

Supernovae Ia probing luminosity distance – redshift relation Clusters of Galaxies µumber counts N(2), # formed clusters of galaxies as function of z sensitive to w & w' Cosmic Shear/Weak Lensing measures angular diameter distance-redshift relation, in combination with structure growth Cosmic Scillations (BAO) cosmic yardstick, curvature: residual imprint in galaxy distribution acoustic oscillations primordial baryon-photon plasma Integrited Sachs Wolfs (ISW) imprint foreground large scale structure on CMB, via evolving potential perturbations Clustering elustering correlation function/power spectrum, directly probing cosmological scenario, BAO wiggles Growth of clustering: evolving growth rate f(Omega,2), probed via influence of redshift distortions on correlation functions Proding und shapes, probing tidal force field generated by large scale mass distribution evolving void shapes, probing tidal force field generated by large scale mass distribution Bensitivity of topology, measured by homology (Betti numbers)

Dark Energy Probes: Comparison							
Method	Strengths	Weaknesses	Systematics				
Weak Lensing	Structure Growth + Geometric Statistical Power	CDM assumption	Image quality Photo-z				
Supernovae SNIa	Purely Geometric Mature	Standard Candle assumption	Evolution Dust				
BAO (Baryonic Acoustic Oscillation)	Largely Geometric Low systematics	Large samples required	Bias Nonlinearity				
Cluster Population N(z)	Structure Growth + Geometric Xray+SZ+optical	CDM assumption	Determining mass Selection function				

Robertson-Walker Metric

Distances in a uniformly curved spacetime is specified in terms of the Robertson-Walker metric. The spacetime distance of a point at coordinate (r, θ, ϕ) is:

$$ds^{2} = c^{2}dt^{2} - a(t)^{2} \left\{ dr^{2} + R_{c}^{2}S_{k}^{2} \left(\frac{r}{R_{c}} \right) \left[d\theta^{2} + \sin^{2}\theta \, d\phi^{2} \right] \right\}$$

where the function $S_k(r/R_c)$ specifies the effect of curvature on the distances between points in spacetime

$$\binom{R_c}{r} = \begin{bmatrix} \sin\left(\frac{r}{R_c}\right) & k = +1 \\ \frac{r}{R_c} & k = 0 \\ \sinh\left(\frac{r}{R_c}\right) & k = -1 \end{bmatrix}$$

Luminosity Distance

Definition cosmological luminosity distance:

$$=\frac{L}{4\pi D_{L}^{2}}$$

for a source with

INTRINSIC luminosity L OBSERVED brightness I

In a Robertson-Walker geometry, luminosity distance is

$$D_L = (1+z)D(z)$$

where D(z) is the cosmological distance measure

Luminosity Distance

Cosmological distance measure:

$$D(z) = R_0 S_k \left(\frac{r}{R_0}\right)$$

with curvature term $S_k(x)=sin(x)$, x, or sinh(x)

$$r(z) = \frac{c}{H_0} \int_0^z dz' \left[\sum_i \Omega_i \left(1 + z' \right)^{3 + 3w_i} - \frac{kc}{H_0 R_0} \left(1 + z' \right)^2 \right]^{-1/2}$$

Comoving radial distance r(z) at redshift z

Type la Supernova Explosion

	Type la Supernova	
•	Amongst the most energetic explosions in our Universe: E ~ 10 ⁵⁴ ergs During explosion the star is as bright as entire galaxy ! (ie. 10 ¹¹ stars)	5
	Violent explosion Carbon-Oxygen white dwarfs: Embedded in binary, mass accretion from companion star When nearing Chandrasekhar Limit (1.38 M _☉), electron degeneracy pressure can no longer sustain star. while contracting under its weight, carbon fusion sets in, powering a catastrophic deflagration or detonation wave, leading to a violent explosion, ripping apart entire star	
·	Because exploding stars have nearly uniform progenitor (~1.38 M_{\odot} white dwarf), their luminosity is almost the same: M ~ -19.3 Standard Candle	

11/12/2013

Success of Supernova Projects built on 3 major developments:

- the introduction in the 1980s of large mosaic charge-coupled device (CCD) cameras on 4-meter class telescopes:
 - systematic search of thousands of galaxies over large area of sky for rare supernova events
- dramatic increase in computing power in the 1980s:
- enabling vast amount of data processing for automated search of supernovae amongst the huge number of galaxies monitored
- Supernovae la as standard candle
 - Calan/Tololo Supernova Search: accurate light curves & spectra Phillips relation

High-z Supernova Search Team

Supernova Cosmology Project

diligently monitoring millions of galaxies, in search for that one explosion ...

High-z Supernova Search Team

High-z SNIa: sample							
	2023	2002-51-		20004			
2002iw	2002kc	2003ak	2003eb	2003dy			
HST04Dic	HST04Haw	HST04Kur	HST04Omb	HST04Rak			
		4					
HST04Sas	HST04Yow	HST04Zwi	HST05Lan	HST05Str			

Euclid

Euclid: father of geometry

ESA **Cosmic Vision** 2020-2025

1.2 m Korsch telescope
visible light: m=24.5 CCD imaging
IR (Y,J,H) band photometer
spectrometer 108 bright gals

15,000 sq. deg. survey40 sq. deg. deep survey

 Combination:
 DUNE
 SPACE grav. Lensing BAO

LSST: Large Synoptic Survey Telescope

Take-Home Facts

1. Strong evidence Accelerated Expansion

- since supernova discovery, 100s SNIa observed over broader range redshifts
- based solely upon supernova Hubble diagram, independent of General Relativity, very strong evidence expansion Universe accelerated recently

2. Dark energy as cause cosmic acceleration

- within general relativity, accelerated expansion cannot be explained by any known form of matter or energy
- it can be accommodated by a nearly smooth form of energy with large negative pressure, Dark Energy, that accounts for about 73% of the universe.

3. Independent evidence dark energy

- Cosmic Microwave Background and Large Scale Structure data provide independent evidence, within context of CDM model of structure formation, that the universe is filled with a smooth medium accounting for 73% of the total energy content of the universe.
- that came to dominate the dynamics of the universe once all observed structure had formed

Take-Home Facts

4. Vacuum energy as dark energy

- simplest explanation for dark energy is the energy associated with the vacuum
- mathematically equivalent to a cosmological constant
- However, most straightforward calculations of vacuum energy density from zero-point energies of all quantum fields lead to estimates which are a bit too large, in the order of ~10¹²⁰

5. Dark theories of Dark Energy

- There is no compelling theory of dark energy
- Beyond vacuum energy, man intriguing ideas:
- Many models involve time-varying dark energy

6. New Gravitational Theories ?

 alternatively, cosmic acceleration could be a manifestation of gravitational physics beyond General Relativity

light scalar fields, additional spatial dimensions, etc.

- however, as yet there is no self-consistent model for new gravitational physics that is consistent with large body of data that constrains theories of graavity.

Take-Home Facts

7. Dark destiny

- 8. At the nexus of many physical mysteries
- 9. Two big questions
 - a) Is dark energy something different than vacuum energy
 - b) Does General Relativity self-consistently describe cosmic acceleration ?
- 10. Probing Dark Energy