Tutorial II
Newtonian Cosmology; Hubble Expansion; Observational
Cosmology

Exercise 1:

Newtonian Cosmology

In 1934 — i.e. way after Friedman derived his equations- Milne and Mec-
Crea showed that relations of the ‘Friedman’ form can be derived using
non-relativistic Newtonian dynamics.

e Write down the field equation for the gravitational force in the non-
relativistic limit.

e Imagine you are a particle moving outside a spherically symmetric
mass concentration of radius R with a total mass M and a density
profile p(r). What two essential simplifications can you invoke to de-
rive your equation of motion ?

e Write down the equation of motion (ie. the equation for your ac-
celeration). In addition, derive the corresponding energy equation
(conservation of energy).

e We go one step further, and assume you are embedded within the
spherically symmetric mass concentration. Imagine you are at a radius
r, what will be your equation of motion 7

Subsequently, the situation becomes even more benevolent: we find ourselves
in a homogeneous and isotropic medium.

e Write down the equation of motion and the energy equation.

e What three qualitative different situations can you distinguish on the
basis of the energy E of a shell 7

e Take a shell of initial radius 1 ; and another shell of initial radius o ;,
in how far does their evolution differ (or not) ? (assume that there are
no non-radial motions). What does this imply for the evolution r(¢)
for any shell in the mass distribution ?

e What does the latter imply for the evolution of the density p(t).

In principle, we are now all set to solve the equation of motion of the system,
as a function of E. In fact, it is possible to derive the full solution for any
spherically symmetric - not even homogeneous - mass distribution. This
is the socalled Spherical Model. It would be a good exercise to do so ...
however, we go for the real work, solving the equation of motion for a matter-
dominated FRW Universe.



Exercise 2:
Hubble Expansion and Bounded Objects

We have seen that galaxies are participating in the uniform Hubble ex-
pansion. Question is why we ourselves do not expand along. If this were so,
we would not notice anything like expansion. Assume a Hubble parameter
of Hy = 71km/s/Mpc. As a thought experiment compute

e the expected Hubble expansion rate between your toes and the tip of
your head.

e the expected Hubble expansion rate between the core of the Earth and
ourselves 7

e What is the reason behind the Hubble expansion being insignificant
under these circumstances 7 Suggestion: compute the gravitational
binding energy /escape velocity at the surface of the Earth and compare
tov = Hr.

e Repeat the same exercise for Planet Earth wrt. the Sun and Dwarf
Planet Pluto wrt. the Sun. Subsequently, consider the Sun and the
Galaxy. Next, consider the Local Group (mainly M31 and the Galaxy).
Then, consider the Local Group, or the Galaxy, wrt. the Local Super-
cluster dominated by the Virgo Cluster. Thus, what is your conclusion
with respect to the scale at which the Hubble expansion becomes no-
ticeable ? Note that you are expected to look up the relevant numbers
yourself !



Exercise 3:
Cosmology, the Search for Two Numbers

In a famous 1970 Annual Review of Astronomy and Astrophysics review,
the observational cosmologist Allan Sandage described all of cosmology as
a “Search for Two Numbers”. The two numbers were

{ )
q0
We are going to explore what the reason was behind this stout statement

(which by now is far besides reality ...). And in this we do not need any
dynamics ... no assumption about a Friedmann Universe needed (yet),

e On the basis of a Taylor series expansion of the expansion factor a(t),
with respect to the current cosmic time ¢, show that

a(t) ~ 1 + Holt —to) — %qug (t — to)2 (1)

e By inverting the above expression for a(t) and using the expression for
coordinate distance of a source whose radiation was emitted at t. and
has just reached us at %,
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dy(to) ~ clto — te) + —5 (o — te)°. (3)

e Imagine you receive radiation from an object with redshift z, which it
radiated at cosmic time t.. Show that the approximate relationship
between z and t. is given by

z ~ Ho(to—te) + <1 + %) HE (to — t.)? (4)
e Invert this equation to obtain
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e On the basis of results above show that for z <« 1 we have the following
approximate relation between z and coordinate distance dp(to),

dito) = -2 {1 - (6)



e Taking along this approximation for z < 1, we may find an approxi-
mation for the luminosity distance of any universe, dr, = (14 z)d)p (o).
Show that an approximate relation for dy, is therefore

c 1—qo
dr, ~ — 1
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e When we observe an object with absolute bolometric magnitude My,
at a redshift z, show that in a Universe with acceleration parameter

q0,

c
Mpol = Mpyop + 5 log {Fo/lopc} + 5log z + 1.086(1—qo )z + O(22) (8)

e Take an empty Qy = 0 matter-dominated Universe (i.e. go = 0) as
your reference for (m — M)). Infer what the relation (m — M)(z) —
(m — M)o(2) is for three Universes. One should have ¢y = 0.5 (EdS),
one ¢ = 0.15 (Q = 0.3 matter-dominated) and one gqg = —0.55
(concordance Universe). Draw a graph of the various predictions.

Note: the latter is exactly what the Supernova Ia experiments have found:
an accelerating Universe.



Exercise 4 (Computer Task):
Hubble Expansion and Anisotropic Velocities

Kinematically speaking, the isotropic and uniform Hubble expansion of the
Universe is a rather special circumstance. We may appreciate this when
looking at the general flow of a fluid around a position rg. The kth compo-
nent v (r of the velocity at location r is given by

vg(r) = vg(ro) + %V v (rg = Tko0) + Z oj(rj —rj0) + Z wij(rj —7j0) (9)

in which the divergence V - v encapsulates the expansion or contraction of
a volume element, the shear o;; its shape deformation and w;; the vorticity,
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The Hubble expansion is unique in that it does not have any anisotropic
terms, both shear and vorticity are equal to zero. In other words, the Hubble
parameter is equal to

H(t) = %v-v (11)
In the lecture the Hubble expansion illustrated by means of a two-dimensional
cartoon involving hundred randomly distributed points within a square. In
this computer task you will need to follow up on this experiment for the
generic case involving both an anisotropic shear term and a vorticity term.
You may need whatever computer program (Matlab, Python, IDL) you feel
most at ease with.

e Distribute N = 1000 points randomly within a box of size 100 x 100.
This defines timestep t1. The particles have an initial location

7j(t1) = (r1,4,72,5), j = (1,...,N).

Within the box, take an arbitrary central position s, from where we observe
the displacement of the surrounding Universe.

We are going to follow the evolution of the initial particle distribution
at 2 subsequent timesteps to and t3. The initial timestep is ¢1. At ¢ the
particles have an initial position 7;(¢1) = (r1,5,725), 7 = (1,..., N).

In a time interval At = (¢ — t1) each particle m gets displaced by an
amount A7y, (t),

7Tm(t) = Fm(tl) + Afm(t) (12)



where the displacement is a product of the deformation D with the time
interval At,
A7(t) = D At, (13)

The deformation is the sum of an expansion/contraction H, shear ¢ and
vorticity w term.

Assume we have a particle m with initial coordinates 7(t1) = (ri,72).
then the k-th coordinate of its deformation 73, with § as deformation center,
is equal to

Di(t) = H (ry, — si) + O'kj(Tj —s5) + wkj(rj —5j). (14)
where we use the Einstein summation convention (summingover j = 1,...,3)!

For our experiment the resulting location #(¢t) = (r1(t),r2(t)) at time ¢ of
the particle with initial location 7(¢1) = (r1,72) is

re(t) = e + H(re — sk) + k(15 — s5) + Qi — s5), (15)

where H = HAt, Xj; = oy,;At and Qp; = wyjAt. Thus, for the initial time

1 : H=0, X;=0, Q=0 (16)

Note that strictly speaking this expression is only valid for small displace-
ments (small timesteps): keep it moderate ... (but not too small either,
otherwise it is not too clarifying).

For the traceless shear tensor we have the following conditions:

S — (011 012 ) (17)
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for which 011 + 022 = 0 (so that X;; is effectively specified by 2 numbers,
o11 and o91) while the vorticity tensor is specified via one number, w,
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Repeat the following for two different deformation centres:
e 3= (50,50) as centre of the plotbox of size 50 x 50.

e §=(75,75) as centre of the plotbox of size 50 x 50.

Generate 6 different configurations:
e pure expansion only: ¥;; = €;; =0
e pure shear only: H = Q;; =0
e pure vorticity only: H = 3;; =0
e expansion + shear: Q;; =0
e expansion + vorticity: ;; =0

e expansion + shear + vorticity

For each timestep plot particle distribution within the central box of size
50 x 50. You should decide yourself on the values for ¥;;, €2;; and H. You
have some freedom in choice, but do not assume values which are too radical.



