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Friedmann & Lemaitre

Alexander Friedmann (1888 -1925)
George Lemaitre (1894-1966)

They discovered (independently)
theoretically the expansion of the
Universe as a solution to the
Theory of General Relativity.

... and derived the equations
that describe the expansion and
evolution of the universe,

the foundation for all of modern
Cosmology:

Friedmann-Lemaitre
Equation

Evolving Universe

Einstein, de Sitter, Friedmann and Lemaitre all realized that in
General Relativity, there cannot be a stable and static Universe:

The Universe either expands, or it contracts ...
Expansion Universe encapsulated in a
GLOBAL expansion factor a(t)

All distances/dimensions of objects
uniformly increase by a(t):

at time t, the distance between
two objects i and j has increased to

Singularity
Note: by definition we chose a(t,)=1,
i.e. the present-day expansion factor
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Evolution & Fate
Friedmann-Robertson-Walker-Lemaitre
Universe

Completely determined by 3 factors:

« energy and matter content

(density and pressure)

 geometry of the Universe
(curvature)

» Cosmological Constant
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Friedmann-Robertson-Walker-Lemaitre
Universe

Friedmann-Robertson-Walker-Lemaitre
Universe

Because of General Relativity, the evolution of the Universe is
determined by four factors:

« density p(t)

* pressure p(t)
k=0,+1,-1

RO: present curvature radius

2D 2
curvature ke® /R,

cosmological constant A

* Density & Pressure: - in relativity, energy & momentum need to be
seen as one physical quantity (four-vector)
- pressure = momentum flux
« Curvature: - gravity is a manifestation of geometry spacetime
» Cosmological Constant: - free parameter in General Relativity
- Einstein’s “biggest blunder”
- mysteriously, since 1998 we know it dominates
the Universe
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FRW Dynamics

In a FRW Universe,
densities are in the order of the critical density,
the density at which the Universe has a flat curvature

3H 02 2 A -3
Perit = 872-_G =1.8791h" x10 g cm

0, =1.8791x10° Qh* gecm™
=2.78x10" Qh*  M_Mpc™

FRW Dynamics

In a matter-dominated Universe,
the evolution and fate of the Universe entirely determined
by the (energy) density in units of critical density:

Arguably, Q is the most important parameter of cosmology !!!

Present-day Po = 1.8791x 10729 th g Cﬂ’r3
Cosmic Density: — 2.78x10" Oh? M Mpc‘3
' o}
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what the Universe exists of:

Cosmic Constituents




Cosmic Energy Inventarisation

dark sector
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Cosmic Constitution
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Cosmic Pie Diagram

Changes in Time:
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Dark
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13.7 BILLION YEARS AGQ
(Universe 380,000 years old)
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Our Universe:

the Concordance Cosmos

H,=719+2.6 kms™Mpc™

t, =13.8+£0.1Gyr

T, =2.725+0.001K

Q, =0.0456+0.0015
Q,, =0.228+0.013

Q, =5x10°
Q, =34x10°

0, =0.726+0.015

Q,, =1.0050++0.0061

13/01/2017
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Concordance Expansion

25
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Cosmic tug of war

The force of dark energy surpasses
that of dark matter as time progresses.

Heden & Toekomst:

VERSNELLING
S

Dark Matter
constrains

Vroeger: — > 4

VERTRAGING o Dark Energy
———) . aapely.

BIG BANG
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Age of the Universe

Hubble Time

* The repercussions of Hubble’s discovery are truly tremendous:

the inescapable conclusion is that the universe has a finite age !

* Just by simple extrapolation back in time we find that at some instant the objects will
have touched upon each other, i.e. r(t;)=0. If we assume for simplicity that the
expansion rate did remain constant (which it did not !), we find a direct measure for

the age of the universe, the

The Hubble parameter is usually stated in units of km/s/Mpc.
It’s customary to express it in units of 100 km/s/Mpc, expressing the real value in terms of
the dimensionless value h=H_/[100 km/s/Mpc].

The best current estimate is H =72 km/s/Mpc. This sets t,~10 Gyr.

11



Hubble Parameter

- Foralong time, the correct value of the Hubble constant H,

was a major unsettled issue:

H,=50 kms*'Mpc' e H, =100 kms*Mpc?

This meant distances and timescales in the Universe had to

deal with uncertainties of a factor 2 !!!

- Following major programs, such as Hubble Key Project, the

Supernova key projects and the WMAP CMB measurements,

H,

=71.9"°2kms*Mpc™
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Cosmic Age

estimated age of the oldest stars in Universe Globular Clusters
far in excess of estimated

age of matter-dominated FRW Universe: * Roughly spherical assemblies of 100,000-200,000 stars

« Radius ~ 20-50 pc: extremely high star density

« Globulars are very old, amongst oldest objects in local Universe
Globular cluster stars: 13-15 Gyr « Stars formed around same time: old, red, population

Universe: 10-12 Gyr « Colour-magnitude diagram characteristic:
accurate age determination on the basis of stellar evolution theories.

M15 Mix Langih w 1.7
B e

14, 16, 18 Gyr Isochrones
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Adiabatic Expansion

Adiabatic Expansion

e The Universe of Einstein, Friedmann & Lemaitre

expands adiabacally

- Energy of the expansion of the Universe corresponds
to the decrease in the energy of its constituents

« The Universe COOLS as a result of its expansion !

T(t) o 1/a(t)

14



Today ty 1 =15 billlon years
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Adiabatic Expansion
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Hadron E ra t~107sec

muon annihilation
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Big Bang:

the Evidence

Big Bang Evidence

Olber’s paradox:
the night sky is dark
nmmmmPp- finite age Universe (13.7 Gyr)

Hubble Expansion

uniform expansion, with
expansion velocity ~ distance: v=Hr

Explanation Helium Abundance 24%:

light chemical elements formed (H, He, Li, ...)
after ~3 minutes...

The Cosmic Microwave Background Radiation:

the 2.725K radiation blanket, remnant left over

hotionized plasma ummm)p neutral universe
(379,000 years after Big Bang)

Distant, deep Universe indeed looks different ...

13/01/2017
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1. Olber’s Paradox

ket
_ In an infinitely large, old and unchanging

Universe each line of sight would hit a star:

1] ——

Sky would be as bright as surface of star:

Olber’s Paradox

In an infinitely large, old and unchanging
Universe each line of sight would hit a star:

1] ——

Sky would be as bright as surface of star:

Night sky as bright as

Solar Surface, yet
the night sky is dark

1] ——

finite age of Universe (13.8 Gyr)

17
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2. Hubble Expansion

Vg =CZ=H,r

H 0 Hubble constant

specifies expanssion rate
of the Universe

A I_' 2
P g X
PN B

was 1igh.’r}ﬂ. :

-\
=
1
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ic Light (CMB):
the facts

Cosm
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Extremely
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Recombination & Decoupling
R © °
J
. o

@ ' i

Big Bang Teyp

ERGA AT EON

Radiation = Matter
Energy

We can only see
the surface of the
PRESENT cloud where light

2
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Note:

far from being an exotic faraway phenomenon,
realize that the CMB nowadays is counting for
approximately 1% of the noise on your (camping)
tvset ...

111! Live broadcast from the Big Bang !!!!

Courtesy: W. Hu

Intensity, 10-% ergs / cm2 sr sec cm!

Energy Spectrum
Cosmic Light

Cosmic MicROWAVE BACKGROUND SPECTRUM FROM COBE

« COBE-DIRBE:

o mperatureT = 2.725 K
THEORY AND OBSERVATION AGREE te Pe ature 7 5

2h® 1
B,(T)= T e _q * John Mather

Nobelprize physics

2006

» Most perfect
Black Body

Spectrum ever seen !!!!

10

Waves [ centimeter

13/01/2017
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4. Proton-Neutron & Helium

action

*He Mass fr

p/n~1/7: 1 min na BB

Fracticn of critical density
G.01 .02 $.05

ok [—1]

18

10

1

Baryen density (107! g cn™)

Mass Fraction Light Elements

24% 4He nuclei
traces D,3He, 7Li nuclei
75% H nuclei (protons)

s ] ~r'_';._ A Vi | |
o8 e U
o s
O / 40
® il "Q :.'Q\ ’-Q )
e \‘:.. .O"'

Between 1-200 seconds after Big Bang,
temperature dropped to 109 K:

Fusion protons & neutrons
into light atomic nuclei

0
g
o
Y
o

Early Universe

# Newborn Galaxies

At great depths
the Universe
looks completely

different

- and thus
long ago :

Depth=Time

>
Today
Galaxies in
Hubble Ultra
Deep Field

7 Normal Galaxies

13/01/2017
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5. the Changing Universe

looks completely

different

- and thus
long ago :

Depth=Time

———————

H Ihbl Ultra Deep Field Detail Galaxies in
u e Ultra Deep Fiel etails
Hubble Space Telescope » Advanced Camera for Surveys Hubble Ultra

1) and the HUDF Team STSCI-PRCO4-0Te Deep Field

Cosmic Curvature

24



How Much ?

Cosmic Curvature

Cosmic Microwave Background

Map of the Universe at Recombination Epoch (Planck, 2013):
« 379,000 years after Big Bang
« Subhorizon perturbations: primordial sound waves
< ATIT < 10-5

13/01/2017
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Measuring Curvature

Measuring the Geometry of the Universe:

« Object with known physical size,
at large cosmological distance

e Measure angular extent on sky

e Comparison yields light path,
and from this the curvature of space

4

Geometry of
Space

Measuring Curvature

« Object with known physical size,
at large cosmological distance:

- Sound Waves in the Early Universe !!!!

4

Temperature Fluctuations
CvMB

13/01/2017
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Fluctuations-Origin

Gravitational
Attraction

Sonic
Motion

Dark Matter
Concentration

Baryons

e small ripples in

primordial matter & photon distribution

e gravity:

- compression primordial photon gas
- photon pressure resists

e compressions and rarefactions
in photon gas: sound waves

e sound waves not heard, but seen:
- compressions: (photon) T higher

- rarefactions:

e fundamental mode sound spectrum

- size of “instrument”:

- (sound) horizon size last scattering

e Observed, angular size:

- exact scale maximum compression, the
W“Eosmic fundamental mode of music”
. Hu

lower

6~1°

13/01/2017
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Cosmic Microwave Background

/

COBE measured fluctuations: >7°
Size Horizon at Recombination spans angle ~1°

Flat universe from CMB

 First peak: flat universe
DT B RIS

o
-
o |
=,
-
-
r

® .
I e l i S t S
2 vt
' + .Hq > R
"% i
‘g
‘.‘ ’ ‘ e .
' ’ ‘ ‘ - -
Closed: Flat: Open:
hot spots appear as big spots appear
appear larger as they are smaller

We know the redshift and the time
it took for the light to reach us:

from this we know the

- length of the legs of the
triangle

- the angle at which we are
measuring the sound horizon.

C
VR —
V3
€~ 200/,/1—Q
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Standard Ruler:
1° arc measurement of

dominant energy spike
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— A-COM All Data
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Cgsmic sound horizon

“\/\ﬂ
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The Cosmic Microwave Background Temperature Anisotropies:
Universe is almost perfectly FLAT !!!!
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Cosmic Horizons
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Cosmic Horizons

Fundamental Concept for our understanding of the physics of the Universe:

« Physical processes are limited to the region of space with which we are
or have ever been in physical contact.

« What is the region of space with which we are in contact ?
Region with whom we have been able to exchange photons
(photons: fastest moving particles)

« From which distance have we received light.

« Complication: - light is moving in an expanding and curved space
- fighting its way against an expanding background

« This is called the

Cosmic Horizons

age of universe

We can see gas at

points A and B before

they knew about each
/%'o other.

500,000 yr
y distance
Gas at point A has received signals Gas at point B has received signals
from this part of the universe. from this part of the universe.

Copyright @ Addison Waslay.
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EXPANDING UNIVERSE, SHRINKING VIEW

The universe may be infinite, but consider what happens to the patch of space
around us (purple sphere), of which we see only a part (yellow inner sphere).
As space expands, galaxies (orange spots) spread out. As light has time
to propagate, we observers on Earth (or our predecessors or descendants)
can see a steadily increasing volume of space. About six billion years ago,
the expansion began to accelerate, carrying distant galaxies away

from us faster than light.

Observable region

Galaxy

Region of

space

o At the onset of acceleration,
we see the largest number of

galaxies that we ever will. & _
o The visible region grows, but the

overall universe grows even faster,
sowe actually see a smaller

NOTE: fraction of what is out there, e Distant galaxies (those not bound to
Because space is expanding us by gravity) move out of our range of
uniformly, alien beings in other view. Meanwhile, gravity pulls nearby
galaxies see this same pattern, galaxies together.

Cosmic Future
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Cosmic Fate

100 Gigayears:
the end of Cosmology

eramds o
ot ke ey

100 BILLION YEARS FROM NOW

100 TRILLION YEARS FROM NOW
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