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1 the Two-Point Correlation Function

The discrete equivalent of the autocorrelation function ξ(r) is the two-point

correlation function ξ12(r). If a given point distribution represents a fair
sampling of the underlying continuous distribution, the two-point correlation
function ξ12 should be equal to the autocorrelation function ξ(r).

In cosmology the two-point correlation function ξ12(r) of a homogeneous
point process is follows on the basis of the excess probability of finding points
at a distance r. For a homogenous Poisson process one knows that if we take
two volumes dV1 and dV2 at a distance r, the probability dP12 (or, rather,
number) of points in the two volumes is given by

dP12 = n̄2 dV1dV2 . (1)

For an inhomogeneous point process, i.e. in the case of clustering (due to the
existence of underlying density perturbations), there will be an excess with
respect to the Poisson distribution. This is encapsulated in the function
ξ12(r),

dP12 = n̄2 {1 + ξ12(r)} dV1dV2 (2)

In other words, the correlation function measures the excess probability. If
there is clustering at a distance r, ξ(r) > 0. If points are anticorrelated at
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that distance, ie. tend to avoid each other, then ξ(r) < 0. And if there
is no clustering at all but a homogeneous distribution we have ξ(r) = 0.
Note that from now on we simply assume that ξ12(r) = ξ(r). Notice that
we assume that because of the isotropy of the density fluctuations the two-
point correlation function should also be isotropic and only a function of
distance r. The significance of the two-point correlation function ξ(r) has

formed the main tool in the study of the large scale galaxy distribution.
It has formed the main statistical measure for clustering in the Universe.
Every catalogue of galaxy positions, on the sky or in redshift space, has been
analyzed to determine the two-point correlation function. The same holds
true for catalogs of clusters of galaxies, of active galaxies, etc. There are a
variety of reasons for its prominence:

• Clustering of galaxies, clusters of galaxies, radio galaxies, etc. is clearly
an important aspect of the cosmic large scale matter distribution. The
two-point correlation function is the first order measure for character-
izing deviations from a uniform distribution: it forms the first order
description of clustering.

• The autocorrelation function is the Fourier transform of the Power
Spectrum P (k), and in particular in the linear regime it contains crucial
information on the cosmological scenario prevailing in our Universe.
Hamilton et al. (1991) even managed to find a relation between the
measured nonlinear ξ(r) and the linear power spectrum.

• For highly nonlinear clustering we often find that the two-point corre-
lation function is a power-law function of distance r,

ξ(r) =

(

r

r0

)−γ

(3)

The socalled correlation length r0 (the name is a misnomer and often
confusing for physicists, who have another definition) is a measure for
the amplitude of the clustering process. It is the value of the distance at
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which ξ(r) = 1, and thus the distance at which the clustering strength
becomes comparable to the probability of the homogeneous point pro-
cess. It therefore provides a good measure for the scale of nonlinear-

ities: above the correlation scale the point distribution rapidly enters
the linear clustering regime.

• The corresponding power-law slope γ appears to have a rather uni-
versal value of γ ≈ 1.8. In the nonlinear clustering regime γ is closely
coupled to the slope n of the power spectrum P (k),

n(k) ≡
d log P (k)

d log k
, (4)

and thus contains a wealth of information on the underlying structure
formation process.

• The most reliable estimates of the two-point correlation function con-
cern the analysis of (two-dimensional) sky distributions of galaxies.
The best galaxy sky catalogues contain millions of galaxies. Statisti-
cally this guarantees estimates with small errors. The resulting angular
two-point correlation function ω(θ) is basically a weighted projection of
the spatial two-point correlation function ξ(r) (expressed through the
socalled Limber equation). On small scales, the power-law behaviour
of the latter thus translates into a power-law angular two-point corre-
lation function,

ω(θ) =

(

θ

θ0

)1−γ

(5)

where γ is the power-law slope of the spatial two-point correlation func-
tion. Interesting is the behaviour of the angular correlation scale θ0. It
is very sensitive to the selection of galaxies in the catalogue: it scales
with the depth of the sample. The large the apparent magnitude limit
mlim, i.e. the deeper we look into the Universe, the smaller θ0 becomes.
This of course is due to the projection of ever more shells on top of each
other, as well as in a shift of the angular scale corresponding to a partic-
ular physical scale. There is a very precise relation between this angular
correlation scale and the depth of the survey on the condition that we

live in a Universe which on the largest scales is homogeneous.
This indeed appears to be true, one of the most convincing arguments
for the Homogeneity of the Universe, one of the basic tenets of the
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Cosmological Principle. Fairness demands to say that this finding
has been challenged by a few groups, although none of them came up
with convincing evidence for the contrary.

• The two-point correlation function plays an important role in dynami-
cal analysis of structure formation: the measured cosmic flows can be
related to the matter distribution through the two-point correlation
function (“cosmic virial theorem”, although for this we also need the
three-point function”). From this we may infer cosmological parame-
ters. Most noteworthy in this is the determination of the two-point
correlation function in redshift space: the anisotropic distortions in-
duced by the influence of cosmic flows on the measured redshifts can
be directly translated into an estimate of Ωm.

1.1 Measuring the Two-Point Correlation Function

The issue is of course how to measure the correlation function. Again, we are
beset by the problem that there is only one realization of our Universe known.
Our own cosmos. Luckily, also here we are saved by the ergodic theorem. We
may measure the function by averaging over many different positions. Thus,
we will follow this approach. In essence, it becomes a large counting exercise.
We are going to count the number of points within spherical shells around a
given point. By adding them all up and averaging them in a proper way we
get an estimate of the probability that on average at a distance r we have
a certain amount of points and thus it’s excess or deficit with respect to a
homogeneous Poisson process. From this we may infer ξ(r). Easier said then
done ... In this experiment you will be invited to determine the two-point

correlation function of the point process that we encountered in the previous
tutorial.

1.2 Task

Evidently, this concerns another computer experiment. We will provide you
with a set of three estimators.

4



Segment Cox λs µ length
1000. 12 0.1
1000. 12 0.05
1000. 12 0.01

Matern λc µ radius
1000. 12 0.05
1000. 12 0.1

SonPee eta lambda Level
4 2.5 7
3 1.5 8

• It is up to you to write a program that computes the correlation func-
tions of the point processess discussed in the previous tutorial. You
have to make the corresponding graphs of the function (loglog and
linlin).

• As at small distances the two-point correlation function often behaves
like a power-law of the distance r between points,

ξ(r) =

(

r

r0

)

−γ

, (6)

you will also have to fit a power-law to the correlation functions of the
Segment Cox and the Soneira-Peebles Processess. From this fit you
should derive the power-law slope γ and the correlation length r0.

• All of the above you will have to do for three different estimators ξ̂ of
the two-point correlation function, the “standard” Davis-Peebles esti-

mator, the Hamilton estimator and the Landy-Szalay estimator. See
the following subsection for their specification.

1.3 Correlation Function Estimators

For measuring ξ(r) on the basis of point counts we need to take into account
that we cannot always fit in complete spheres of radius r at every position
within a survey volume. In other words, one needs a way of dealing with
edge corrections. The common practice is to deal with this by means of an
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equivalent Poisson point catalog in exactly the same volume (and with the
same selection criteria concerning depth of the survey).

Assume we have therefore two point sets. One is the sample one, desig-
nated by the letter “D” (data). It contains ND points. In addition there is
the Poisson point set “R”, with NR points. Position yourself on a number (as
large as practically feasible) of the data points and count the number of data
points you find in a spherical shell of with radius [r, r + ∆r]. The total sum
of points counted is designated as DD(r). One may also count, for the same
number of points, the number of Poisson points in the same shells, DR(r).

• The first estimator is that defined by Davis and Peebles (1983), some-
times called the standard estimator,

ξ̂DP (r) =
NR

ND

DD(r)

DR(r)
− 1 (7)

• Hamilton (1993) found systematic biases in this estimator, surpassing
the regular uncertainties (due to finite sampling) in ξ̂DP (r). He there-
fore proposed the socalled Hamilton estimator:

ξ̂HAM(r) =
DD(r) · RR(r)

[DR(r)]2
− 1 (8)

in which RR(r) is the number of pairs in the random catalog with
separation in the interval [r, r + ∆r].

• Almost simultaneously another improved estimator was defined by Landy
& Szalay (1993). It has similar properties as the Hamilton estimator,

ξ̂LS(r) = 1 +

(

NR

ND

)2
DD(r)

RR(r)
− 2

NR

ND

DR(r)

RR(r)
. (9)
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