Turbulence




Turbu

Werner Heisenberg:

“When [ meet God, I am going to ask him
two questions:
why relativity? And why turbulence?
[ really believe he will have an answer
for the first.”




Instability

5)

6)

All flows become unstable above a certain Reynolds number.

At low Reynolds numbers flows are laminar.

For high Reynolds numbers flows are turbulent.

The transition occurs anywhere between R ~ 2000 and 10° , depending on the flow.

For laminar flow problems, flows can be solved using the energy equations
developed previously.

For turbulent flows, the computational effort involved in solving those for
all time and length scales is prohibitive.

An engineering approach to calculate time-average flow fields for turbulent
flows has been developed.
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the Turbulence “Experience”




What is turbulence ?

1) Unsteady, aperiodic motion in which all three velocity components fluctuate,
mixing matter, momentum and energy.

2) Decompose velocity into mean and fluctuating parts:

V(t) =V, +V,(t)+...

My A

Time
3) Similar fluctuations for pressure, temperature, and species
concentration values




1) Some examples of simple turbulent flows are
- a jet entering a domain with stagnant fluid
- a mixing layer

- the wake behind objects such as cilinders

2) Such flows are often used as test cases to validate the ability of

computational fluid dynamics software to accurately predict fluid flows.
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jet mixing layer




Turbulent Wakes Mercedes

Windkanal
wind tunnel




Turbulent Whirls over Edge




What is turbulence ?

Turbulent flows have the following characteristics:

1) Turbulent flows have irregularity or randomness. A full deterministic approach is very

3)

4)

difficult. Turbulent flows are usually described statistically. Turbulent flows are always chaotic.
But not all chaotic flows are turbulent. Waves in the ocean, for example, can be chaotic but are
not necessarily turbulent.

The diffusivity of turbulence causes rapid mixing and increased rates of momentum, heat and
mass transfer. A flow that looks random but does not exhibit the spreading of velocity fluctuations
through the surrounding fluid is not turbulent. If a flow is chaotic, but not diffusive, it is not
turbulent. The trail left behind a jet plane, that seems chaotic, but does not diffuse for miles is not
turbulent.

Turbulent flows always occur at high Reynold numbers. They are caused by the complex

interaction between the viscous terms and the inertia terms in the momentum equations.

Turbulent flows are rotational; ie., they have non-zero vorticity. Mechanisms such as the
stretching of 3-D vortices play a key role in turbulence.




What is turbulence ?

Turbulent flows have the following characteristics:

5) Turbulent flows are dissipative. Kinetic energy gets converted into heat due to viscous shear
stresses. Turbulent flows die out quickly when no energy is supplied. Random motions that have
insignificant viscous losses, such as random sound waves, are not turbulent.

6) Turbulence is a continuum phenomenon. Even the smallest eddies are significantly larger than
the molecular scales. Turbulence is therefore governed by the equations of fluid mechanics.

7) Turbulent flows are flows. Turbulence is a feature of fluid flow, not of the fluid. When the
Reynolds number is high enough, most of the dynamics of turbulence are the same whether the
fluid is an actual fluid or a gas. Most of the dynamics are then independent of the properties of

the fluid.




Turbulent flows always occur at high Reynolds numbers. They are caused by
the complex interaction between the viscous terms and the inertia terms in the
momentum equations.

Turbulent, high Reyn
~ number jet
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One characteristic of turbulent flows is their irregularity or randomness. A
full deterministic approach is very difficult. Turbulent flows are usually ‘
described statistically. Turbulent flows are always chaotic. But not all

chaotic flows are turbulent.
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> Different Reynold numbers

Relatively low Reynolds number
¢ Change in appearance and
nature of turbulence as
a function of Reynolds

number:

«  Turbulence in jet




ransition to

Photographs show flow in a
boundary layer

Below Re_, the flow is laminar and
adjacent fluid layers side past each other
in an orderly fashion.

The flow is stable. Viscous effects lead to
small disturbances being dissipated.

Above the transition point Re_;, small
disturbances in the flow start to grow.

A complicated series of events takes
place that eventually leads to the flow
becoming fully turbulent.
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T-S waves Turbulent spots Fully turbulent flow



Side view

Merging of turbulent spots and transition to turbulence
in a natural flat plate boundary layer.



Close-up view of the turbulent boundary layer.



Boundary Layer
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Flow over Flat Plate
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Vorticity and vortex stretching

1) Existence of eddies implies rotation or vorticity
2) Vorticity concentrated along contorted vortex lines or bundles

3) As end points of a vortex line move randomly further apart, the vortex line increases in
length but decreases in diameter. Vorticity increases because angular momentum is

nearly conserved. Kinetic energy increases at rate equivalent to the work done by
large-scale motion that stretches the bundle.

4) Viscous dissipation in the smallest eddies converts kinetic energy into thermal energy.

5) Vortex-stretching cascade process maintains the turbulence and dissipation is

approximately equal to the rate of production of turbulent kinetic energy.

6) Typically energy gets transferred from the large eddies to the smaller eddies. However,

sometimes smaller eddies can interact with each other and transfer energy to the (i.e. form)
larger eddies, a process known as backscatter.
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North Atlantic Gulfstream:

the turbulent Conveyor Belt
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North Atlantic Gulfstream:
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Simulation turbulent Gulfstream flow (Ocean Motion)



aska’s Aleu

e As airflows over and around
objects, spiralling eddies, known
Von Karman vortices, may form.

 The vortices in this image were
created when prevailing winds
sweeping east across the
northern Pacific Ocean
encountered
Alaska Aleutian Islands










A smoke ring (green) impinges on a plate where it interacts with the slow moving
smoke in the boundary layer (pink). The vortex ring stretches and new rings form.
The size of the vortex structures decreases over time.




» For flow around a cylinder, the flow starts separating at Re=5.

For Re < 30, the flow is stable
Oscillations appear for higher Re.

» The separation point moves upstream, increasing drag up to Re=2000.

Re =200 Re =10,000




Turbulence & Golf Ball Motion




Turbulent

Star Formation
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= Turbulent

Herschel FIR image of interior molecular cloud:
Turbulent structure in cloud, revealing the role of turbulence in defining dense cores in which

Stars are forming




>~ Tarantula & Turbulence

Turbulent structure & Star Formation in Tarantula Nebula
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~ Turbulent Star Formation

Computer simulation multiple star formation in turbulence




Simulated structure of
turbulent star formation region
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Turbulent Star Formation

State-of-the art supercomputer simulation of turbulent star formation:
N=4096"3 grid
Paolo Padoan, Barcelona




urbulence

1)

2)

The objective of turbulence modeling is to develop equations that will predict
the time averaged velocity, pressure, and temperature fields without calculating the

complete turbulent flow pattern as a function of time.

- saves a lot of work
- most of the time it is all we need to know
- we may also calculate other statistical properties, such as RMS values.

Important to understand: the time averaged flow pattern is a statistical property of the flow

- it is not an existing flow pattern !
- it does not usually satisfy the steady Navier-Stokes equations !

- the flow never actually looks that way !!




Kolmogorov

Turbulence Spectrum




L.F. Richardso

Big whirls have little whirls
Which feed on their velocity;
And little whirls have lesser whirls

And so on to viscosity
in the molecular sense




~ Turbulen

Consider fully turbulent flow at high Reynolds number: Re=UL/v

Turbulence can be considered to consist of eddies of different sizes.

An eddy precludes precise definition, but it is conceived to be a turbulent motion,
localized over a region of size I.

That is, the flow is at least coherent over this region.

The region occupied by a larger eddy can also contain smaller eddies.

Eddies of size [ have a - characteristic velocity u(l)
- timescale r(D)=l/u(l)

Eddies in the largest size range are characteristic by the lengthscale [, which is comparable to the flow
length scale L.

Their characteristic velocity u =u(l,) is on the order of the r.m.s. turbulence intensity u'=(2U,/3)">
which is comparable to U.

. . ' Uk :£<uiui>:1(u'2+V'2+W'2)
Here the turbulent kinetic energy is defined as 2 2

The Reynolds number of these eddies ~ Re, =Ul, /v
is therefore large (comparable to Re) and the direct effects of viscosity
on these eddies are negligibly small.




Energy Transfer

3)

4)

The large eddies are unstable and break up, transferring their energy to somewhat
smaller eddies.

These smaller eddies undergo a similar breakup process and transfer their energy to
yet smaller eddies.

This energy cascade - in which energy is transferred to successively smaller and
smaller eddies - continues until the Reynolds number is

reqt) = 10!

|4

sufficiently small that the eddy motion is stable, and molecular viscosity is effective in
dissipating the kinetic energy.

At these small scales, the kinetic energy of turbulence is converted into heat.




Dissipation

1) Note that dissipation takes place at the end of the sequence of processes.

2) The rate of dissipation € is determined by the first process in the sequence,
which is the transfer of energy from the largest eddies.

3) These eddies have energy of order u_ > and timescale 7=l /u, so therate of
transfer of energy can be supposed to scale as

4) Consequently, consistent with experimental observations in free shear flows,

this picture of the energy cascade indicates that € is proportional to u_3/l, independent
of v (at high Reynolds numbers).




Kolmogorov Theory

1) Many questions on turbulence remain unanswered:
- what is the size of the smallest eddies that are responsible for dissipating the energy ?
- Asldecreases, do the characteristic velocity and timescales u(l) and 7(l) increase, decrease or
remain the same ? The assumed decrease of the Reynolds number u_l /v by itself is not
sufficient to determine these trends.

2) Kolmogorov’s theory describes how energy is
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Kolmogorov theory is based on
two hypotheses:

1) Kolmogorov hypothesis of
local isotropy

2) Kolmogorov first similarity
hypothesis




Local Isotro p

1) For homogeneous turbulence,

the turbulent kinetic energy U, is the same everywhere.

For isotropic turbulence the eddies also behave the same in
all directions.

u12 0 VrZ o Wr2

2) Kolmogorov argued that the directional biases of the large
scales are lost in the chaotic scale-reduction process as
energy is transferred to successively smaller eddies.

3) Here, the term local isotropy means isotropy at small
scales. Large scale turbulence may still be anisotropic.

4) g is the length scale that forms the demarcation

between the large scale anisotropic eddies (I<lg;) and
the small scale isotropic eddies (I<lg,).

For many high Reynolds number flows l;; can be estimated
as

1El 5 10/6

At sufficiently high Reynolds numbers,
the small-scale turbulent motions

(I<l,) are statistically isotropic.




first similarity

1) Kolmogorov argued that not only does the
directional information get lost as the energy passes
down the cascade, but that all information about the
geometry of the eddies gets lost also.

2) As aresult, the statistics of the small-scale motions are
universal:

they are similar in every high Reynolds number
turbulent flow, independent of the mean flow field
and the boundary conditions.

3) These small scales eddies depend on the rate at
which they receive energy from the larger scales
(which is approximately equal to the dissipation rate €)
and the viscous dissipation, which is related to the
kinematic viscosity v.

In every turbulent flow at sufficiently
high Reynolds number, the statistics
of the small scale motions have a
universal form that is uniquely
determined by € and v.




Energy cascade, from large to small scale

E is energy contained in eddies of
wavelength A

There are three main turbulent length scales:
- Integral scale
- Taylor scale
- Kolmogorov scale

To each of these scales corresponds a Reynolds number.

Length scales:

- Largest eddies. l, =U k3/2 | &
Integral length scale

/2 1/2

- Length scales at which Ay = (15VU le )

turbulence is isotropic.

Taylor microscale

- Smallest eddies. V4
Kolmogorov length scale (i V o ‘f)
These eddies have a velocity scale u, zé VAR RS

time scale 7, =(v/e)

Log E

Integral

scale Taylor scale

Kolmogorov

scale
: 1
Wavenumber
€ - energy dissipation rate (m?/s3)
U, - turbulent kinetic energy (m?/s?)
v - is kinematic viscosity (m2/s)




Integral

The integral scale is the lengthscale 1, at which
we find the largest eddies.

Their size can be estimated on the basis of:

- eddies of size lo have a characteristic velocity u,,
and timescale 7 =1 /u,

- their characteristic velocity u,=u(l,) is on the order
of the rms turbulence intensity u'=(2U, /3)"?

- assume that energy of eddy with velocity scale u, is
dissipated in time 7,

From this, the length scale | can be derived:

3/2
Uk

g

where € is the energy dissipation rate. The
proportionality constant is of the order one. This
length scale is usually referred to as the

integral scale of turbulence.

|, o

The Reynolds number associated with these
large eddies is referred to as the turbulence
Reynolds number Re|, which is defined as

1/2 2
:U|o:Uk I(,:Uk
| 24 | 4 EV

Re,

Integral !

scale Taylor scale

i

Wavenumber

€ - energy dissipation rate  (m?/s3)
U, - turbulent kinetic energy (m?/s?)
v - is kinematic viscosity (m2/s)

Kolmogorov
scale




The Kolmogorov energy spectrum specifies how the
turbulent kinetic energy is distributed among the
eddies of different sizes.

In steady state, the energy fed into the largest eddies
can neither accumulate nor dissipate viscously.

Only route is to get progressively transferred via
nonlinear interactions - through the advective term
in the equation of motion - to eddies of smaller and
smaller scale.

Eddies on scale A, with associated velocity v, have
also rate of energy dissipation rate (on dimensional

grounds), :
e~V 1A

Comparison with expression energy dissipation rate
for largest eddies, we get

Kolmogorov Law




Kolmogorov Energy Spectrum

Kolmogorov Velocity Law

1/3

2| A
v, NUk |_

0]

The eddy-cascade process leads to a velocity
spectrum as a function of eddy size A that depends
on the 1/3 power of A.

This law, Kolmogorov’s law, demonstrates that the
largest eddies have the most velocity (turbulent
energy),

whereas the smallest eddies carry most of the
vorticity, ~v,/A

Log E

Integral
scale | Taylor scale

' Kolmogorov
scale

=
Wavenumber

Where does the cascade process end ?




Where does the cascade process end ?

Eddies have so small a scale A4, that the viscous
dissipation rate per units mass becomes comparable
to the energy cascaded downward into this spectral/scale

region.

—-3/4

Re |
ﬂ“diss = 0
Re.,

where Re is the Reynolds number of the flow associated
with the largest eddies, and Re_, the Reynolds number at
which there is stability (against turbulence).

Typical numbers for Re_,~10%-103 for viscous shear flows.

Kolmogorov Energy Spectrum

Log E

‘ | |
Integral |
scale | Taylor scale

Kolmogorov

| | scale
-
Wavenumber
Kolmogorov Scale




Van Gogh — Starry Night:

Kolmogorov Turbulence Spectrum







Kolmoorov

Van Gogh - Starry Night

- Illuminance of painting displays exactly
Kolmogorov selfsimilarity scaling

- Turbulent art by a turbulent (genius) mind

- Characteristic for paintings of this period
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