
Tutorial I General Relativity
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Exercise I: The Metric Tensor

To describe distances in a given space for a particular coordinate system, we
need a distance recepy. The metric tensor is the translation for a coordinate
system

ds2 ≡ c2dτ2 = gµν dxµ dxν (1)

with
gµν ≡ ∂~r

∂xµ · ∂~r

∂xν (2)

and in which τ is the coordinate time, the proper time of the system,

ds2 ≡ c2dt2 , (3)

.

• For a 3-dimensional space ~r = (x, y, z) derive the elements of the met-
ric tensor gµν , and write in matrix form, for:
- Euclidian coordinates (x,y,z)
- cylindrical coordinates (ρ, φ, z)
- spherical coordinates (r, θ, φ)

• In addition, give the covariant metric tensor gµν (the inverse of gµν).

• What is the metric tensor for Minkowski space in coordinate system
xµ = (ct, x, y, z).

To describe the curvature of space we need to specify the spatial variation
of the geometry of space. This brings us to a key quantity in differential
geometry, the Christoffel symbol Γα

βγ (also called the affine connection),

Γα
βγ =

1
2
gαν

{
∂gγν

∂xβ
+

∂gβν

∂xγ − ∂gγβ

∂xν

}
. (4)

• Derive all Christoffel Symbol elements Γα
βγ for

- Euclidian coordinates (x,y,z)
- cylindrical coordinates (ρ, φ, z)
- spherical coordinates (r, θ, φ)
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• Subsequently derive the equation of motion of a freely moving particle
with mass m,

d2xβ

dt2
= 0

in each of these coordinate systems,

d2xβ

dτ2 + Γβ
λν

dxλ

dτ

dxν

dτ
= 0
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Exercise II: Lorentz Transformations

The Lorentz transformation is usually defined for an object moving with
a velocity v in the x-direction,

x′µ = Λµ
ν xν (5)

with

Λµ
ν =




γ −βγv 0 0
−βγv γ 0 0

0 0 1 0
0 0 0 1


 . (6)

• Derive the “general” Lorentz matrix Λµ
ν for a body moving with ve-

locity ~v = (vx, vy, vz).

In order to frame proper physical relations and laws we have to express
them as tensor relations. Only then we are assured that they are valid in
all inertial frames (and for GR: in all freely falling frames). We define the
tensor four-velocity Uµ as

Uµ ≡ dxµ

dτ
(7)

• Express the four velocity in terms of the velocity ~v (and γv and c)

• Demonstrate that Uµ is a proper tensor, ie. that it transforms accord-
ing to the Lorentz transform

U ′µ = Λµ
ν Uν (8)

• Argue why the conventional velocity vector ~v is not a proper tensor.

The contravariant four-vector Aµ has a covariant equivalent Aν ,

Aν = ηνµ Aµ (9)

in which ηνµ is the covariant Minkowski metric for an inertial system, the
inverse of the contravariant one,

ηνα ηαµ = δ µ
ν (10)

Its Lorentz transformation between two inertial systems is specified by

A′ν = Λ̃ µ
ν Aµ (11)

where the covariant Lorentz transformation is given by

Λ̃mu ν = ηµα Λα
β ηβν (12)

• Demonstrate that the inproduct AνA
ν is an invariant scalar.

• What is the invariant inproduct of the four velocity UνUν ?
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Exercise III: Metric and Potential

General Relativity states that the gravitational force is a manifestation of
the curvature of space. In other words, the metric gµν should in some way
contain information on the gravitational field.

Here we are going to see how in the asymptotic limit of a 1) stationary
2) weak gravitational field - a situation which pertains to nearly all astro-
physical systems we know, with the exception of e.g. the vicinity of black
holes and neutron stars - we may infer the relation between gravitational
potential φ and metric.

In the case of a weak field the depth of the gravitational potential is
small,

∆φ

c2 ¿ 1 , (13)

while the condition of stationary field implies the accompanying curvature
of space to change only slowly in time,

∂gµν

∂x0 = 0 (14)

• On the basis of the conditions above, for a slow (non-relativistically)
moving object

ẋk

c
¿ 1 (15)

do derive the approximate relationship for k = (1, 2, 3),

Γk
00 ≈ −1

2
∂g00

xk
. (16)

In this you should take into account that gkk ≈ ηkk.

• On the basis of the relativistic equation of motion,

d2xβ

dτ2 + Γβ
λν

dxλ

dτ

dxν

dτ
= 0

show that
ẍk ≈ −1

2
c2 ~∇g00 (17)

where we may use the fact that in a weak gravitational field the mea-
sured time t is nearly equal to the proper time τ ,

dτ = dt

(
1 +

∆φ

c2

)
(18)

• Equating the above result for a stationary, weak field to the Newtonian
limit, derive the crucial relation

g00 =
2φ

c2 (19)
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Exercise IV: Gravitational Redshift

Einstein’s Strong Equivalence Principle extends the fact that the laws of
physics are the same in inertial reference frames in uniform relative motion
to that of accelerating frames. It states that

The physics in the frame of a freely falling body
is equivalent to that of

an inertial frame in Special Relativity.

In other words, in a frame of reference moving with the free-fall acceler-
ation at that point, all laws of physics are entirely equivalent and have their
usual Special Relativistic form. Evidently, this remains true for a feeely
falling body in a gravitational field. The direct implication is that you can-
not really make a distinction between whether you are a freely falling body
in e.g. an accelerating elevator or whether you find yourself with this cabin
in a gravitational field. We are going to explore the wide-reaching ramifica-
tions of this idea ...

Look at the drawing of the accelerating elevator. The elevator cabin has
a height h. We have just seen that you will not be able to distinguish
between the situation in which the cabin is stationary in a gravitational
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field (left) and the situation in which the cabin is accelerated with an upward
acceleration ~a = ~g (right). To assure the survival of the elevator we assume
the acceleration to be rather modest.

• Consider a lamp, at t = 0 freely dispensed at the ceiling of the cabin,
emitting radiation with a frequency ν. What is the Doppler shift of
the radiation observed by a person situated at the floor of the elevator
(hint: calculate the velocity of the lamp with respect to the floor !).

Note: the Doppler shift due to the emitting object moving with a
velocity v towards the observer is

ν ′ = γv ν
(
1 +

v

c

)
(20)

• Relate the acceleration ~g to the potential difference ∆φ between the
ceiling and floor of the cabin at t = 0, ie. the distance the floor of the
elevator went between emission and observation ? Use this result to
prove that gravitational frequency shift is given by

ν ′ = γv ν

(
1− ∆φ

c2

)
(21)

• On the basis of the result above, derive the expression for gravitational
redshift zgrav.

• With a friend you visit Toronto. You chicken out and stay on the
ground while your friend takes the courage to climb the mighty CN
tower to the top floor, at 446.5 meter above the ground (it is forbidden
to go up the antenna, with its tip at 553.3 m). You have a laser lamp
and send a signal up to the glass floor of the CN tower ... What is
the gravitational redshift your friend will measure ? Also calculate the
gravitation redshift measured by an alien who happens to pass by at
some (large) distance and receives the signal ? (ie. what is the zgrav

of the Earth’s surface R⊕ = 6, 372.797km, M⊕ = 5.9736× 1024kg.

• Similarly, calculate the gravitational redshift ...
- for the Sun (R¯ = 6.955× 108 m, M¯ = 1.9891× 1030 kg)
- a white dwarf (with Mwd ≈ 1M¯, Rwd ≈ 0.0075R¯)
- a neutron star (with Mns ≈ 1.44M¯, Rns ≈ 19 km)
- ... and .. a black hole

• Relating the frequency nu to the period time T of the waves, what
gravitational time dilation T ′ do you infer for someone sitting at a
gravitational potential well depth ∆φ ?
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• Embedded in the gravitational potential of a point mass M , at a dis-
tance r of the mass,

φ(r) = −GM

r
(22)

and making the assumption that you are sufficiently far away that the
gravitational field φ is weak enough,

φ(r)
c2 ¿ 1 (23)

show that the gravitational time dilation at r is given by

dt′2 = dt2
{

1 − 2GM

rc2

}
(24)

Notice that this is exactly the expression given by the Schwarzschild
metric:

c2dτ2 = (1− 2GM

c2r
)c2dt2 − (1− 2GM

c2r
)−1dr2 − r2dΩ2 (25)

• The radius
Rs =

2GM

c2 (26)

is the Schwarzschild radius. Calculate your own Schwarzschild radius,
that of the Earth, of the Sun, of a white dwarf and a neutron star.
Also in terms of the physical radius of the system.
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