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Cosmology is the study of the dynamics of our universe as a whole. The fundamental principles of
relativistic cosmology are: Cosmological Principle, Weyl’s postulate and General Theory of Rela-
tivity. In this assignment we will discuss them briefly and will derive some results of the standard model of
cosmology.

The cosmological principle

This principle states that, at each epoch, universe presents same aspects at every point in space except
the local small-scale irregularities such as galaxies and clusters. This implies that if we assume a cosmic
time t and consider the spacelike hypersurfaces, then there is no privileged point on these slices. That
means that the universe is homogeneous in space. According to the same principle, there should not be a
privileged direction about any one of these points on the spacelike slides also. Of course, two observers at
the same location but in relative motion with respect to each other will not see the surrounding universe as
isotropic, but the strength of the cosmological principle resides in the possibility to define, at each location,
a fundamental rest frame from which the universe will appear isotropic. This means that the universe is
isotropic in space too.
A spacelike hypersurface is homogeneous if there is a group of isometries which map any point onto the
other. If the space is isotropic also then it must be spherically symmetric.

Weyl’s postulate

The galaxies lie in the spacetime on a congruence 1 of timelike geodesic and diverging from a point in the
finite or infinite past. These geodesics don’t intersect except at a singular point in past and possibly in a
singular point in future. These geodesics are orthogonal to the family of spacelike hypersurfaces.

So, we may choose coordinates as (t, x1, x2, x3) so that spacelike hypersurfaces are given by t = constant
and coordinates (x1, x2, x3) are constant along the timelike geodesics. The coordinates (x1, x2, x3) are called
comoving coordinates. From the above arguments the most plausible choice of the line element is 2,

ds2 = c2dt2 − hijdxidxj , (1)

where t plays the role of the cosmic time here. The world map is the distribution of the events on the surfaces
of simultaneity. World picture is the events lying in the past light cone of the observer. The second part
of the metric hij , must be independent of time except some time dependent overall scaling factor, as the
cosmological principle states that, 3-space is homogeneous and isotropic at each epoch. Also the homogeneity
and isotropy condition implies that, it must have same curvature in every points of space otherwise, the points
would not be geometrically identical. Only time can enter as a space-independent overall scale factor which
will act as a magnification factor, keeping the geometry same:

hij = [S(t)]2gij (2)

1A congruence of curves is defined such that only one curve goes through each point on the manifold.
2Greek letters are used for spacetime coordinates in coordinate basis and Latin letters for spatial indices.
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1 Friedmann-Robertson-Walker (FRW) metric:

As discussed above, cosmological principle tells us that 3-space must be of constant curvature which is
characterized by:

Rµνγδ = K(gµγgνδ − gµδgνγ) (3)

where Rµνγδ is Riemann tensor and K is a constant which is called curvature. In 3-space by contraction we
get:

Rij = 2Kgij (4)

where Rij is now Ricci tensor in 3-space. As 3-space is isotropic, it must be spherically symmetric. So,

dσ2 = eλdr2 + r2(dθ2 + sin2 θdφ2) (5)

where λ is a function of r only. Now using the above metric Eq.(5) and the condition of constant curvature
Eq.(4) we get:

e−λ = 1−Kr2 (6)

So, the metric turns out to be,

dσ2 =
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2) (7)

1. Show that the above metric takes a conformally flat form

dσ2 = (1 +
1

4
Kr̄2)−2[dr̄2 + r̄2(dθ2 + sin2 θdφ2) (8)

[Hint: use a radial coordinate transformation r = r̄/(1 + 1
4Kr̄

2)]

2. If we introduce a(t) = [S(t)]2/|K| show that the spacetime metric will have a form like:

ds2 = c2dt2 − a(t)2
( dx2

1− kx2/R2
0

+ x2(dθ2 + sin2 θdφ2)
)

(9)

Find out the value of R0 which is called the radius of curvature of the 3-space. k can take either of
the values +1,−1, 0 corresponding to positively curved or negatively curved or flat space. [Hint: write

K = |K| 12 k and use a rescaled radial coordinate x = |K| 12 r]

3. If use the following transformations for different values of k

k = +1, x = R0 sin(r/R0)

k = 0, x = r

k = −1, x = R0 sinh(r/R0) (10)

show that in all the cases the metric becomes:

ds2 = c2dt2 − a(t)2
(
dr2 + Sk(r)2dΩ2

)
(11)

where dΩ2 = dθ2 + sin2 θdφ2 and x = Sk(r).
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2 Proper distance, Hubble’s law and Redshift

The proper distance dp(t) is obtained by integrating over the radial comoving coordinate r,

dp(t) = a(t)

∫ r

0

dr = a(t)r = a(t)R0sin
−1(x/R0) (k = +1)

= a(t)x (k = 0)

= a(t)R0sinh
−1(x/R0) (k = −1) (12)

The rate of change of the proper distance between two galaxies due to large scale cosmic expansion is,

ḋp = ȧr =
ȧ

a
dp (13)

so, at present epoch, there is a linear relationship between proper distance and recessional velocity

vp(t0) = ḋp(t0) =
( ȧ
a

)
t=t0

dp(t0) = H0dp(t0) (14)

where H0 is Hubble’s parameter whose inverse, 1/H0 roughly gives us the age of our universe. Above
equation is known as Hubble’s law. Hubble distance is defined as

dH(t0) = c/H0 (15)

which implies that the points separated by a proper distance greater than dH will have vp > c.

1. Using the definition of redshift, z = (λ0 − λe)/λe show the following relation between z and a(t):

1 + z =
a(t0)

a(te)
=

1

a(te)
(16)

with conventionally a(t0) = 1.

Hence show that the proper distance between galaxies at time of emission dp(te) and observation of
light dp(t0) are related as,

dp(te) =
dp(t0)

(1 + z)
(17)

assuming that the scale factor doesn’t change significantly while emitting and observing the light.

3 Luminosity distance

Standard candles are objects whose luminosity L are known while the flux f is a measurable quantity. So,
the luminosity distance dL can be defined as,

d2
L =

L

4πf
(18)

Suppose now, light is emanating from a galaxy at time te and observed by the observer at time t0,
(te < t0). At the present epoch (t = t0) the light will spread over a surface of sphere characterized by

ds2 = −a(t0)2Sk(r)2(dθ2 + sin2 θdφ2) (19)

which is the line element for a sphere of radius a(t)Sk(r) and so the sphere has surface area 4πa(t0)2Sk(r)2.
Hence the observed flux will be,

f =
L

4πa(t0)2Sk(r)2(1 + z)2
(20)
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where the two factors (1 + z) are coming one due to the reason that, the time interval of receiving of certain
amount of energy is longer by a factor of (1 + z) than the interval of emission due to Doppler shift. And
another factor is due to the fact that, the energy of each photon of light is reduced by (1+z) due to expansion
of universe.

1. From the above two equations show that for a spatially flat (k = 0) universe we get

dL = r(1 + z) = dp(t0)(1 + z) (21)

4 Angular diameter distance

Standard yardsticks are objects whose proper lengths l are known. If we observe a standard yardstick of
constant proper length aligned perpendicular to our line of sight and measure an angular distance δθ between
the ends of the yardstick then the angular diameter distance is defined as,

dA =
l

δθ
(22)

The distance ds between the two ends of the yardstick measured at the time when the lights were emitted
from the ends, te is

ds = a(te)Sk(r)δθ (23)

where δθ = θ2 − θ1 is the angular size between two ends of the yardstick. Now as the standard yardsticks
are tightly bound objects which are not expanding with the universe, we can write,

l = ds = a(te)Sk(r)δθ =
Sk(r)δθ

1 + z
(24)

So, the angular diameter distance is given by,

dA =
l

δθ
=
Sk(r)

1 + z
(25)

1. Show for a spatially flat (k = 0) universe we get,

dA(1 + z) = dp(t0) =
dL

1 + z
(26)

5 Equations of cosmic dynamics

The equations of cosmic dynamics mostly consist of three equations, so called Friedmann’s equation, accel-
eration equation and fluid equation. They are as follows:( ȧ

a

)2

=
8πG

3c2
(ρm + ρr)−

kc2

R2
0a

2
+

Λ

3
(27)

ä

a
= −4πG

3c2
(ρ+ 3P ) +

Λ

3
(28)

ρ̇ + 3
ȧ

a
(ρ+ P ) = 0 (29)

It can be shown that only two of the above equations are independent [Optional homework ]. Matter, radiation
and dark energy: each component of the universe obeys an equation of state between pressure (P ) and energy
density ρ through some parameter w as, P = wρ.
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1. Using the fluid equation show that for a flat (k = 0) universe with no cosmological constant, the energy
density evolves with expansion parameter as (for w 6= −1),

ρw(a) = ρw,0a
−3(1+w) (30)

2. From Friedmann equation show that the expansion parameter evolves with time as,

a(t) =
( t
t0

) 2
(3+3w)

(31)

3. And the Hubble’s parameter evolves as,

H0 =
( ȧ
a

)
t=t0

=
2

3(1 + w)
t−1
0 (32)

which gives the age of the universe as,

t0 =
2

3(1 + w)
H−1

0 (33)

4. The equation of state parameter w = 0 for non-relativistic matter, w = 1/3 for radiation. The critical

density is followed from the Friedmann’s equation by putting k = 0, which is ρc = ρw,0 =
3c2H2

0

8πG .
Rewrite the equation how energy density falls with time using the expression of critical density:

ρw(t) =
c2

6πG(1 + w)2
t−2 (34)

5. Now using the previous definition of redshift show that,

te =
2

3(1 + w)H0
· 1

(1 + z)3(1+w)/2
(35)

And the proper distance at present epoch is given by,

dp(t0) =
2c

H0(1 + 3w)

[
1− (1 + z)−(1+3w)/2

]
(36)

The horizon distance is defined in the limit te → 0 (z →∞): dhor(t0) = 2c
H0(1+3w)

6. For Λ-only (w = −1) flat universe, the above treatment doesn’t work. The energy density ρ, in this
case remains constant. Show that in this case the scale factor varies with time as,

a(t) = e[( 1
3 Λ)

1
2 t] (37)

And derive the following expression for proper distance,

dp(t0) =
c

H0

[
eH0(t0−te) − 1

]
=

c

H0
z (38)
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