Yim et al. (2000), but differs in the
main sequence and subgiant branch region from the fidu-
cial by Paltrinieri et al. (1998).

It is also interesting to notice that Arp 2 and Rup 106
do not appear much younger than the bulk of the clusters
at their metallicity; the reason why Buonanno et al. (1998)
found higher age differences is mainly the fact that their
adopted clusters’ absolute ages are higher. As discussed
in detail in, e.g., Pulone et al. (1998), lower absolute ages
imply smaller age differences for a given observed distribu-
tion of ∆V , ∆(B−V ) or ∆(V −I) values. As discussed in
SW98 there are preliminary indications that Rup 106 and
also Pal 12 may not show α-element enhancement. In this
case, their ages displayed in Table 1 should be increased
by about 1 Gyr.

To highlight the effect of the present uncertainties in
the [Fe/H] scale, we have also derived ages, as a test, by
using the [Fe/H] values given by Rutledge et al. (1997) on
the ZW84 scale (internal accuracy again of the order of
0.10 dex), complemented, if needed, by data in the origi-
nal ZW84 paper or coming from other spectral indices cal-
ibrated on the ZW84 scale. In this case the [Fe/H] range
spanned by our sample is larger than the CG97 scale.
We have therefore divided the sample into 5 groups, hav-
ing as template clusters M 15 (−2.3 ≤ [Fe/H] ≤ −2.0),
NGC 6656 (−1.99 ≤ [Fe/H] ≤ −1.7), M 3 (−1.69 ≤
[Fe/H] ≤ −1.4), NGC 6171 (−1.39 ≤ [Fe/H] ≤ −0.9) and
47 Tuc (−0.89 ≤ [Fe/H] ≤ −0.5). Figure 4 shows the age
distribution resulting from the AM-method as a function
of [Fe/H] and Rgc, when using the ZW84 [Fe/H] scale.
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