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1 Random Fields

A N dimensional random field is a set of random variables Y (x), x ∈ <N ,
which has a collection of distribution functions

F (Y (x1) ≤ y1, ..., Y (xn) ≤ yn) (1)

for any number of points n. The convention is that capital letters are random
variables (like Y (xi)), where as lower case letters denote a particular value or
outcome of the random variable (for example yi) and the bold faced letters
denote spatial coordinates.

1.1 Probability Distributions

Furthermore let us stress that the (Cumulative) Distribution Function is the
probability of a random variable X taking on the value x or smaller, i.e.;

P [X < x] = F (x) (2)

F (−∞) = 0 (3)

F (∞) = 1. (4)

the distribution function F is a nonnegative increasing function. And its
derivative is the probability density function.

f(y) =
dF (y)

dy
(5)
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Note that the names “distribution function” and “probability distribution
function” are often confused. Strictly the distribution function is the in-
tegrated probability density function. For example for a gaussian random
variable, the error function is the distribution function. Whilst the gaussian
distribution is the probability density function for a gaussian variable.

1.2 A moment of appreciation

The Expectation Value of random variable Y is given by

E{y} =

∫

∞

−∞

yf(y)dy. (6)

This is the also called the mean and often denoted also as µ, 〈y〉, ȳ...etc.
Higher order moments are computed in a similar way. The second order
moment is the spread around the mean (the variance),

σ2 = E{(y − µ)2} =

∫

∞

−∞

(y − µ)2f(y)dy (7)

The general expression for a kth order moment is

mk =

∫

ykf(y)dy (8)

likewise the central kth order are

µk =

∫

(y − µ)kf(y)dy (9)

Of the higher order moments the third and fourth have special names, the
skewness and kurtosis. The skewness is a measure of asymetry of the distri-
bution around the mean, while the kurtosis measures the peakedness of the
distribution.

2 A Random Field

A random field is homogeneous if all distribution functions (eq. 1) remain
the same under a coordinate shift. By implication the moments of the field
are not depend on the coordinate x. For example the mean:

µ(x) = E{Y (x)} = m (10)
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(the capital E denotes the enseble average)
In the same manner one can define a second order moment as

C2(x1,x2) = E{Y (x1)Y
?(x2)} = C2(r). (11)

This function is called the two-point noncentral covariance function. More
often we deal with the central covariance function, i.e. the moment with
respect to the mean;

ξ(x1,x2) = E{(Y (x1) − µ(x1)) (Y (x2) − µ(x2))
?} (12)

The ? sign denotes complex conjugate, Y could also be a complex number.
How is this related to the expectation value E(Y ) (6)? If we were to

ignore the spatial part of a random homogeneous field, and collect all the
values of the field. From this collection we can construct a so called one-
point distribution function f1(y). Then the mean of this distribution is:

m =

∫

yf1(y)dy (13)

This is only true if assume that field is Ergodic. The one-point distribution
does not include all the information of the field! If we were to randomly
reshuffle all points in the field we would still have the same one-point dis-
tribution function. But all the spatial correlations of the original field are
lost. This data is contained in all the higher N-point distribution functions.
They describe the joint distribution at multiple points in space, and therefore
contain spatial dependancy .

For example the two-point distribution function the describes the proba-
bilitly of having an outcome y1 at location x1 and a value of y2 at location
x2:

f2(Y (x1) = y1, Y (x2) = y2) (14)

This can be generalized to any higher order N-point distribution function.
In cosmology the two point distribution function has a very important role,
because it is related to the auto-correlation function of the galaxy distribu-
tion. In the case of an isotropic process the two point distribution is only
a function of distance. The mean of two point distribution is then the two
point non-central covariance function:

C2(r) =

∫ ∫

y?
1y2 f2(y1, y2, r) dy1dy2 (15)
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Any higher order covariance function is also defined as the expectation value
of a N-point distribution function. The covariance function ξ has some impor-
tant properties. Here we will treat two, the third property will be discussed
in the next section.

The value of the covariance function a zero distance, i.e. ξ(0) can be
shown to be equal to the total variance of the field ξ(0) = σ2. This can be
seen if one takes r = 0 in equation 15.

The covariance function determines how strong values at a given distances
are correlated. If the covariance tends to goto zero for certain distance. This
implies that values seperated by this distance are not aware of each others
presence. In the case that the correlation function is zero for every distance.
The field values at all locations are completely independent resulting in a
very wildly fluctuating field. If there are correlations at larger distances, this
would give rise to a much smoother apperance of the field.

2.1 Power Spectrum

In a homogeneous field the Amplitudes of the Fourier components are sta-
tistically indepent distributed. These amplitudes are given by the Power
Spectrum according to the following relationship

E{} (16)

The power spectrum is related to the covariance function (assuming zero
mean)

y (17)

3 Gaussian Random Fields

The one-point Gaussian probability distribution function (pdf) is perhaps
the most fundamental stochastic distribution function we know of. Many
natural processes, as well as social processes, tend to have this distribution.
For a Gaussian stochastic process YG with average yc and dispersion σ, the
probability for YG = [y, y + dy] is given by

P (y) dy =
1√

2πσ2
exp

{

−(y − yc)
2

2σ2

}

dy . (18)
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to- When the stochastic process concerns an entire region of space we talk
about a Gaussian random field. In a homogeneous Gaussian random
field the one-point Gaussian distribution specifies the probability at any one
location within that volume for having a value Yc = [y, y + dy] is given by
the one-point Gaussian distribution given above.

In such a Gaussian random field one may also ask the probability for
the field at location x1 having a value Y (x1) = y1, at location x2 a value
Y (x2) = y2, and so on for N points, i.e. for Y (xN) = yN at location xN .
Here we will concentrate on the two-point distribution function P (y1, y2),

P (y1, y2) dy1dy2 =
1

(2π)(detM)1/2
exp

{

−
(

y1 y2

)

M−1

(

y1

y2

)

/ 2

}

dy1dy2

in which the M−1 is the inverse of the correlation matrix M,

M =

(

ξ(0) ξ(y1, y2)
ξ(y2, y1) ξ(0)

)

=

(

σ2 ξ(r)
ξ(r) σ2

)

(19)

A general random field (see above) demands the knowledge of all n-point
probability distributions. For a Gaussian field these are

P (y1, ..., yn) dy1..dyn =
1

(2π)(det M)1/2
exp







−
(

y1, ..., yn

)

M−1





y1

...
yn



 / 2







dy1, ...dyn

4 Generating Gaussian field in Fourier Space

Generating a Random Gaussian field is easiliest done in Fourier space. Then
the complex Fourier amplitudes are Ỹ = |Ỹ | exp(iφ). Where φ is a random
phase and the modules are Rayleigh distributed

f(x) =
2x

σ2
e−x2/σ2

(20)

The dispersion is ofcourse related to the Power Spectrum as

σ2 = (δk)3P (k) (21)
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5 Assignment

• Fourier Plane Your first task is to generate a 2D matrix (e.g. an
image) with complex entries (the real and imaginary may just be uni-
form random numbers). This 2d-Matrix should have certain syme-
tries that if one applies the inverse fourier transform its ouput are real
numbers. (Hint this implies the following symmetry in Fourier Space
Ỹ ( − k) = Ỹ ?(k)!!!!!)

• Gaussian Field Generate a Gaussian fields with Power Spectrum;
P (k) ∝ kn Present this with contour plots (A filled contour with rain-
bow colorbar)
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