

$$\mathbf{Gravity} \ \mathbf{Perturbations}$$
$$\mathbf{g}(\mathbf{r},t) = -\frac{1}{a} \nabla \phi = \frac{3\Omega H^2}{8\pi} \int d\mathbf{x}' \, \delta(\mathbf{x}',t) \frac{(\mathbf{x}'-\mathbf{x})}{|\mathbf{x}'-\mathbf{x}|^3}$$

Void Formation

Void Evolution

an illustration

cosmology: $\Omega_m = 1.0; \quad H_0 = 70 \ km / s / Mpc$

initial conditions: underdensity, Gaussian field $R_G \sim 4h^{-1}Mpc$ $P(k) \propto k^{-0.5}$

Multiscale Cosmic Web:

hierarchical evolution

NEXUS/MMF Evolution Cosmic Web

Cautun et al. 2013

Nonlinear Structure Formation

Nbody Simulations

largely based on excellent Potsdam lectures on Nbody simulations (2006) by V. Springel

Millennium Simulation

- Run: 2005
- Virgo consortium: UK-Germany centered European consortium
- 2005-2014: 650 publications based on Millennium
- Nbody simulation, TreePM (Gadget2)
- LCDM cosmology
- 2160³ particles ~ 10 x 10¹⁰ particles
- Volume: cubic region 500h⁻¹ Mpc
- Resolution: 5h⁻¹ kpc
- Dynamic range: 10⁵ per dimension
- Data: 25 Terabyte
- Galaxy modelling by semi-analytical modelling
- 2x10⁷ galaxies with mass > LMC
- Public Database:
 VO-oriented and SQL-queryable database (G. Lemson)

Name	Shape	function S(x)	# of cells involved	Properties of force
NGP Nearest grid point	•	$\delta(\mathbf{x})$	$1^3 = 1$	piecewise constant in cells
CIC Clouds in cells		$\frac{1}{h^3}\Pi\left(\frac{\mathbf{x}}{h}\right)\star\delta(\mathbf{x})$	$2^3 = 8$	piecewise linear, continuous
TSC Triangular shaped clouds		$\frac{1}{h^3} \Pi\left(\frac{\mathbf{x}}{h}\right) \star \frac{1}{h^3} \Pi\left(\frac{\mathbf{x}}{h}\right)$	$)$ $3^3 = 27$	continuous first derivative

DEFW:

Davis – Efstathiou-Frenk-White

'the gang of four'

The multipole moments are computed for each node of the tree

Monpole moment:

$$M = \sum_{i} m_{i}$$

Quadrupole tensor:

$$Q_{ij} = \sum_{k} m_k \left[3(\mathbf{x}_k - \mathbf{s})_i (\mathbf{x}_k - \mathbf{s})_j - \delta_{ij} (\mathbf{x}_k - \mathbf{s})^2 \right]$$

Resulting potential/force approximation:

$$\Phi(\mathbf{r}) = -G\left[rac{M}{|\mathbf{y}|} + rac{1}{2}rac{\mathbf{y}^T \mathbf{Q} \, \mathbf{y}}{|\mathbf{y}|^5}
ight]$$

For a single force evaluation, not N single-particle forces need to be computed, but only of order log(N) multipoles, depending on opening angle.

- The tree algorithm has no intrinsic restrictions for its dynamic range
- •
- force accuracy can be conveniently adjusted to desired level the speed does depend only very weakly on clustering state geometrically flexible, allowing arbitrary geometries . .

20/01/2017

48

Lagrangian-Eulerian Phase Space

To follow evolving phase-space of cosmic structure, it is sometimes insightful to consider a coordinate transformation of 6D phase-space:

Eulerian coordinates \vec{x} and Eulerian coordinates \vec{q} of a mass element:

$f(\vec{x}, \vec{q})$

Note that in Zeldovich approximation, the velocity of a mass element is:

 $\vec{v}(\vec{q},t) = -a(t)D(t)f(\Omega) \ \vec{\nabla}\Phi(\vec{q})$

Kernel interpolants allow the construction of derivatives from a set of discrete tracer points

EXAMPLES FOR ESTIMATING THE VELOCITY DIVERGENCE

Smoothed estimate for the velocity field:

$$\langle \mathbf{v}_i
angle = \sum_j rac{m_j}{
ho_j} \, \mathbf{v}_j \, W(\mathbf{r}_i - \mathbf{r}_j)$$

Velocity divergence can now be readily estimated:

$$abla \cdot \mathbf{v} =
abla \cdot \langle \mathbf{v}_i
angle = \sum_j rac{m_j}{
ho_j} \, \mathbf{v}_j \,
abla_i W(\mathbf{r}_i - \mathbf{r}_j)$$

But alternative (and better) estimates are possible also:

Invoking the identity

$$ho
abla \cdot \mathbf{v} =
abla \cdot (
ho \mathbf{v}) - \mathbf{v} \cdot
abla
ho$$

one gets a "pair-wise" formula:

$$ho_i (
abla \cdot \mathbf{v})_i = \sum_j m_j (\mathbf{v}_j - \mathbf{v}_i) \,
abla_i W(\mathbf{r}_i - \mathbf{r}_j)$$

SPH can handle strong shocks and vorticity generation	0.00	2.50
A MACH NUMBER 10 SHOCK THAT STRIKES AN OVERDENSE CLOUD	0.50	3.00
	1.00	3.50
a.	1.50	4.00
	2.00	

The "largescale" structure seen at high redshift superficially resembles the morphology of structure seen at low redshift GAS DISTRIBUTION SEEN IN A SMALL PERIODIC BOX AT REDSHIFT z=6

