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1. Newtonian Cosmology

Gravity is ruling the Universe. It was Newton who was the first to establish this. Following in the foot-
steps of Copernicus, Galilei and Kepler, giants upon whose “shoulders he was standing”, he formulated
his theory of gravity. On the basis of his theory the first true scientific cosmological description and
comprehensive model of the world could be formulated. It forms an interesting and illustrative contrast
to the 20th century theories based on Einstein’s General Theory of Relativity. Newtonian cosmology
involved:

• Absolute and uniform time

• Space & Time independent of matter

• Space is absolute, static & infinite

• Universe does not have a boundary and no center

• Dynamics:

action at a distance

instantaneous

• Newtonian Cosmological Principle:
Universe looks the same

at every location in space

at every moment in time

2. Relativistic Cosmology

In 1915, Albert Einstein had just completed his General Theory of Relativity, which explained gravity
in a different way from Newton’s law. Gravity was a manifestation of the geometry, curvature, of space-
time and his theory of gravity was a “metric theory”. The force of gravity became a metric force,
resulting from the local curvature of spacetime.

Einstein’s General Theory of Relativity revolutionized our thinking about the nature of space and
time: no longer Newton’s static and rigid background. It had turned into a dynamic medium, intimately
couple to the universe’s content of matter and energy. It was all encrypted into that impressive framework
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of the Einstein Field Equations. They form the description of the mutual interaction between the matter-
energy content of the Universe and its geometry, responsible for the gravitational interactions acting on
all matter and energy,

... Spacetime becomes a dynamic medium
integral part of the structure of the cosmos ...

curved spacetime becomes force of gravity

Rαβ
−

1

2
gαβ R = −

8πG

c4 T αβ

... its geometry rules the world,

the world rules its geometry ...

One of the very first applications of General Relativity concerned the Universe itself. Only with the
availability of the new metric theory which had transformed spacetime into a dynamic medium was it
possible to infer a meaningful description of the Cosmos, one that bears any resemblance to reality.
The first attempts towards applying General Relativity to cosmology were made by Einstein himself,
in 1917. To this end he made the simplifying assumptions that the Universe is homogeneous and
isotropic (see later, sect: 3). Subsequently, he looked for a static solution of the Einstein field equations.
To his surprise, his equations implied the Universe to be unstable, either it should expand or collapse
! This prodded him to introduce the concept of the “cosmological constant” (see chapter 2) in order
to balance the books. While rather ad-hoc, we have also seen that it is certainly permitted by the
equations. His 1917 Universe model, including cosmological constant Λ, is known by the name Einstein
Universe. It is well-known that after Hubble’s discovery in 1929 of the systematic recession velocities
of galaxies, Einstein discarded his introduction of Λ as his “greatest blunder”. However, set in proper
perspective one should realize at the time Einstein proposed his model our conception of the Universe
did not reach further than our own Galaxy. The 1920 “Great Debate” between Curtis and Shapley on
the nature of the galaxies was still 3 years away. For sure, observational cosmology in 1917 was far
from a mature branch of astronomy ! In around the same year Willem de Sitter, director of Leiden
Observatory, assessed another solution of the Einstein field equations, that of an empty Universe. While
perhaps slightly “unrealistic” given our own existence, the de Sitter Universe is still a theoretically
important model. He showed it to be in a steady state, having a constant Hubble parameter and a
constant deceleration term q.

Soon, more systematic cosmological assessments of the Einstein field equations allowed Aleksandr
Friedman (Russia) in 1922-1924 and George Lemáıtre (1927) to find the general solutions to the Einstein
field equations for a homogeneous and isotropic medium. These solutions, the Friedman-Robertson-
Walker-Lemáıtre equations still form the basis of our modern cosmological worldview. For sure,
that Friedman and Lemáıtre testified of great vision may be appreciated from the fact that Hubble’s
discovery still was a few years in the waiting.

What then about the names Robertson and Walker ? Recall that Einstein’s General Relativity theory
is a metric theory. One needs to understand the geometry of the Universe to be able to describe its dy-
namics. In their general form they effectively involve 10 potentials, or independent elements of the Ricci
tensor Rαβ. In other words, they form a notoriously complex and generally insolvable set of equations.
Any hope for progress in cosmology relied upon identifying symmetries which might severely curtail
its geometry and by implication its dynamics. These symmetries are embodied by the Cosmological
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Figure 1. “Claves Lugduni, Claves Caeli”: Einstein and de Sitter discussing the Universe in Leiden.

Principle. Their translation into the geometry of the Universe, in terms of a proper metric gαβ , is what
has become known as the Robertston-Walker metric. It were Robertson and Walker who around
1935 independently solved the implied form of spacetime. They provided a solid mathematical deriva-
tion of the metric of spacetime for all isotropic, homogeneous, uniformly expanding models of
the Universe. Interestingly, their formulation dates from years after the formulation by Friedmann and
Lemáıtre of their relativistic cosmological models. Nonetheless, the work by Robertson and Walker was
essential in putting this on a firm mathematical basis.

Despite the rather erratic historical path along which our modern worldview of the Big Bang Universe
got traced out, we will follow the at hindsight more systematic path of reasoning.
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3. the Cosmological Principle

“all places in the Universe are alike”

In 1935 Einstein aptly characterized the structure of our Universe in these words. We have the privilige
(and luck) to live in rather simple Universe. A Universe beautiful because of its simplicity. And beauty
and simplicity here stand for highly symmetric. Naturally, this is for someone indifferent to the richness
and variety of objects and structures in the Universe. This ultimately will form our main source of
attention and interest. However, once we smooth out over all (infra)structure on scales of a few hundred
Megaparsecs and less, the global Universe indeed has all appearance of being a highly symmetric entity.

Humanity has always considered the simplicity of the World and the Universe as a great source of
beauty. This is underlined by statements of two reputable philosophers from antiquity,

“... God is an infinite sphere whose centre is
everywhere and its circumference nowhere”

Empedocles, 5th century BC “Whatever spot anyone may occupy,
the universe stretches away from
him just the same in all directions
without limit”

Lucretius, “De Rerum Natura”, 1st century BC

On Gigaparsec scales the appearance of the Universe is encrypted by the Cosmological Principle. In
essence it states that we do not occupy any priviliged position in the Universe. There are a few versions
of the cosmological principle. Here we distinguish between the essential cosmological principle and the
extended cosmological principle. The top two items in the following table are the essential points of the
Cosmological Principle. They are essential for sensitbly constraining the geometry of the Universe. The
two last items are often implicitly assumed, but in fact should be stated explicitly. The Homogeneity

of the Universe states that the physical conditions are the same everywhere in the visible Universe.
Conditions like the temperature T and density ρ are the same throughout the Universe. In other words,
the Universe looks the same at every point in space. Isotropy reassures that there is no preferential
direction in the Universe, in every direction it looks the same. Note that homogeneity and isotropy
are complementary concepts. A homogeneous medium is not necessarily isotropic nor is the impression
of isotropy at one location evidence for the overall homogeneity of the Universe !!!

The extended cosmological principle includes two additional issues. The uniform Hubble expan-
sion is in a sense included in the first two items. If the Hubble expansion were not uniform, it would be
in conflict with the statement that the Universe’s conditions would be everywhere and in each direction
the same. Still it may be seen as an extra steement to assure that if at any one cosmic time homogeneity
and isotropy holds up, it will remain like that. The assumption of universality may seem implicit, but
has been the subject of some highly interesting recent studies. It is clear that if the physical laws are not
the same throughout the Universe, or throughout cosmic history, we have a problem in formulating a
sensible cosmological theory. How can one ever be sure of what happens elsewhere if the same physics is
not valid. Even while physical laws may have the same form, the constants characterizing them and the
interactions between matter and energy in the Universe might in fact vary. While at first one may think
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Cosmological Principle

• Homogeneity =⇒ The Universe is the same

everywhere, at every location

- physical quantities (ρ, T , ...)

• Isotropy =⇒ The Universe the same

in every direction

• Uniformly Expanding =⇒ Universe grows with same rate

- at every location
- in every direction

• Universality =⇒ Physical Laws & Constants

the same everywhere

of this as pure imagination, recent work on high-resolution absorption spectra of quasar light may indeed
suggest a systematic trend of the fine structure constant α = e/hc. Because this would affect atomic
physics, atomic line transitions get to change as a function of cosmic time. While it is not unfeasible
this may turn out to be due to systematics of the measurements, or interpretation, the fact that indeed
there might be more between “heaven and earth” than meets the eye is intriguing. Nonetheless, as it
would complicate our analysis substantially, and the effect if existent at all would be rather small, we
keep to the essential tenet that physical laws and physical constants are indeed universally valid.

4. Cosmic Time: Weyl’s Postulate

In the former section we addressed the issue of space in the cosmos. Equally pressing is the issue of time
in the Universe.

It is clear that to Newton the issue of a proper definition of a “cosmic time” did not pose any
problem. By default there was a rigid, well-defined absolute time throughout the whole of the Universe.
In principle even existing independently of the world itself.

For General Relativity the story is quite different. In principle one is free to describe physical
processes in any inertial or free-falling frame, there is no sense of absolute space and absolute time.
This causes a complication with respect to our attempt to describe the structure and dynamics of the
Universe. What do we mean with measuring distances between two objects in the Universe. What is
the meaning of ‘simultaneity ? In principle there is no fundamental answer to this question, simultaneity
being entirely dependent on the choice of reference frame.

To proceed further in a meaningful fashion, we therefore follow Weyl in defining a Universal Time
as follows. Interestingly, Weyl’s Postulate (1923) upon which it is based was introduced by Weyl in
1923, quite well before Hubble’s discovery of the recession of the nebulae:

5



Figure 2. Isotropy of the Universe. Top: The CMB temperature sky distribution, T=2.725 K (COBE);
Bottom: Sky distribution 2704 BATSE GRB sources.

6



“The particles of the substratum (representing the nebulae)

lie in spacetime on a bundle of geodesics diverging
from a point in the (finite or infinite) past.”

Perhaps the word “substratum” needs some additional explanation. It is the underlying “fluid” defining
the overall kinematics of a system of galaxies. In this view, the galaxies act as the occasional “discrete”
beacons, flowing along their geodesics (i.e., they are “freely falling”). An immediate repercussion of
Weyl’s postulate is that the worldlines of galaxies do not intersect, except at asingular point in the
finite/infinite past. Moreover, only one geodesic is passing through each point in spacetime, except at
the origin. This allows one to define the concept of Fundamental Observer, one for each worldline.
Each of these is carrying a standard clock, for which they can synchronize and fix a Cosmic Time
by agreeing on the initial time t = t0 to couple a time t to some density value. This guarantees a
homogenous Universe at each instant of cosmic Universal Time, and fixes its definition.

While for homogeneous Universe it is indeed feasible to use Weyl’s postulate to define a universal
time, this is no longer a trivial exercise for a Universe with inhomogeneities. The worldlines will no
longer only diverge, as structures contract and collapse worldlines may cross. Also, if we were to tie a
cosmic time to a particular density value we would end up with reference frames that would occur rather
contrived to us. Also, we would end up with the problem of how to define a density perturbation. We
would have a freedom of choice for the reference frame with respect to which we would define it. As
usually stated, the density perturbation is dependent upon the chosen gauge, i.e. the chosen metric. This
issue came prominently to the fore when Lifschitz tried to solve the perturbed Einstein field equations.
The solution was a proper gauge choice, which has become known as ’synchronous gauge”. In essence, it
involves a choice for the time and spatial coordinates based upon a homogeneous background Universe.

Figure 3. The three homogeneous and isotropic spaces: flat, spherical and hyperbolic.

Homogeneous and Isotropic Spaces

The constraints imposed by the cosmological principle on the geometry of the Universe are strong.
Amongst an infinity of academically possible geometries, only three uniform geometries, geometries
that are indeed fully homogenous and isotropic.
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The Three Uniform Spaces

• Uniform Hyperbolic Space Negatively Curved Gauß

• Euclidian Flat Space Zero curvature Euclides

• Uniform Spherical Space Positively Curved Riemann
Lobachevski
Bolyai

Known since millennia is the flat geometry, commonly known by the name of Euclides, the scholar
from Alexandria who in the first century A.D. in his book Elements (the most published book in the
world after the Bible !), inventorised the full body of geometrical knowledge attained since Thales. Five
basic axioms form the foundation of Euclidian Geometry, and for nearly 18 centuries they were considered
to be absolutely fundamental. Still even Kant thought that the Euclidian axioms were “a priori” true
and “an inevitable necessity of thought”. One of the five, the Euclidian Parallel Postulate, turned
out NOT to be universally true:

“Two straight lines drawn in some plane are
and remain parallel if they do not intersect”

Euclides, “The Elements”

Finally, the “parallel postulate” turned out to be a less universal principle than what had been presumed
for centuries to be perfectly trivial and plausible. While true for flat spaces, with the discovery of
generally curved spaces dawned the realization that parallel lines may at some point intersect. In fact,
it is the norm, and Euclidian space is the one exception where it holds true.

With the gradual development of the description of curved spaces, the subject of differential geometry,
came the “discovery” that in addition to Euclidian flat space there were two other uniform spaces. One
is a negatively curved space with a uniform Hyperbolic Geometry, discovered by Gauß, Lobachevski
and Bolyai. An equivalent positively curved space with a uniform Spherical Geometry. The latter was
discovered by Riemann, the mathematician who lay the foundations for differential geometry, also called
Riemannian geometry, and thus paved the way for the formulation of the General Theory of Relativity
by Einstein. Most of this material was presented in one of the most classical lectures in the history
of mathematics, “Über die Hypothesen welche der Geometrie zu Grunde liegen”, delivered on 10 June
1854 at the University of Göttingen (in the presence of Gauß). Of crucial important is the ability to
distinguish on the basis of local characteristics between the three different uniform spaces. Such
characteristics al low us the ability to decide in which space we ourselves live. Four local properties in
which the different are clearly different are 1) the behaviour of parallel lines, 2) the interior angles (of
e.g. triangles), 3) the ratio between circumference S of a circle and its radius r and 4) the curvature
k. In table 4 we list the values for each of these characteristics for the three spaces, along with an extra
post on their 5) extent and 6) boundary.
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Parallel Lines Triangular Circumference Curvature Extent Boundary

Angles Circle

α + β + γ x ≡
S
2r k

Flat Space parallels: 1 π π 0 open: unbounded
never intersects infinite

Spherical Space parallels: ∞ > π < π 1/R2 closed: unbounded
along great circles, > 0 finite
all intersect

Hyperbolic Space parallels: ∞ < π > π −1/R2 open: unbounded
diverge & < 0 infinite
never intersect
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Robertson-Walker metric

Formally, the implications of the Cosmological Principle should be worked out in terms of a metric
gαβ . These metric solutions for homogeneous, isotropic spaces are named after the persons who worked
out their explicit form, the Robertson-Walker metric. They were the mathematicians who proved
towards the later thirties that

For a coordinate system with cosmic time t and spatial coordinates (r, θ, φ), in which r is the comoving
radial distance of a body, we find that distances ds2 are specified by

ds2 = c2 dt2 − Rc(t)
2(t)

{

d

(

r

Rc

)2

+ S2

k

(

r

Rc

)

(

dθ2 + sin2 θ dφ2
)

}

(1)

in which Rc(t) is the radius of curvature at time t and, by convention, Rc the radius of the present
universe.

The function Sk(x) depends on which geometry our Universe has, specified through the index k. The
latter is the normalized curvature constant, which can attain only three values

• k =











1 spherical

0 flat

−1 hyperbolic

Dependent on whether we live in a positively curved, flat or negatively curved space, Sk has the following
expressions:

k = 1 S1(x) = sin(x)
k = 0 S0(x) = x

k = −1 S−1(x) = sinh(x)
(2)

A useful quantity is the dimensionless expansion factor a(t). It specifies the growth of the Universe
in time, and is defined such that at the present epoch a0 = 1, while at the moment of the Big Bang
a = 0. In other words, it specifies how the distance s(t) between two fundamental observers, having a
present-day distance s0, changes with time:

s(t) = a(t) s0 (3)

One can easily show that for a uniformly expanding universe the radius of curvature Rc(t) also evolves
along with the expansion factor a(t):

Rc(t) = a(t)Rc . (4)

A convenient alternative expression for the Robertson-Walker metric is therefore given by

ds2 = c2 dt2 − a(t)2(t)

{

dr2 + R2

c S2

k

(

r

Rc

)

(

dθ2 + sin2 θ dφ2
)

}

(5)

For

ds2 = c2 dt2 − R2(t)

{

dr2

1 − kr2
+ r2

(

dθ2 + sin2 θ dφ2
)

}

(6)

in which (r, θ, φ) are the comoving coordinates of a body, while the curvature of space is specified by the
radius of curvature:

R(t) : radius of curvature . (7)

Note that the simple homogeneous and isotropic space-times we are discussing can be characterized by
only one radius of curvature, instead of by the 10 components of the general Ricci tensor. The curvature
is usually specified via a (normalized) curvature constant k which can only attain three different values,
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Friedmann-Robertson-Walker-Lemaııtre Equations

ä = −
4πG

3

(

ρ +
3p

c2

)

a +
Λ

3
a

ȧ2 =
8πG

3
ρa2

−
kc2

R2
0

+
Λ

3
a2

At the lecture we have derived the evolution of the Hubble parameter in a generic Universe, filled with
radiation, matter, dark energy and with a curvature k term,

H2(a) = H2

0

{

Ωrad,0

a4
+

Ωm,0

a3
+ Ωvac,0 +

(1 − Ω0)

a2

}

(8)

in which the total Ω0 is the sum of the contributions by radiation, matter and dark energy,

Ω0 = Ωrad,0 + Ωm,0 + Ωvac,0 . (9)

From the above relation we can find directly the solution for the general evolution of a FRW Universe,

H0t =

∫ a

0

da
√

Ωrad,0a−2 + Ωm,0a−1 + Ωvac,0a2 + (1 − Ω0)
. (10)

5. Observables FRW Universes

The angular diameter distance of a source at redshift z is given by

dA =
2c

H0Ω
2

0

1

(1 + z)2

{

Ω0z + (Ω0 − 2)
(

√

1 + Ω0z − 1
)}

and you are advised to show that for z � 1 you may approximate this by

dA =
2c

H0Ω0

1

z
.

6. Cosmic Horizons

The (particle) horizon of our Universe RH(t) at a cosmic time t is defined by the expression

RH(t) = a(t)

∫ t

0

c dt′

a(t′)
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