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Types of star clusters



Open or Galactic
Clusters

® “Open” or Galactic clusters
are low mass, relatively
small (~10 pc diameter)
clusters of stars in the
Galactic disk containing
<|03 stars

® The Pleiades clusterisa §&
good example of an open |
cluster

® the “fuzziness’ is
starlight reflected
from insterstellar dust




® Because open clusters live in the disk of
our Milky Way, they are subject to strong
tides and shearing motions (which we’ll
discuss later)

® Because they are so small and contain few
stars, they also evaporate quickly

® Therefore they do not live very long unless
they are very massive --- so most of them
are quite young, as we’ll soon see
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Distances to clusters

® First,a quick review of distances in
astronomy...

® The fundamental distance measure in
astronomy is based on parallax, the change
in angle a (stationary) star makes when
seen from opposite sides of the Earth’s
orbit around the Sun



® Consider the Earth, |
AU away from the Sun at
position E|. Six months
later, the Earth is at
position Ey, but the star
has remained in the
same place relative to the
Sun. Then, as seen from
Earth, the star appears
to have subtended an

angle 2T on the sky.




® Then if r (=1 AU) is the radius of the
Earth’s orbit,we find . _ (.1 ~ = rad

d

® because W is clearly small; converting to
seconds of arc, @' = 206265 rad

206265
® Defining | AU such that d = AU

,w//

® and | parsec as the distance at which a

star would have a parallax of |”:
1 pc = 2062065 AU = 3.086 x 10'° km = 3.26 light years

® [he distance to a star with observed

parallax @W" is then ; _ 1 C
,w-// p



® Now, if we have an object with some flux F at
some distance D, then the inverse-square law for
flux tells us that the flux f we receive at some

. . 2
other distance d is D
~(3) 7

® Therefore, if we pick a standard distance D to refer
to all objects, we can define an absolute
maghnitude M to be the magnitude object of
apparent magnitude m would have at that distance:

m — M = —2.5log(f/F) = 5log(d/D)

® The standard distance D is always taken to be 10

pc, which gives us the distance modulus:

m— M =5logd — 5



The "moving-cluster”
method

® Now let’s imagine a cluster
receding from the Sun

® |t first occupies a large
area on the sky and then
slowly shrinks to a
convergent point

convergent
point

PR

® |f the cluster has a constant
physical diameter d and is at
a distance D, then its
angular diameter on the sky
IS d

)= —
D



Let’s take the logarithm of both sides:

Inf =Ind —1In D

Now let’s take the derivative with respect

a  dt
Rearranging and Iettlng v/=dD/dt and 0 = df/dt,

we have D — —gvr

So if we can measure the radial velocity v;
and the rate —@/6 at which the cluster
appears to be shrinking, we can measure
the distance D to the cluster
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® We can measure the direction to the
convergent point by measuring the
proper motions of the cluster stars: the
transverse motion of the stars across (i.e.,

on the plane of) the sky over some amount
of time

® Once we know this direction, we can use

this to determine the distance to the
cluster stars
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The vector v is in the
direction of the
convergent point

Then the star’s radial
velocity is v, = v COS

and its transverse
velocity is vy = vsiny

But v; = ud, where | is
the star’s proper motion
and d is its distance
v, tan Y

d
and then d =

So =
v, tan Y

1

Sun

to convergent

point
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Cluster Distance (pc)

Hyades 45
Ursa Major group 24
Pleiades |15
Scorpio-Centaurus 170
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The Virial Theorem

® A key concept in astronomy, from stars to
star clusters to galaxies to galaxy clusters

to the formation of galaxies, is the concept
of virialization

® gravitationally-bound systems in
equilibrium obey the remarkable
property that their total energy is always
one-half of their (time-averaged)
potential energy
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® First, let’s consider, for some system of N
particles, the quantity () = Pi-T;
i
® where pi and r; are the linear momentum
and position vectors of some particle i, and
the sum is taken over all N particles
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° The tlme derivative of Q is

dpz dI’i
=2 ey (1)
° and the |left- hand S|de of this expression is
d—1d, o 1dI
dt dtzmz Y= g 2 g g M) = g g

® where the moment of mert:a is

2
I = E m;r;
i




® Substituting this back into (1), we have

1d*T dr; dp;
3 ar 2P r_z i

® where the second term on the left-hand
side is just twice the negative of the kinetic
energy K of the system:

_sz dr@ — _Zmzvz V; = _zzlmiUQ —

° Newton s second law (F= dp/dt) then allows
us to write

1d°1
saz 2= 2L Fen @
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® Now let F; be the force on particle i due
to particle j, then, considering all possible

forces acting on i,
2 J,J 71

® Rewriting the position vector of i as
ri = (r;+r;)/2+(r; —r;)/2

® we Fnd(

;Fi-ri——z

1

ZFZJ) (ri +rj) + 5 Z(ZF@J) (r; —rj)

J,J 71 ? J,J 71
® where Newton’s third law, Fi=-F;, means

the first term on the right-hand side is zero
by symmetry
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® So we can now wlrite
SEIEEE D3] Dol t) RUEES
i i \Jj#
® |f only gravitational forces between
particles with mass are at work in the
mgim;
system, then F,.. =G 5T
re.
1]
® where 7;; = |r; — rj|is the separation
between particles i and j, and ¥;; is the unit

vector fromitoj: 4, — i — T

T’ij

(3)
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® Substituting the grawtatlonal force into (3)
we haveZFz r, =— __> >w mzm]

N E) ”

DI

N E

® where the potential energy between
particlesiand jis U = -G — g™

Tij ’I“ji

® and so the potential energy has been
double-counted

—r;)

2
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® TJaking this into account, we have

R PIPILL T 3Pl

o Finally substltutlng thIS into (2) and taking
the average with respect to time we have

(5 ) - 24) = @)

dt?
® |n an equilibrium system over a long-
enough period of time, the first term on

the left-hand side is zero, so we have the

virial theorem for a system in gravitational
equilibrium:| —2(K) = (U)

22



® Since
(E) = (K) + (U),
® we can also write the virial theorem as
(E) = (U)/2

® Note that the virial theorem applies to a
wide variety of systems, from an ideal
gas to a cluster of galaxies to a star in
equilibrium!



Cluster dynamics

In a cluster, stars will orbit around the
centre of mass of the cluster

Pairs of stars can exchange energy and
momentum via gravitational encounters,
which we call collisions

® But these are not true collisions: the
distance between stars even in dense
clusters is much larger than their radii
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® |f their are enough collisions (encounters),
the cluster will reach an equilibrium
velocity distribution

® Note that this is a distribution: not all stars
will be moving at the same speed

® some will be moving faster, some will
be moving slower than the mean
velocity

25



® Recall from our discussion of stars that the
potential energy of a uniform-density
sphere of mass M and radius R is
7 3 GM?

5 R
® For a typical globular cluster with 106

stars of typical mass 0.5 Mo and core
radius 5 pc, U=-2.5x10°' erg




® |f the cluster has N stars each with mass m,
the kinetic energy of the random motion of
Its stars is

N N
K = va?/Q = %va
i=1 i=1

® [he total mass of the cluster is M=Nm, so

Nm e 02 - M{v?)

(

2 N 2

1=1

® where the mean square velocity is

N’U2
I
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® Now we can use the virial theorem to

write 3 G M?
M (v?) =
W) =5
® Solving for the mean squared velocity we
find 3GM
(v7) =
b R

® For the globular cluster discussed earlier,
the root mean square (RMS) velocity is

URMS — \/ <”02> — \/—U/M — 16km/s

® .. .the typical velocity of star in the cluster




® How fast does a star have to be moving to
escape the cluster?

® For this to happen, the particle must be
moving fast enough to be unbound from the
cluster, so its total energy must be zero or
greater when it is launched

® The escape velocity ve is defined as the

velocity of a particle that has zero total
energy at the edge of the system: K+U=0
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At the edge of the cluster (radius R, mass

M), the potential energy of the star is

mM
U=-G——
R

and the star’s kinetic energy is
K = mv?/2
Therefore the escape velocity is
ve = \/2GM/R
.. bit more than /3 times the RMS
velocity for the system

30



® As the highest-velocity stars escape the
cluster, the other stars must adjust their
velocities to re-establish an equilibrium
velocity distribution

® How long does this take?
® We need to compute the amount of time
for a star to suffer one strong encounter

and therefore adjust its velocity: this will
define the relaxation time of the cluster
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® | et’s suppose that our star has a “sphere of
influence” with a cross-sectional area of 7

® |f any other star enters this sphere, it
could be said to have experienced a
strong encounter

2
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If the velocity of the star is v and the
number density (number per unit volume)
of stars is n, then we want the volume
swept out by the star in time trelax to
contain one other star

This volume is a cylinder with area 77~ and
length vl;e1ax

Therefore we want (WTQUtrelaX)n =3\

which defines trcax to be

lrelax = 1/(7‘(’7”“2?})
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But we haven’t actually chosen r yet!

A sensible choice would be the radius at
which the gravitational potential energy of
the pair of stars is equal to the typical

kinetic energy of each star:
Gm?*  muv?

2G'm
02

So =

v
47 G?m?2n

Then tl"elax iS trelax —
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® A more careful analysis shows that this
relation needs to be reduced by a factor of
|/[In(N/2)], where N is the number of stars
in the cluster

® Now, the number of stars per unit volume
is just N

e (4/3)mR3




® [hen the relaxation time is
R3v3
Fretax = 3G2m?2N In(N/2)
® | et’s use the virial theorem now: if the
average separation between any two stars
in the cluster is R, then the gravitational

potential energy between these two stars is
2

® and there are N(N-1)/2 possible pairs of
stars in the cluster, so

U=—-N(N—-1)Gm?/2R
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® The total kinetic energy of the cluster is

K = Nmwv* /2

® Since virial theorem tells us that K=-U/2,
we cah write

Nmv?/2 = N(N — 1)Gm?* /4R
® and then, if N is sufficiently large,

>, GNm
T —
2R




® Finally, we can write the relaxation time as
2R N

relax Ty 241n(N/2)
® where 2R/v is the crossing time of the

cluster: the typical time it takes for a star

to cross from one side of the cluster to the
other
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® For our example globular cluster, the
crossing time is teross=2x10'3 s=6x10° yrs

® ..and the relaxation time is N/[24In(N/2)]
times this, so with N=105, telx=6x10'6 s =
2x107 yrs = 2 Gyr

® comfortably within the age of the
Universe!



® The evaporation time is the time is takes
for the cluster to lose more than half of its
stars: tevap~ |00 Urelax

® For a globular cluster, this is significantly
longer than the current age of the
Universe

® But for open clusters, tevap~3x 107 yr=3
Gyr --- which is the primary reason we
only see the richest, most compact old
open clusters
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® For a dynamically-relaxed cluster, we can use
the virial theorem to estimate the cluster’s
mass if we can measure the cluster radius
and the line-of-sight velocity dispersion

® For our spherical cluster of mass M and
radius R with N stars each of mass m, the
total gravitational potential energy is
3 GM?
[ =
b R .
® [f the stars have a mean square velocity of
(v?), the total kinetic energy is

M (v*)
2

K =

41



® Then the virial theorem gives

5 (V)R
M =
3 G

® Ve can measure R, but how do we measure
{y2)?

® \What we €an measure is the radial
velocity of the stars in the cluster, which
gives the component of the motion along
the line-of-sight through the cluster, so we
can measure {vy?) if x refers to this

direction

42



Let’s resolve the motion of a star in the

cluster into rectangular (x,y,z) coordinates:

V= 0,X + 0,y + 0,Z
where (X, ¥y, Z) are the unit vectors in the
three directions

Then V-V202:v§+v§+vg

and the average value (v%) is
(0) = (v2)” + (vy)” + (v2)°
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® But if the motions are random, as we might
expect in a cluster, then

<vx>2 — <vy>2 — <UZ>2

® so (v*) = 3(v,)*

® and therefore the mass can be estimated
from M 5(v2) R

X

G




® Qur test cluster then has an estimated
mass of M=6x10° Mo

® Note that this only works for spherical,
relaxed systems with uniform density

® |f the system is out of equilibrium or is
elliptical, or has a density gradient, it
won'’t be strictly correct --- but it’s always
a good first estimate!
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Colour-magnitude
diagrams of cIusters

® As mentioned earlier, open T T 1T T T 1

NGC2362

clusters are typically young o]
due to the effect of tidal D

shear in the Galactic disk 0 -
and cluster evaporation |

® This is reflected in their
colour-magnitude diagrams a

® remember that cooler i
and fainter main- u
sequence turnoffs are ¢
older

Color Index (B - V)
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® Globular clusters,on t
other hand, are very o
(>10 Gyr),at leastin t
Milky VWay

Ne

Ne

Apparent magnitude

Visible luminosity

15 -

25 -

Horizontal

branch"og Ly s v

£

‘g Red giant

| [ | | |
1.0
Surface color
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® Globular clusters in the
Milky Way are generally
very old (>10 Gyr), with
only a few younger,
metal-rich globular
clusters

® |tisn’t clear why these
clusters are younger,
but they are the
clusters that are
closest to evaporation
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