

Friedmann, Lemaitre

&

Cosmic Expansion History

Evolving Universe

- Einstein, de Sitter, Friedmann and Lemaitre all realized that in General Relativity, there cannot be a stable and static Universe:
- The Universe either expands, or it contracts ...
- Expansion Universe encapsulated in a

GLOBAL expansion factor a(t)

• All distances/dimensions of objects uniformly increase by a(t):

at time t, the distance between two objects i and j has increased to

$$\vec{r}_i - \vec{r}_j = a(t) \left(\vec{r}_{i,0} - \vec{r}_{j,0} \right)$$

• Note: by definition we chose a(t_o)=1, i.e. the present-day expansion factor

Evolution & Fate Friedmann-Robertson-Walker-Lemaitre Universe

Completely determined by 3 factors:

- energy and matter content (density and pressure)
- geometry of the Universe (curvature)
- Cosmological Constant

Friedmann-Robertson-Walker-Lemaitre Universe

$$\ddot{a} = -\frac{4\pi G}{3} \left(\rho + \frac{3p}{c^2} \right) a + \frac{\Lambda}{3} a$$

$$\dot{a}^2 = \frac{8\pi G}{3} \rho a^2 - \frac{kc^2}{R_0^2} + \frac{\Lambda}{3} a^2$$

Friedmann-Robertson-Walker-Lemaitre Universe

Because of General Relativity, the evolution of the Universe is determined by four factors:

- density $\rho(t)$
- pressure p(t)
- curvature $kc^2 / R_0^2 \qquad k = 0, +1, -1$

 R_0 : present curvature radius

- cosmological constant Λ
- Density & Pressure:
- in relativity, energy & momentum need to be seen as one physical quantity (four-vector)
- pressure = momentum flux
- Curvature:Cosmological Constant:
- gravity is a manifestation of geometry spacetime
- free parameter in General Relativity
- Einstein's "biggest blunder"
- mysteriously, since 1998 we know it dominates the Universe

FRW Dynamics

In a FRW Universe, densities are in the order of the critical density, the density at which the Universe has a flat curvature

$$\rho_{crit} = \frac{3H_0^2}{8\pi G} = 1.8791h^2 \times 10^{-29} \, g \, cm^{-3}$$

$$\rho_0 = 1.8791 \times 10^{-29} \,\Omega h^2 \ g \ cm^{-3}$$
$$= 2.78 \times 10^{11} \,\Omega h^2 \qquad M_{\odot} Mpc^{-3}$$

FRW Dynamics

In a matter-dominated Universe, the evolution and fate of the Universe entirely determined by the (energy) density in units of critical density:

$$\Omega \equiv rac{
ho}{
ho_{crit}}$$

Arguably, Ω is the most important parameter of cosmology !!!

Present-day Cosmic Density:

$$\rho_0 = 1.8791 \times 10^{-29} \,\Omega h^2 \ g \ cm^{-3}$$
$$= 2.78 \times 10^{11} \,\Omega h^2 \qquad M_{\odot} Mpc^{-3}$$

what the Universe exists of:

Cosmic Constituents

1	dark sector			0.954 ± 0.003
1.1	dark energy		0.72 ± 0.03	
1.2	dark matter		0.23 ± 0.03 $\leq 10^{-10}$	
1.3	primeval gravitational waves		≲ 10 - 5	
2	primeval thermal remnants			0.0010 ± 0.0005
2.1	electromagnetic radiation		$10^{-4.3\pm0.0}$	
2.2	neutrinos		$10^{-2.9\pm0.1}$	
2.3	prestellar nuclear binding energy		$-10^{-4.1\pm0.0}$	
3	baryon rest mass			0.045 ± 0.003
3.1	warm intergalactic plasma		0.040 ± 0.003	
3.1a	virialized regions of galaxies	0.024 ± 0.005		
3.1b	intergalactic	0.016 ± 0.005		
3.2	intracluster plasma		0.0018 ± 0.0007	
3.3	main sequence stars	spheroids and bulges	0.0015 ± 0.0004	
3.4	white dwarfs	disks and irregulars	0.00055 ± 0.00014 0.00036 ± 0.00008	
3.6	neutron stars		0.00030 ± 0.00003 0.00005 ± 0.00002	
3.7	black holes		0.00003 ± 0.00002 0.00007 ± 0.00002	
3.8	substellar objects		0.00001 ± 0.00002 $0.00014 + 0.00007$	
3.9	HI + HeI		0.00062 ± 0.00010	
3.10	molecular gas		0.00016 ± 0.00006	
3.11	planets		10^{-6}	sterren slecht
3.12	condensed matter		$10^{-5.6\pm0.3}$	~0.1% energie
3.13	sequestered in massive black holes		$10^{-5.4}(1 + \epsilon_n)$	Heelal
4	primeval gravitational binding energy			-10 ^{-6.1±0.1}
4.1	virialized halos of galaxies		$-10^{-7.2}$	000000
4.2	clusters		$-10^{-6.9}$	
4.3	large-scale structure		$-10^{-6.2}$	

Our Universe:

the Concordance Cosmos

Concordance Universe Parameters							
Hubble Parame	ter	$H_0 = 71.9 \pm 2.6 \ km \ s^{-1} Mpc^{-1}$					
Age of the Unive	rse	$t_0 = 13.8 \pm 0.1 Gyr$					
Temperature CN	ИВ	$T_0 = 2.725 \pm 0.001 K$					
Matter	Baryonic Matter Dark Matter	$\Omega_m = 0.27$	$\Omega_b = 0.0456 \pm 0.0015$ $\Omega_{dm} = 0.228 \pm 0.013$				
Radiation	Photons (CMB) Neutrinos (Cosmic)	$\Omega_{rad} = 8.4 \times 10^{-5}$	$\Omega_{\gamma} = 5 \times 10^{-5}$ $\Omega_{\nu} = 3.4 \times 10^{-5}$				
Dark Energy		$\Omega_{\Lambda} = 0.726 \pm 0.015$					
Total		$\Omega_{tot} = 1.0050 \pm 0.0061$					

Age of the Universe

Hubble Time

- The repercussions of Hubble's discovery are truly tremendous: the inescapable conclusion is that the universe has a finite age!
- Just by simple extrapolation back in time we find that at some instant the objects will have touched upon each other, i.e. $r(t_H)=0$. If we assume for simplicity that the expansion rate did remain constant (which it did not !), we find a direct measure for the age of the universe, the

Hubble Time:
$$t_H = \frac{1}{H}$$

$$H_0 = 100h \text{ km s}^{-1}\text{Mpc}^{-1}$$

$$\downarrow \downarrow$$

$$t_0 = 9.78h^{-1} \text{ Gyr}$$

The Hubble parameter is usually stated in units of km/s/Mpc.

It's customary to express it in units of 100 km/s/Mpc, expressing the real value in terms of the dimensionless value $h=H_o/[100 \text{ km/s/Mpc}]$.

The best current estimate is $H_o=72$ km/s/Mpc. This sets $t_o\sim10$ Gyr.

Hubble Parameter

• For a long time, the correct value of the Hubble constant ${\rm H}_{\rm o}$ was a major unsettled issue:

$$H_o = 50 \text{ km s}^{-1} \text{ Mpc}^{-1}$$
 \longleftrightarrow $H_o = 100 \text{ km s}^{-1} \text{ Mpc}^{-1}$

- This meant distances and timescales in the Universe had to deal with uncertainties of a factor 2!!!
- Following major programs, such as Hubble Key Project, the Supernova key projects and the WMAP CMB measurements,

$$H_0 = 71.9^{+2.6}_{-2.7} \, km \, s^{-1} Mpc^{-1}$$

Adiabatic Expansion

Adiabatic Expansion

- The Universe of Einstein, Friedmann & Lemaitre expands *adiabacally*
- Energy of the expansion of the Universe corresponds to the decrease in the energy of its constituents
- The Universe COOLS as a result of its expansion!

 $T(t) \propto 1/a(t)$

Big Bang:

the Evidence

Big Bang Evidence

- Olber's paradox: the night sky is dark in finite age Universe (13.7 Gyr)
- <u>Hubble Expansion</u>
 uniform expansion, with
 expansion velocity ~ distance: v = H r
- Explanation Helium Abundance 24%:
 light chemical elements formed (H, He, Li, ...)
 after ~3 minutes ...
- The Cosmic Microwave Background Radiation:
 the 2.725K radiation blanket, remnant left over
 hot ionized plasma neutral universe
 (379,000 years after Big Bang)
- <u>Distant, deep Universe indeed looks different ...</u>

Cosmic Curvature

How Much ? Cosmic Curvature

Measuring Curvature

Measuring the Geometry of the Universe:

- Object with known physical size, at large cosmological distance
- Measure angular extent on sky
- Comparison yields light path, and from this the curvature of space

Geometry of Space

Measuring Curvature

- Object with known physical size, at large cosmological distance:
- Sound Waves in the Early Universe !!!!

Temperature Fluctuations CMB

Cosmic Horizons

Fundamental Concept for our understanding of the physics of the Universe:

- Physical processes are limited to the region of space with which we are or have ever been in physical contact.
- What is the region of space with which we are in contact?
 Region with whom we have been able to exchange photons
 (photons: fastest moving particles)
- From which distance have we received light.
- Complication: light is moving in an expanding and curved space
 fighting its way against an expanding background
- This is called the

Horizon of the Universe

