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In this task we will investigate both the Zeldovich Approximation (ZA) and
Adhesion. Most of the content in this task is based on two articles,

• Sergei F. Shandarin & Yacob B. Zeldovich - The large-scale structure of
the universe: Turbulence, intermittency, structures in a self-gravitating
medium - Reviews of Modern Physics, Vol. 61, No. 2, April 1989

• David H. Weinberg & James E. Gunn - Large-scale structure and the
adhesion approximation - Mon. Not. R. astr. Soc. (1990) 246, 260-286

We have previously seen how to generate a Gaussian random field. We will
now need these to setup the initial conditions of the simulations. Also you have
calculated the two-point correlation function from a point-set. This we will use
to analyse some of the results. We first cover some of the theory behind ZA and
Adhesion.

Zeldovich approximation.

The Zeldovich approximation is given by

x = q +D+∇qΦ0. (1)

See the derivation in the appendix. There is another more general approach
to the Zel’dovich approximation. From now on we will treat the growing mode
solution as a de facto time coordinate. We introduce a new comoving velocity
u ≡ (dx/dD+) and rewrite the equations of motion in terms of u

v = aẋ = aḊ+u

a. Rewrite the non-linear Euler equation (v̇ +Hv + (v∇)v = −∇φ/a) for
matter perturbations in terms of u to

∂u

∂D+

+ (u ·∇x)u =
1

(aḊ+)2
(Bu−∇xφ) (2)

where B = −(2aȧḊ+ + a2D̈+) = − ∂
∂t

(
a2Ḋ+

)
.

b. Take equation (1), and the definition

−∇xφ ≡ 2aȧẋ + a2ẍ,

and insert them into equation (2). Show that you get

∂u

∂D+

+ (u ·∇x)u = 0 (3)

c. express the parameter B in terms of H, and Ω. How do you interpret
this result?
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As a little extra, if we take a step back, we can rewrite equation (2) (which
is still the full Euler equation) to the case of potential motion using u = −∇xΦ
and integrating

∂Φ

∂D+

+
1

2
(∇xΦ)2 = − 1

aḊ2
+

(Φ +Aφ) (4)

This is often referred to in the literature as the Bernoulli equation. where
D+ is the growing-mode solution, q the original location of a test particle and
Φ0 the initial velocity potential.

Φ̂0(k) =
1

k2
δ̂(k)

∂u

∂D+

+ (u ·∇x)u = 0. (5)

For plane-symmetric initial conditions ZA is an exact solution of the full
non-linear equations of structure formation, upto the formation of multi-stream
regions. It is therefore illustrative to compute the ZA analytically for a simple
example.

d. Take an initial density perturbation of

δ0 = π2ε cos (πq)

in a one-dimensional box of q ∈ [−1, 1). Compute the velocity u0 and the
density

1 + δ =

∣∣∣∣∂x∂q
∣∣∣∣−1

At what time t0 is the first singularity? Sketch graphs of x(q), u(x) and δ(x)
for three times t{<,=, >}t0 (or plot them on a computer; make sure locations
of critical points are well motivated).

e. show particle displacements for your gaussian random field realisations
in 2D, for several times D+. If the results look ugly, try filtering with a small
gaussian kernel. What happens when D+ gets large?

Anisotropic collapse.

Along with the equation comes a beautiful interpretation of early structure
formation, namely that of collapsing ellipsoids. To see what a local perturbation
will do; collapse as a wall, filament, cluster or expand to become void, we can
study the eigenvalues of the deformation tensor.

If we look at the density evolution in the Zel’dovich approximation, as before

ρ

ρ̄
= det

(
∂x

∂q

)−1
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and using expression (1)

ρ

ρ̄
= det (δij −D+dij)

−1

where we defined the deformation tensor

dij ≡
∂2Φ0

∂qi∂qj

We know this determinant to be equal to that of the diagonalised Jacobian
matrix.

ρ(q, t) =
ρ̄

(1−D+λ1(q))(1−D+λ2(q))(1−D+λ3(q))
(6)

where λ1 > λ2 > λ3 are the eigenvalues of the deformation tensor.
The signatures of the eigenvalues indicate the shape of an ellipsoidal over-

density (spherical, oblong, oblate, or void) The corresponding eigenvectors give
the direction of the principal axes of the ellipsoid.

Equation (6) contains singularities where eigenvalues are positive. Locally
the density becomes infinite when D+ = 1/λ1. At this moment the structure is
collapsed in one direction but still free-streaming in two other directions. In the
Zel’dovich formalism this signals the formation of a pancake. If λ1 ≈ λ2, the
ellipsoid will collapse in two directions at the same time, and a filament forms.
At a density peak all eigenvalues will be positive: a cluster appears. If all of the
eigenvalues are negative, the particle will never collapse and can be said to live
in a void.

The distribution of eigenvalues in Gaussian random fields was derived by
Doroshkevich (1970),

P (λ1, λ2, λ3) ∼ (λ1 − λ2)(λ1 − λ3)(λ2 − λ3)

× exp

{
− 15

2σ2

[
λ21 + λ22 + λ23 −

1

2
(λ1λ2 + λ1λ3 + λ2λ3)

]}
.

a. Calculate the mass-fraction of particles residing in a void by the cri-
terium of all eigenvalues being negative. What does this tell you about the
fractions for the other eigenvalue signatures?

extra. Check these percentages numerically, using gaussian random field
realisations in 3D.

b. Show that λ1 +λ2 +λ3 ∼ δ0. What does this mean for the collapse time
of a spherical peak (λ1 = λ2 = λ3) versus that of a more ellipsoidal structure?
What structures do you expect to collapse first?
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Adhesion.

We have seen that ZA breaks down after particles cross orbits. To prevent orbit
crossing from happening we add an ad-hoc viscosity ν to the equation, emulating
gravitational adhesion at smaller scales. This gives us Burgers’ equation

∂u

∂D+

+ (u ·∇x)u = ν∇2
x u. (7)

Fortunately this equation has an exact solution hopf

u(x, D+) = −2ν∇x lnU(x, D+) (8)

U(x, D+) =

∫
exp

[
−Φ0

2ν

]
exp

[
−(x− q)2

4D+ν

]
dq (9)

Applying the Hopf-Cole transformation (u → U) to Burgers’ equation results
in the diffusion equation

∂U

∂D+

= ν∇2U

This equation is solved with a convolution with a Gaussian with variance t =
2D+ν.

U0 = exp

[
−Φ0

2ν

]
U(x, D+) = U0(q) ∗G(x− q, 2D+ν)

We know how to perform these operations in Fourier space, so an implementa-
tion of this solution should be relatively straight forward. However there are a
few issues to attend that have to do with the discretisation of the equation.
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Task.

1. Calculate random fields with power spectrum P (k) = kn for n = 1, 0,−1.
Calculate the eigenvalues of the deformation tensor. When will the structures
on a scale of a tenth of the boxsize first collapse in the Zeldovich approximation?
How can we make this happen at D+ = 1?

2. Displace a set of particles using the Zeldovich approximation to D+ = 1.
Calculate the 2-point corellation function of the result.


