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1. Newtonian versus Relativistic Gravity

The evolution of the Universe is ruled, dominated, by the force of gravity. Of the four known fundamental
forces of nature, gravity is the only one whose effects are propagated over cosmological distances. As
long as the force of gravity was described by Newton’s second law,

g = −
GM

r2
êr (1)

it was not possible to develop a proper cosmology. First, at hindsight of course, it remained a puzzling
observation that gravity operated as an “interaction-at-a-distance”, hardly a convincing concept of re-
ality. In addition, in Newton’s theory of gravity the geometry of spacetime is simple, a “God-given”,
static and simple Cartesian geometry: a flat Universe, here, everywhere, and always, with a simple spa-
tial metric gkl = (+1,+1,+1). In other words, Newtonian space-time is a rigid medium against whose
backdrop all physical processes take place.

It was with the publication in 1915 of his Theory of General Relativity that Albert Einstein
revolutionized our ideas of space-time and of the force of gravity. He showed that spacetime is a dynamic
medium whose geometry changes as consequence of the matter distribution in the Universe, and which
in turn influences the matter content (or, rather, the energy-momentum content) of the Universe. In this
view the force of gravity is nothing else but the manifestation of the local curvature of spacetime. For
the description of the dynamics of the Universe the energy-momentum content is a central and crucial
factor of which we need to have precise knowledge.

2. The Principle of Relativity

Albert Einstein (1905)

The same laws of electrodynamics and optics are valid for all
frames of reference for which the equations of mechanics hold good.

We will raise the conjecture (the purport of which will hereafter
be called the ‘Principle of Relativity’) to the status of a postulate

and also introduce another postulate which is only apparently irreconcilable
with the former, namely that light is always propagated in empty space

with a definite velocity c which is independent of
the state of motion of the emitting body.”
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Figure 1. Albert Einstein (1879-1955)
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3. Literature

Some recommendable books for further study of Special and General Relativity are contained in the
following listing:

• Relativity: The Special and the General Theory

A. Einstein; 1920, Henry Bolt, New York

What better than an explanation by the master himself ! Highly accessible and nicely written popular
account of his masterworks. Quote: “Who would imagine that this simple law [the constancy of the
velocity of light] has plunged the conscientiously thoughtful physicist into the greatest intellectual
difficulties”

(available in numerous bargain paperback editions)

• Theory of Relativity

W. Pauli; 1920 (available as Dover paperback)

brilliant introduction on relativity, written when Pauli was 20 years old ! While slightly out of
date, still a great historic document

• General Relativity from A to B

R. Geroch; 1981, Univ. Chicago Press

Excellent qualitative introduction. Beautifully illustrated and insightful description of Minkowski
spacetime, followed by general relativistic curved spacetimes.

• Introduction to Special Relativity

W. Rindler; 1991, Oxford Univ. Press

A classic introductory text on special relativity

• Gravitation

C.W. Misner, J.A. Wheeler, K.S. Thorne; 1973, Freeman

Biblical, in content as well as in proportion. One of the great scientific books of all time. However,
not suited for your introduction into General Relativity

• General Relativity

R.M. Wald; 1984, Univ. Chicago Press

Very good textbook for graduate students. While not always easy, it is well written and has a good
selection of topics.

• Problem Book in Relativity and Gravitation

A. Lightman, R. Price; 1975, Princeton Univ. Press

great book for obtaining “hands-on” insight

• Gravitation and Cosmology

S. Weinberg; 1972, Wiley

A Classic !!! Cosmology with heavy focus on general relativistic background
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• General Relativity and Cosmology

Proc. International School of Physics “Enric Fermi”, Course XLVII, Varenna, 1969

ed. B.K. Sachs; 1971, Academic Press

Wonderful summerschool proceedings. Fantastic lectures, particularly noteworthy lectures are the
ones by J. Ehlers and G.F.R. Ellis. Interesting group photo !!!

• Subtle is the Lord: The Science and Life of Albert Einstein

A. Pais; 1983, Oxford Univ. Press

Thé biography on Albert Einstein, vividly narrating his journey of discovery, putting particular
emphasis on the science involved. Fantastic description of how great discoveries and science are
achieved.

4. Special Relativity and the Lorentz Transformation

Special Relativity is based upon two fundamental tenets,

• All Laws of Nature are equivalent in reference frames in uniform relative motion.

• The (Vacuum) speed of light is c in all such frames.

These two principles have profound implications for the structure and geometry of spacetime. It is easy
to appreciate that in conventional Euclidian space it would be impossible to hold up in particular the
second principle, the fact that the speed of light is the same for all frames. The geometry of inertial
systems turns out not that of Euclidian space but that of four-dimensional Minkowski spacetime.
The metric ηαβ of Minkowski space is

ηαβ =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









, (2)

so that distances between a point xµ = (ct, x, y, z) and the origin (0, 0, 0, 0) is simply given by

s2 = ηµνxµxν = c2t2 − x2 − y2 − z2 . (3)

Einstein proved that two inertial systems are related by means of the Lorentz transformation. The
Minkowski distance s2 is invariant under the Lorentz transformation. Not only does the Lorentz trans-
formation imply s2 to be invariant, the same holds true for all scalars, including the velocity of light
c.
When two intertial systems xµ and x′ν are moving with respect to each other with a velocity v in the x
direction, the Lorentz transformation between them is

x′ = γv (x −
v

c
ct)

y′ = y

z′ = z

ct′ = γv (ct −
v

c
x) (4)
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in which γv is the well-known Lorentz factor

γv =
1

√

1 −
v2

c2

. (5)

In proper tensor language the Lorentz transformation is a rank-2 tensor Λµ
ν , so that the transformation

from the inertial system xν to a system x′µ is expressed as

x′µ = Λµ
ν xν . (6)

As has been noted above, the Lorentz transform keeps the interval

c2dτ2 = c2dt2 −
(

dx2 + dy2 + dz2
)

(7)

invariant. The significance of τ can be appreciated from considering two events at the same location,
i.e. dx = dy = dz = 0. Then it measures the time interval between two events. It is therefore called the
proper time of a moving system.

Naturally, also for a moving source τ corresponds to the time as it proceeds in its reference frame. Its
relation to the time of the observer can be easily obtained from the inverse of expression 5, cdτ = γ−1

v cdt.
Proper time is therefore given by the expression

dτ = dt

(

1 −
v2

c2

)1/2

(8)

Not only do the spacetime coordinates transform by means of the Lorentz transform, also all properly
defined four-vectors Aµ do,

A′µ = Λµ
α Aα . (9)

and in general all well-defined tensors of arbitrary rank. The transformation of a tensor of rank 2 is for
example

B′µν = Λµ
α Λν

β Aαβ . (10)

Within the tensor formulation, the above Lorentz transform (eq. 5) tensor Λµ
ν is given by

Λµ
ν =









γ βγv 0 0
−βγv γ 0 0

0 0 1 0
0 0 0 1









. (11)

By definition β ≡ (v/c). If we wish to consider the more generic case of an arbitrary directed velocity v,
one has to distinguish between the spatial direction x‖ parallel to the velocity v and the perpendicular
direction x⊥,

x = x⊥ + x‖ . (12)

Only the parallel component is influenced by the Lorentz transform,

ct′ = γv

(

ct −
v

c
x‖

)

x′ = x⊥ + γv

(

x‖ −
v

c
ct

)

, (13)
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from which we may infer the general expression for the Lorentz transformation λµ
ν from a frame xµ to

a frame x′ν moving with a velocity v = (vx, vy, vz) in an arbitrary direction,

Λµ
ν =



















γ −vx
c γv −

vy
c γv −vz

c γv

−vx
c γv 1 +

v2
x

v2 (γv − 1)
vxvy

v2 (γv − 1) vxvz

v2 (γv − 1)

−
vy
c γv

vyvx

v2 (γv − 1) 1 +
v2
y

v2 (γv − 1)
vyvz

v2 (γv − 1)

−vz
c γv

vzvx

v2 (γv − 1)
vzvy

v2 (γv − 1) 1 +
v2
z

v2 (γv − 1)



















(14)

Note that in the above expression we have assumed that the origin of frame xµ did coincide with that
of frame x′ν .

4.1. Relativistic Mechanics: four-velocity

The Newtonian equations of motion are not Lorentz-invariant (they are Galilean invariant). It is
therefore impossible to write them in a covariant form: upon a Lorentz transform they would change.
To reformulate dynamics of a system such that it concerns a Lorentz-invariant formulation we need to
find properly defined four-vectors. To do this we seek to define quantities which keep close to their
conventional Newtonian relatives, to assure that asymptotically they keep their Newtonian form, but
which at the same time transform in a proper covariant form.
The first such quantity is the four-velocity U µ. The conventional velocity

~u =
d~x

dt
, (15)

cannot be a proper four-vector, both ~x as well as t get transformed. However, because xµ is a proper
four-vector, and therefore also the differential dxµ, the four-velocity Uµ defined according to

Uµ ≡
dxµ

dτ
, (16)

is indeed a proper covariant form while retaining close to the original idea of velocity. In this definition
the proper time τ (eqn 8), invariant under a Lorentz transformation, is used instead of the time t. From
this definition of the four-velocity we can easily see that

U0 =
dx0

dτ
=

c dt

dτ
= c γu

U i =
dxi

dτ
=

dxi

dt

dt

dτ
= γuui (17)

so that the relativistic four-velocity U µ is

Uµ = γu

(

c

~u

)

(18)

The length of the four-velocity Uµ has a value equal to

UµUµ = −(γuc)2 + (γu~u)2 = −γ2
uc2

(

1 −
u2

c2

)

= −c2 , (19)

evidently a Lorentz-invariant quantity.
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4.2. Relativistic Mechanics: four-momentum

Following up on the definition of the relativistic four-velocity, we define the relativistic four-momentum
in an analogous four-vector form, retaining close to its asymptotic Newtonian form. For a particle with
rest mass m0 (a scalar, and therefore Lorentz-invariant), we have

P µ ≡ m0 Uµ (20)

Note that in the non-relativistic limit P µ behaves like

P µ = m0 Uµ = m0 γu

(

c
~u

)

≈ m0

(

c
~u

)

. (21)

In other words, the spatial components ~P in the nonrelativistic limit are precisely equal to the ordinary
three-momentum of Newtonian mechanics, ~P = m0 ~u. In the relativistic limit, the spatial components of
the four-momentum are equal to ~P = m0

~U . This brings us to the definition for the relativistic spatial
momentum ~p,

~p ≡ m0γu ~u . (22)

To settle the identity of the (0) component of the four-momentum we expand the expression for P 0,

P0c = m0cU0 = m0c
2

(

1 −
v2

c2

)−1/2

= m0c
2 +

1

2
m0v

2 + . . . . (23)

The second term is the nonrelativistic expression for the kinetic energy of the particle. The implication
is that P0c should be interpreted as the total energy E of the object. In summary, the four-momentum’s
identity is

P µ =

(

E/c
~p

)

. (24)

From the consideration of the Lorentz-invariant length of the four-momentum,

P µPµ = m2
0U

µUµ = −m2
0c

2 = −
E2

c2
+ |~p|2 (25)

one is therefore lead to the expression for the relativistic energy,

E2 = m2
0c

4 + c2 |~p|2 (26)

Undoubtedly, this is one of the most important relations obtained by the theory of relativity. Its
implications far surpassing anything Einstein could have foreseen in 1905. In particular the energy a
particle has when it is at rest has caught the imagination of a large fraction of the world,

E = m0c
2 (27)

It is no exaggeration to say that this has become THE equation of the 20th century, a symbol of human
progress. But also a symbol of human failure and agression ...
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5. Principle of Equivalence

The fundamental principle, or observation, underlying Einstein’s theory of General Theory of Relativity
is the Equivalence Principle. After some pondering, in 1907 he concluded that free-falling frames were
entirely equivalent to inertial frames in terms of applicability of all physical laws. According to his own
statement, “all local, freely falling, non-rotating laboratories are fully equivalent for the performance of
all physical experiments”. In general, we may express the (strong) equivalence principle as follows:

The physics in the frame of a freely falling body
is equivalent to that of

an inertial frame in Special Relativity.

In other words, at any point in a gravitational field, in a frame of reference moving with the free-fall
acceleration at that point, all laws of physics are entirely equivalent and have their usual Special
Relativistic. This except the force of gravity, which disappears locally. For every conceivable physical
experiment, special relativity will therefore apply to both inertial and free-falling frames. The conse-
quences of this observation are momentous.

Recall that in the theory of Special Relativity the special relativistic descriptions of physical phenom-
ena apply exclusively to inertial frames. These are the frames corresponding to the shortest distances
between two events ξµ ≡ (ct, x, y, z) in Minkowski spacetime, i.e. frames corresponding to “straight”
worldlines in Minkowski spacetime. Evidently, accelerated frames do not have straight worldlines in
Minkowski space, they are curved !

By stating that Special Relativity applies also in free-falling frames, the principle of equivalence should
be understood in a similar way as the special relativistic principle of relativity. While the worldlines of
accelerated frames are curved in Minkowski spacetime, they are “straight” in curved spacetime. The
consequence of the equivalence principle is that in a curved spacetime the paths of a free-falling body
is “straight”. In other words, the paths of free-falling bodies are straight lines, geodesics, in curved
spacetime. This assures that locally, at any point along their path, the geometry remains equivalent to
Minkowski spacetime. Thus, on the basis of the principle of equivalence we find that

Free-falling bodies follow straight worldlines
– geodesics –

in curved spacetime

To understand and specify this we need to resort to concepts from differential geometry. Indeed, it was
not before Einstein’s friend Marcel Grossman had taught Einstein about differential geometry that he
was able to mould his physical insights into the proper theoretical formulation of his Theory of General
Relativity.

5.1. Time Dilation and Gravitational Redshift

An immediate consequence of the principle of equivalence is the effect of Gravitational Time Dilation.
Imagine an object that fell into a gravitational potential field φ from infinity. Starting from a position
of rest it thus acquired a velocity v given by

1

2
v2 = −φ(x) . (28)
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Because of the equivalence principle the free-falling object should be treated as if it would concern
an inertial system. We can therefore also use the relation for the special relativistic time dilation for
determining the resulting gravitational time dilation. The time interval ∆t0 measured by the observer
at infinity is then simply related to the time interval ∆t of the object in the gravitational field,

∆t0 =
∆t

√

1 +
2φ

c2

, (29)

in which we replaced v2 simply by −2φ, according to eqn. 28. Expression 29 is the time dilation which
we observe of an object embedded in an gravitational field. If it would clock a time interval ∆t ′ it would
occur to take a longer time ∆t0 to the outside observer (φ < 0).

Closely related to the gravitational time dilation is the resulting gravitational redshift of radiation
that was emitted from a gravitational field. When the source in the field φ emits radiation with a period
∆t it has a frequency ν = 1/∆t, while the observed frequency is equal to ν0 = 1/∆t0. From eqn. 29 we
may simply infer that this implies that

ν0 = ν

√

1 +
2φ

c2

which for a weak gravitational field, φ/c2 � 1, becomes

ν0 ≈ ν

(

1 +
φ

c2

)

. (30)

The above relations specify how the frequency of electromagnetic radiation depends on the gravitational
potential in which they propagate. Also, we see that if two points are a potential difference ∆φ apart
their corresponding relative gravitational redshift is equal to:

∆ν ≈
∆φ

c2
, (31)

so that the corresponding gravitational redshift zgrav (= 1 − ν1/ν2) amounts to

zgrav =
∆φ

c2
. (32)

In most generic circumstances the gravitational redshift of light is a tiny effect. Within the earth’s
gravitational field the effect is only of the order zg ∼ 2.5 × 10−5.

Nonetheless, the effect is of utmost importance for our ability to study the structure of the Universe
at the epoch of recombination: the temperature fluctuations in the microwave background are often a
result of the effect of the gravitational potential perturbations at the surface of last scattering.

6. Metric

The most fundamental concept for the geometry, i.e. curvature, of any generally curved space is the
metric of a reference frame xµ. Locally, the curved geometry is specified by the metric tensor gαβ . It
specifies the distance between points in any general curved space for the reference frame xα,

ds2 = gαβ dxα dxβ . (33)

9



In the special case of Minkowski spacetime, for an inertial frame ξµ = (ct, x, y, z), the metric tensor is
usually denoted by ηαβ . It is given by

ηαβ = (1,−1,−1,−1) . (34)

On the basis of the principle of equivalence one may infer, rather straightforwardly, that free falling
bodies follow straight worldlines. First one may derive that the motion of such a body is described by
the general relativistic equation of motion,

d2xβ

dτ2
+ Γβ

λν

dxλ

dτ

dxν

dτ
= 0 . (35)

In this equation the quantity τ is the proper time in general relativistic spacetime,

dτ ≡ dt

√

1 +
2φ

c2
, (36)

measuring the time interval between two events at the same spatial location (within the frame). The
crucial difference with the familiar equation of motion for an inertial frame,

d2xβ

dτ2
= 0 . (37)

is the righthand term. This involves the Christoffel symbol Γα
βγ , (also called the affine connection) is

given by,

Γα
βγ =

1

2
gαν

{

∂gγν

∂xβ
+

∂gβν

∂xγ −
∂gγβ

∂xν

}

, (38)

specifying the effect of the spatial variation of the geometry of space, i.e. its curvature.

7. Geodesic Equation

The intrinsic beauty of the theory of relativity may be appreciated from the fact that the above Gen-
eral Relativistic Equation of Motion is exactly equal to the geometric concept of the Geodesic
Equation,

GENERAL RELATIVISTIC EQUATION OF MOTION
=

GEODESIC EQUATION

The geodesic equation specifies the shortest path a body can take in a general curved space (i.e. in
4-dimensional space-time).

d2xβ

dτ 2 + Γβ
λν

dxλ

dτ

dxν

dτ
= 0

We have therefore arrived at the fundamental observation that there is a crucial connection between the
dynamics in the theory of General Relativity and the geometry of curved spacetimes: the movement of
free-falling bodies is equivalent to following the shortest path on a surface in curved spacetime.

Notice that the effect of the curvature of space is comes in via the derivative of the metric gαβ . It is
therefore easy to see that for the Minkowski metric, constant throughout space, we recover the familiar
equation of motion for an inertial frame (eqn. 37).
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7.1. Equation of Motion: Weak Field Limit

To appreciate the physical significance of the metric gµν , it is highly instructive to study the relativistic
equation of motion in the socalled weak field limit.

In this asymptotic limit we assume that the gravitational field φ is weak and stationary. The latter
means that the potential and the metric do not change very much in time. Moreover, we take the
situation in which the body is moving slowly. Explicitly, these conditions are:

• weak field:
∆φ
c2 � 1

• stationary:
∂gµν

∂x0 = 0

• slowly moving: ẋk

c � 1

For the spatial k component of the geodesic equation (eq. 35) we have,

d2xk

dτ2
+ Γk

00

dx0

dτ

dx0

dτ
≈ 0 . (39)

where we have used the fact that ẋk/c � 1 in order to ignore the factors including ẋk/c. The assumption
of stationarity allows us to evaluate Γk

00:

Γk
00 =

1

2
gkν

{

∂g0ν

∂x0
+

∂g0ν

∂x0
−

∂g00

∂xν

}

≈ −
1

2
gkν ∂g00

∂xν ≈ −
1

2
gkk ∂g00

∂xk
≈

1

2

∂g00

∂xk
(40)

where we have used gkk ≈ ηkk = −1 and gkj ≈ 0 (k 6= j). The resulting relation is

d2xk

dτ2
= −

1

2

(

dx0

dτ

)2
∂g00

∂xk
, (41)

leaving us with the equation of motion for the weak field limit,

ẍk ≈ −
1

2
c2 ~∇g00 (42)

The weak field limit of course corresponds to the familiar Newtonian limit. In this asymptotic limit
thethe equation of motion we obtained above should therefore be identified with the regular Newtonian
equation of motion in a gravitational field,

ẍk = − ~∇φ . (43)

The final conclusion is that on the basis of the weak field limit of the geodesic equation we have found
a physical interpretation for the (00)-component of the metric tensor gµν . It is nothing less than the
gravitational potential φ,

g00 =
2φ

c2 (44)

The identification of g00 will prove to be a very useful relation for further analyses. Far more important
though is that it provides us with a direct link between the gravitational field and the geometry of space.
Exactly that what General Relativity is all about !
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8. Covariant Derivatives

Before we can make any further progress, we need to pay some more attention to a fundamental operation
in the description of nature and the scripting of its governing physical laws. In nearly all physical theory
we are comparing physical quantities of a system at different locations and different times. This is
subsequently drafted in terms of derivatives, involving the comparison in infinitesimal intervals. One
would think the issue a rather straightforward one. However, in the General Theory of Relativity the
issue of derivatives is not an entirely trivial one and we need to devote more specific attention to the
difference between regular derivatives and covariant derivatives.

In relativity we employ a shortcut in the notation for a regular derivative of a quantity F with respect
to a coordinate xµ,

F, ν ≡
∂F

∂xµ . (45)

Within a rigid Newtonian spacetime or in “flat” special relativistic Minkowski space this is a perfectly
well-defined operation. Derivative quantities like

Bµ ≡
∂Aµ

∂xν (46)

are themselves well-defined tensor quantities which transform nicely from one inertial reference system
into another:

Ãµ
, ν =

∂x̃µ

∂xα Aα
, ν (47)

In other words, expressions for a physical law involving derivatives will transform without a problem
into the same tensor expression in another inertial reference system.

However, in a generally curved space this is no longer true. The concept of derivative needs further
attention. We need to define more careful what we mean with comparison of physical quantities at
different locations. When moving a quantity over a curved space something more changes then just the
“intrinsic” change F,ν : we need to specify what the influence is of the path along curved space for the
change of the quantity. This brings us to the concept of parallel displacement: the quantity Aα at
one location xµ

1 is moved to the other location xµ
2 before one can make the comparison, i.e. the proper

derivative. In a flat space, parallel displacement would not induce any change. In a curved space it does,
and the effect enters, perhaps not unexpected, via the Christoffel symbol. A vector Aα moved parallel
along a path λ, in a general reference system xµ, transforms into

Aα(λ + dλ, λ) = Aλ − Γα
βγAβ dxγ . (48)

The effective derivative is that corresponding to the differential between the transported vector Aα(λ +
dλ, λ) and the local vector Aα(λ + dλ). This leads to the definition for the covariant derivative,

DAα

dλ
=

dAα

dλ
+ Γα

βγ Aβ dxγ

dλ
. (49)

From this we can easily infer the relation between the covariant derivative Aα
;ν and the regular

derivative Aα
,ν ,

Aα
;ν ≡ Aα

,ν + Γα
βγ Aβ . (50)

Note that we have introduced the index notation (; ν) as a shorthand for a covariant derivative. For the
covariant derivative of the covariant component Aµ of the vector A we have

Aµ ;ν ≡ Aµ ,ν − Γα
µγ Aα . (51)

It is important to realize that the covariant derivative Aµ ;ν is a genuine tensor, unlike the regular
derivative Aµ ,ν, so that any expression involving this quantity will also hold in any reference frame.
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As an interesting illustration of the significance of the concept of covariant derivatives, one can turn
to the geodesic equation, the equation of motion for a free-falling body. Using the expression for the
four-velocity Uµ of a body (eqn. 16) in combination with the geodesic equation Eqn 35 leads to the
observation that

d

dτ
Uµ + Γµ

αβ Uα dxβ

dτ
= 0 , (52)

which is nothing more than the statement that the covariant derivative of the four-velocity U µ is equal
to zero (see eqn. 49),

DUµ

dτ
= 0 . (53)

In other words, the equation of motion under the force of gravity is simply that the covariant derivative
of the four-velocity disappears. And as

As an illustration of the use of fact that covariant derivatives are tensors consider the covariant derivative
of the metric tensor gµν . It is easy to see that in a local inertial frame gµν

;ν = ηµν
;ν = 0. Because it

involves a tensor relation, we find that in any arbitrary reference always

gαβ
;β = 0 . (54)

This relation is a very useful one, returning in variety of contexts of General Relativity.

9. Energy-Momentum Tensor

We have seen that in General Relativity we have the geodesic equation (eqn 35) as equation of motion.
The significance was that bodies move along the shortest paths in curved space, the geodesics. Earlier
we noticed that Einstein had remarked that the curvature of spacetime is set by its material content. We
therefore need to assess the proper General Relativistic description of the matter (i.e. energy) content
of spacetime. In this section we will see that the 2-rank energy-momentum tensor is the key concept.

In relativity energy and momentum are intimately linked physical quantities, as both are compo-
nents of the energy-momentum four-vector P µ,

P µ = m0 Uµ = m0 γu

(

c
~u

)

≈ m0

(

c
~u

)

(55)

in which Uµ is the four-velocity of an object with ordinary velocity ~u = dx/dt (see eqn. 16).
Relativity is concerned with formulating physical laws and relations in a coordinate-free form, ie. in
a covariant form. We therefore look like formulations in terms of tensor equations that are valid in
any reference frame. For the energy-momentum four-vector we therefore look for the equivalent of the
Newtonian fluid equations, expressing the conservation of mass, energy and momentum. If we work out
the relativistic equivalents of the Newtonian fluid equations, we end up with the tensor equations,

T µν
;ν = 0 (56)

in which the tensor Tµν is the energy-momentum tensor,

Tµν =

(

ρ +
p

c2

)

UµUν − pgµν (57)
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In the equation above the term ρ concerns the density of matter (and energy) and p the pressure of the
medium. The pressure term enters this expression via the equation for transport of momentum. Note
that in the restframe the energy-momentum tensor works out as:

T µν =









ρc2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p









, (58)

which we will notice later is a particularly insightful expression within the context cosmology (matter
and energy following the Hubble expansion are in rest with respect to the expanding spacetime of the
Universe).

In a cosmological context we also often consider a pressureless medium, denoted by the term of
“dust”. Take care not to confuse this with dust in another astronomical context, that of the dust in
the interstellar medium. For an appreciation of the concept of the energy-momentum tensor it is quite
insightful to consider the expressions for the components of the energy-momentum tensor for such a
“dust” medium with a velocity ~v,

T 00 = ρc2 γ2
v

T 0i = ρc γ2
v vi

T i0 = ρc γ2
v vi

T ij = ρ γ2
v vivj , (59)

in which γv is the well-known Lorentz factor (see eq. 5). Having these explicit expressions for the “dust”
energy-momentum tensor, we can observe that for an inertial frame with v � c we should recover the
Newtonian fluid equations (i.e. the continuity equation and the Euler equation),

∂0(ρc) + ∂i(ρvi) = 0

∂0(ρcvi) + ∂j(ρvivj) = 0 (60)

In this inertial frame we therefore find that these equations are equivalent to the tensor equality, T µν
,ν =

0 . Because tensor equalities are equally valid in inertial as in free-falling frames we arrive at the
observation that for a “dust” medium the energy-momentum tensor will always obey the relation

T µν
;ν = 0 . (61)

This finding is of fundamental importance. It basically contains all you always wanted to know about
“dust physics”. More significantly, it is the one relation that allows us to establish the link between the
energy-momentum content of space and curvature. Not until after making a final remark that Eqn. 61
is not only true for a “dust” medium but in general for any medium with energy-momentum tensor T µν

specified by Eqn. 57 we therefore return to the description of curvature.

10. Curvature Tensors

Have managed to specify the contents of space by means of the energy-momentum tensor, we need to
return to the question of the proper encryption of the curvature of space. Once this has been clarified
we are set for establishing the profound link between the content of spacetime and its curvature.

Curvature of a space might be observed in a variety of ways. It would be rather trivial if we were
able to move out of the space in which we live and look from the outside. A telling example of such an
approach is measuring the surface of the earth when looking down from a space ship, or making a map
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from a mountain range on the basis of airplane photography. However, it is an entirely different exercise
when one has to stay on the Earth’s surface, or are constrained to merely walking around the mountains.
One may understand the complexity of the problem by realizing that it took humanity centuries, or even
millennia, before it was accepted that the Earth was not flat but a sphere. Apparently, some effort was
needed to prove this. The question therefore arises how one may infer and characterize the curvature of
a space when one is constrained to living within this space. A good starting point is to look for local
evidence. This is indeed what Johann Gauss set out to do.

The solution suggested by Gauss was an ingeneous one, at the same time a rather simple one (i.e.
at hindsight). He proved that one can describe curvature by following a vector along a path in a curved
space. By parallel displacement of the vector Aα along the path, one would find upon return at the
initial position a total parallel displacement ∆Aγ . The displacement of the vector Aγ along a closed path
corresponding to small coordinate intervals ∆xγ is

∆Aγ = Rγ
αβδ Aα ∆xβ ∆xδ , (62)

in which the four-rank tensor Rµ
αβγ is the Riemann tensor. For a closed macroscopic loop the contri-

butions by small loops filling up the large loop have to be added, yielding a total parallel displacement

∆Aγ =
1

2
Rµ

αλβ Aλ

∮

(

∆xβdxα − ∆xαdxβ
)

(63)

The Riemann tensor is one of the most fundamental concepts in differential geometry. It is defined by

Rµ
αβγ = Γµ

αγ,β − Γµ
αβ,γ + Γµ

σβΓσ
γα − Γµ

σγΓσ
βα , (64)

and is the one fundamental way of directly and locally measuring curvature. It is rather straightforward
to see that Rµ

αβγ = 0 for a flat space.
From the Riemann tensor one may derive a few related quantities, tensors of lower rank, by contrac-

tion over indices of the Riemann tensor. By contracting on the 1st and 3rd index, we obtain the Ricci
tensor,

Rαβ ≡ Rµ
αµβ = Rβα . (65)

While other contractions of the Ricci tensor are possible, on the basis of (anti)symmetries one may probe
that they either vanish or may be reduced to the Ricci scalar. On the basis of the Ricci tensor we may
then infer the curvature scalar, also known as Ricci scalar,

R ≡ gµν Rµν = gµν gαβ Rαµβν , (66)

which appeals closely to our imagination of curved surfaces. We would recognize it as the radius of
curvature of a spherical surface.

By using intrinsic symmetries of the Riemann tensor, the socalled Bianchi Identities,

Rαβµν;λ + Rαβλν;ν + Rαβνλ;µ = 0 (67)

one may prove, as Einstein did, that there is one, and only one, curvature related tensor of rank 2 Gαβ

for which
Gαβ

;β = 0 . (68)

Tellingly, this tensor is called the EinsteinTensor,

Gαβ = Rαβ −
1

2
gαβ R (69)

Having observed this unique property, we are nearing awfully close to the ultimate synthesis made by
Albert Einstein.
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11. the Einstein Field Equations

How did Einstein arrived at his final synthesis ? He noted that he had identified two rank-2 tensors for
which their contracted covariant derivative is equal to zero,

Gαβ
;β = 0

Tαβ
;β = 0 (70)

Subsequently, he made the stout jump, a stroke of genius, to realize that this meant nothing else but
that the Einstein tensor Gαβ should be equal to the energy-momentum tensor T αβ, i.e.

Gαβ ∝ T αβ (71)

One can do nothing else but marvel at what had happened here. Indeed, as you may read from the
highly recommendable book by Abraham Pais, “Subtle is the Lord”, the scientific biography of Albert
Einstein, upon realizing this breakthrough in his mind for three days Einstein was in the highest state
of excitement !!! One may only dare to imagine how one would feel by going back in one’s memory to
those rare moments one suddenly realizes the solution to a nagging science or maths problem. I guess
anyone of us has an experience of such a “minor” breakthrough ... Undoubtedly, it concerned one of the
greatest achievements in humanity’s intellectual and scientific history.

What he had achieved is to find the connection between the curvature of space and the “content” of
space, and by one stroke of genius he had transformed spacetime into a dynamic medium:

SPACETIME REACTS TO CONTENT OF THE UNIVERSE

⇐⇒

CONTENT OF UNIVERSE REACTS TO CURVATURE

Having made the bold step describe above, and having established that Rαβ ∝ T αβ, the constant of
proportionality between curvature and energy-momentum tensor should be computed.

The proportionality constant may be inferred in a similar way as followed in establishing the link
between gravitational potential φ and metric tensor gαβ (see eq. 44). By taking the limit of the non-
relativistic Newtonian regime, Einstein firmly linked his General Theory of Relativity to Newtonian
physics. In other words, he assumed Newton’s theory was in fact an asymptotic limit of the more general
theory of gravity he was formulating. We will follow his reasoning partially, and restrict ourselves to a
pure dust medium. Formulated explicitly the assumptions are

• weak field:
φ
c2 � 1

• stationary:
∂gµν

∂x0 = 0
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• dust: p � ρc2

The only nonzero component of the energy-momentum tensor in this regime is T 00,

T 00 = ρc2 , (72)

while for the pure spatial part T ij = 0. By implication Gij = 0, so that Rij = 1
2
gijR. This allows us to

determine R: R = R0
0 +Ri

i. Because Ri
j = 1

2
gi

jR, and in this regime gi
j ≈ δi

j, Ri
i = 3

2
R. In addition,

R0
0 = R00, so that R = −2R00, yielding

G00 = 2R00 . (73)

Somewhat more challenging is the determination of R00. Because in the Newtonian limit the Christoffel
symbols are all small, Γ � 1, the higher order terms ΓΓ in the Riemann tensor may be neglected (see
eq. 64, leaving the Ricci tensor

Rαβ =
∂Γµ

αµ

∂xβ
−

∂Γµ
αβ

∂xµ (74)

Because of the approximation of stationarity, we then find that R00 = −Γi
oo,i. Earlier, in equation 41,

we had found that in the limit of a weak field and stationary conditions that

Γk
00 ≈

1

2

∂g00

∂xk
=

1

c2

∂φ

∂xk
(75)

where we have used the relation between metric and potential, g00 = 2φ/c2 (eqn. 44). This implies that

R00 = −Γk
00,k = −

1

c2
∇2φ . (76)

The above equation should call up some vague memories of Newton days: the Poisson Equation
specifies the relation between the density ρ of a medium and the induced gravitational potential φ,

∇2φ = 4πGρ . (77)

Because T 00 = ρc2 (see eqn. 72) and G00 = 2R00, we find that

G00 = −
8πG

c4
T 00 , (78)

on the basis of which we have identified the constant of proportionality between the Einstein tensor and
the energy-momentum tensor. And therefore, esteemed students of the cosmos, we have arrived at what
should be rightfully considered a work of art, the Einstein Field Equations. The equations of nature
ruling the structure, evolution and fate of our own world, the Universe.

Rαβ −
1

2
gαβ R = −

8πG

c4 T αβ (79)

In my view it is no exaggeration to state that this equation embodies amongst the highest and most
supreme of intellectual and artistic (!) achievements of human civilization, a triumph of human genius.
And by many measures perhaps also the most beautiful and impressive equation of science and nature
known to humankind. And, in my personal view, of a beauty comparable to only the very most precious
works of art ever. Rightfully in line with the cave paintings of Lascaux, Phidias’ Parthenon, Michelan-
gelo’s Piéta, his David and the “Creation” on the Sistine Chapel ceiling, as well as Raffaello’s School of
Athens.
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12. Relativistic Cosmology: Pressure

In the above we have come to appreciate the fact that the curvature of spacetime is an essential component
of the theory of gravity described by the General Theory of Relativity. In addition, there are a few
other significant contributions to relativistic gravity which we do not encounter in a Newtonian context.
Implicitly, they are of course already included in the Einstein field equations. It is nonetheless instructive
to explore explicitly the influence of both pressure and a socalled cosmological constant on the
dynamics of spacetime. As both issues are of utmost importance within a cosmological context, we
devote special attention to them in this and the following section.

First, we investigate the issue of pressure. In the definition of the energy-momentum tensor, eqn. 57,
we have already seen that it contains a contribution by the pressure of the medium. The Einstein field
equations (eqn. 79) therefore tell us that pressure will influence the geometry of spacetime and therefore
plays a role in the resulting force of gravity.

To elucidate this role, we will first derive an alternative formulation of the Einstein field equation.
First some algebraic manipulation: multiplying the Einstein tensor Gµν by the metric tensor gαβ and
subsequently contracting over both the first and second index yields the relation

gµνRµν −
1

2
gµνgµν R = −

8πG

c4
gµν T µν . (80)

The result is a relation between the Ricci scalar R and T ,

R =
8πG

c4
T , (81)

where we have defined the energy-momentum scalar T ≡ gµνT µν and used the fact that gµ
µ = 4 (note

that this is a scalar and that in the restframe and gµ
µ = ηµ

µ = 4). This leads to the alternative formulation
of the Einstein field equations,

Rαβ = −
8πG

c4

(

T αβ −
1

2
gαβ T

)

(82)

The curvature term now only consists of the Ricci tensor Rαβ itself. The energy-momentum term has
been expanded and includes the extra factor T . Apparently the Einstein field equations do allow some
measure of flexibility in specifying the contributions by the curvature and energy-momentum content.

To pursue the argument, we seek to obtain an expression for T . To this end, we should realize it
is a scalar and therefore independent of the reference frame in which it is measured. We may therefore
evaluate T in the restframe. For the restframe the explicit expression for the energy-momentum tensor
T µν has been specified in eqn. 58, from which we can immediately infer that

T = ρc2 − 3p . (83)

If we concentrate on the “(00)” component of the Einstein field equation, eqn. 82, and use the fact that
∇2φ = −c2R00 (eqn. 76), we find that

R00 = −
8πG

c4

(

T00 −
1

2
g00T

)

= −
8πG

c4

(

T00 −
1

2

{

ρc2 − 3p
}

)

−
1

c2
∇2φ = −

8πG

c4

(

ρ +
3p

c2

)

, (84)
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where we have also used the fact that in the restframe T00 = ρc2 (see eqn. 58) and g00 ≈ 1 + O(φ/c2).
In summary, we find the following relation between gravitational potential φ and the content of the
Universe,

∇2 φ = 4πG

(

ρ +
3p

c2

)

(85)

In other words, in addition to the regular density term ρ known from Newtonian gravity the Poisson
equation for the gravitational potential φ contains an extra pressure term. This is a fundamental differ-
ence between Newtonian gravity and Relativistic gravity, with tremendous repercussions for cosmological
evolution. We will soon appreciate it is precisely the factor (ρ + 3p/c2) which will enter the Friedmann
equations for cosmological evolution.

13. Relativistic Cosmology: Cosmological Constant

A third major difference between Newtonian and Relativistic gravity, in addition to the role of spacetime
curvature and pressure, is the fact that the equations of gravity allow for the presence of an elusive
constant which has become known as the Cosmological Constant.

To appreciate its providence we should have a closer look at the Einstein field equations,

Gµν = −
8πG

c4
T µν . (86)

Einstein established this equality between Gµν and T µν on the fact that for both tensors

Gµν
;ν = T µν

;ν = 0 . (87)

In fact, the Einstein tensor Gµν is the only rank 2 curvature related tensor for which this relation holds.
However, we have also noted (eqn. 54) that also the metric tensor gµν obeys the same relation, i.e.
gµν

;ν = 0. In other words, we have the freedom to add a term equal to a multiple of the metric tensor to
the Einstein tensor. The multiple of the metric tensor gµν is called the cosmological constant Λ, and
the corresponding change of the Einstein field equations is,

Gαβ + Λ gαβ = −
8πG

c4
T αβ (88)

At first this extra term of the cosmological constant was extremely welcome to Einstein. It allowed him
to construct a static Universe. Nonetheless, the factor was entirely ad-hoc, and its (physical) nature
hardly understood. While he discarded his inclusion of Λ as his “biggest blunder” upon the discovery
of the cosmic expansion by Hubble in 1929, in 1998 we have found to our great astonishment that Λ is
indeed a physical reality which appears to dominate our Universe.
As written in the above equation the Λ term corresponds to an extra curvature term. However, as may
be judged from eqn. 87, one has equal freedom to reorden the field equation and transfer the Λ term
to the righthand side. In other words, the Λ term is included in the energy-momentum tensor T µν and
assumes the status of an extra energy term,
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Gµν = −
8πG

c4
(T µν + T µν

vac)

(89)

T µν
vac ≡

Λc4

8πG
gµν

This is the way in which most astrophysicists have adopted the cosmological constant. In this disguise it
is usually denoted by the name of Dark Energy or, even more specific, as Vacuum Energy. As for the
latter, note that this name already presumes knowledge of the nature of this dark energy in speculating
about its background as energy of the vacuum. However, no theory of physics has even come close to a
convincing argument for it to be due to vacuum fluctuations. In fact, “not close” here means off by a
factor in the order of 10120 !!!

13.1. Equation of State

While unable to make a sensible guess at the identity of Λ’s dark energy, we can infer one important
aspect of its physical nature. This concerns its equation of state. To this end, turn to the restframe
energy-momentum tensor (eqn. 58). In such a Minkowski frame, the dark energy-momentum tensor is
equal to

T µν
vac =

Λc4

8πG
ηµν (90)

with η00 = 1 and ηii = −1. From this we then find that:

T 00
vac = ρvacc

2 ⇒ ρvacc
2 =

Λc4

8πG

T ii
vac = p ⇒ p = −

Λc4

8πG
(91)

so that we end up with the astonishing finding that this elusive mysterious medium has a negative
pressure:

pvac = −ρvacc
2 (92)

Note that tacitly we have started to index the cosmological constant energy with the term vacuum
energy. In this we adhere to a regularly employed description, but with the understanding that it by no
means implies it has significance (see discussion above).

13.2. Dynamics

By combining the relativistic Poisson equation (eq. 85) and the equation of state (eq. 92) for the “vacuum
energy” we can infer the dynamical repercussions for the presence of such a medium,

ρvac +
3pvac

c2
= −2ρvac < 0 . (93)

The implication from the relativistic expression for the Poisson equation (eq. 85) is that

∇2φ = −8πGρvac < 0; ρvac ≡
Λ

8πG
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Table 1. Relativistic and Newtonian Cosmology

Relativistic Cosmology Newtonian Cosmology

10 field equations 1 field equation

10 potentials 1 potential

Non-linear equations Linear equation

Intrinsically geometric Absolute space and time

Can cope with ∞ space Requires finite space

All energies gravitate Gravitation mass-density only

Pressure gravitates Gravitation mass-density only

Cosmological Constant feasible Repulsive action gravity impossible

Hyperbolic propagation Instantaneous propagations

Singularities spacetime Singularities space

Horizons & Black Holes No horizons/black holes

Gravitational Waves No gravitational waves

and that therefore the gravitational effect of a positive Λ is that of a repulsion instead of an attraction
!!!! The expansion of a Universe dominated by a cosmological constant would accelerate instead of the
usual deceleration. Interestingly and strangely enough, this is exactly what our Universe appears to do
...

14. General Relativity versus Newtonian Gravity

While it is clear that with respect to the old Newtonian theory the General Theory of Relativity represents
a tremendous advance in our understanding of the force of gravity, it is by no means a simple theory. In
fact, for generic circumstances without specific symmetric configurations it is beyond hope to be able to
find suitable solutions for the Einstein field equations.

The cosmologist is blessed that in a sense he/she is dealing with a highly symmetric system. On
the basis of this, the Einstein field equations are restricted to a few (two) equations, the Friedmann-
Robertson-Walker-Lemâıtre equations, which may indeed be succesfully analyzed and understood.
For a lot of realistic circumstances this may even be done in a fully analytically fashion. Not only
was understanding the Universe one of the most challenging questions forwarded to the new theory of
relativity, it was and still is one of the most accessible systems.

To appreciate the complexities involved with general relativistic analyses, John Barrow (J. Barrow,
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1986, in “The Early Universe”, summerschool Vancouver Island, ASI/NATO C219, eds. Unruh &
Semenoff, Reidel) provided an insightful inventory of relevant issues and the way in which they were
approached in general relativistic versus Newtonian approaches. I have copied this listing in table 13.2
and included a few more relevant items.
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