Alpha Shape Topology of the Cosmic Web

Rien van de Weygaert, Erwin Platen
Kapteyn Astronomical Institute
University of Groningen
P.O. Box 800, 9700 AV Groningen, the Netherlands
Email: weygaert@astro.rug.nl

Abstract—We study the topology of the Megaparsec Cosmic
Web on the basis of the Alpha Shapes of the galaxy distribution.
The simplicial complexes of the alpha shapes are used to
determine the set of Betti numbers (x,k = 1,..., D), which
represent a complete characterization of the topology of a
manifold. This forms a useful extension of the geometry and
topology of the galaxy distribution by Minkowski functionals,
of which three specify the geometrical structure of surfaces
and one, the Euler characteristic, represents a key aspect of its
topology. In order to develop an intuitive understanding for the
relation between Betti numbers and the runninga. parameter
of the alpha shapes, and thus in how far they may discriminate
between different topologies, we study them within the context
of simple heuristic Voronoi clustering models. These may be
tuned to consist of a few or even only one specific morphological
element of the Cosmic Web, ie. clusters, filaments or sheets.
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the SDSS and the 2MASS redshift surveys [3], [4]2[5]

The vast Megaparsec cosmic web is one of the most strik-
ing examples of complex geometric patterns found in nature,
and certainly the largest in terms of sheer size. Computer
simulations suggest that the observed cellular patterns are a
prominent and natural aspect of cosmic structure formation
through gravitational instability [6], the standard paradigm
for the emergence of structure in our Universe [7], [8].

A. Web Analysis

Despite the multitude of elaborate qualitative descrip-
tions it has remained a major challenge to characterize
the structure, geometry and topology of the Cosmic Web.
Many attempts to describe, let alone identify, the features
and components of the Cosmic Web have been of a rather
heuristic nature. The overwhelming complexity of both the
individual structures as well as their connectivity, the lack

09y of structural symmetries, its intrinsic multiscale nature and

the wide range of densities that one finds in the cosmic
matter distribution has prevented the use of simple and
straightforward instruments.

The large scale distribution of matter revealed by galaxy sur- In the obgervatlonal .re_allty galax'es are the main tracers
veys features a complex network of interconnected filamen®! the cosmic web and it is mainly through the measurement
tary galaxy associations. This network, which has becomé’f the redshift distribution of galaxies that we have been able
known as theCosmic Welf], contains structures from a few to map its structure. Likewise, simulations of the evolving
megaparseéaup to tens and even hundreds of Megaparsecgosmic matter distribution are almost exclusively based upon
of size. Galaxies and mass exist in a wispy weblike spatial\"Pdy particle computer calculations, involving a discrete
arrangement consisting of dense compact clusters, elongaté%mesen,tat'pn ,Of the features we seel_< to §tudy. Both the
filaments, and sheetlike walls, amidst large near-empty voi@@/@xy distribution as well as the particles in an N-body

regions, with similar patterns existing at earlier epochsSimulation are examples aipatial point processes that

albeit over smaller scales. The hierarchical nature of thidheY arediscretely samplednd have anrregular spatial

mass distribution, marked by substructure over a wide rangdistribution
of scales and densities, has been clearly demonstrated [2fopology of the Cosmic Density Field

Its appearance has been most dramatically illustrated by theor furthering our understanding of the Cosmic Web, and to
recently produced maps of the nearby cosmos, the 2dFGRS,
2Because of the expansion of the Universe, any observed cosmic object
will have its light shifted redward: its redshift. According to Hubble's
1The main measure of length in astronomy is the parsec. Technicallyaw, the redshift is directly proportional to the distaneeof the object, for
a parsec is the distance at which we would see the distance Earth-Sun atk 1: cz = Hr (with ¢ the velocity of light, andd =~ 71km/s/Mpc the
an angle of 1 arcsec. It is equal to 3.262 lightyears.086 x 1013km. Hubble constant). Because it is extremely cumbersome to measure distances
Cosmological distances are substantially larger, so that a Megapassec (r directly, cosmologists resort to the expansion of the Universe and use
109 pc) is the regular unit of distance. Usually this goes along withihe as a distance measure. Because of the vast distances in the Universe, and
cosmic expansion rate (Hubble paramet&r)in units of 100 km/s/Mpc the finite velocity of light, the redshift of an object may also be seen as
(h = 0.71). a measure of the time at which it emitted the observed radiation.

I. INTRODUCTION: THE CosmICc WEB



Figure 1. lllustration of Alpha Shapes. For two different valuesxpthe figure shows the relation between the 2-D point distribution, the value of

and the resulting alpha shape. Around each point in the point sample, circles of Riligs o are drawn. The outline of the corresponding Voronoi
tessellation within the space covered by the circles is indicated by the edges (top). All Delaunay simplices - vertices, edges and cells - entirely located
within this space are shown in black (centre). The final resulting alpha shape is shown in the bottom panel. Left: \wahal Right: largex value.

Based on transparencies of H. Edelsbrunner, used at the Jigsaw conference, Leiden, 2006.

investigate its structure and dynamics, it is of prime impor-to the full characterization of the local geometry of the
tance to have access to a set of proper and objective analysisatter distribution in terms of four Minkowski functionals
tools. In this contribution we address the topological and13], [14]. These are the volume, surface area, integrated
morphological analysis of the large scale galaxy distributionmean curvature and Euler characteristic of the enclosed
To this end, we focus in particular on the alpha shapes oflensity surfaces. The Minkowski functionals are solidly
the galaxy distribution, one of the principal concepts frombased in the theory of spatial statistics and also have the
the field of Computational Topology [9]. great advantage of being known analytically in the case of
Gaussian random fields. In particular, the Euler characteristic
In numerous previous studies, the topology and geometryy the closely relatedenusof the density field has received
of the cosmic matter distribution have been adressed in gypstantial attention as a strongly discriminating factor be-

variety of ways. A direct probe of the shape of the localtyeen intrinsically different spatial patterns [15], [16].
matter distribution is the statistical distribution of inertial

moments [10], [11], [12]. These concepts are closely related The Minkowski functionals provide global characterisa-



tions of structure. An attempt to extend its scope towards Il. ALPHA SHAPES
providing locally defined topological measures of the den'AIpha Shapés a description of the (intuitive) notion of the

sity field has been developed in the SURFGEN projeckpane of a discrete point setlpha Shapesf a discrete
defined by Sahni and Shandarin and their coworkers [17]nint gistribution are subsets of a Delaunay triangulation

[18]. It involves a local topology characterization in terms 54 \yere introduced by Edelsbrunner and collaborators [9],
of Shapefinders, the ratios of Minkowski functionals. The[21]’ [22], [23] (for a recent review see [24], and the
main problem remains the user-defined, and thus potentiallgxc:e”ent book by Edelsbrunner & Harer 2010 [25] for a
biased, nature of the continuous density field inferred fron}horough introduction to the subject). Alpha Shapes are
the sample of discrete objects. The usual filtering teChniq“eﬁeneralizations of the convex hull of a point set and are
suppress substructure on a scale smaller than the filter radiyg, ,.rete geometric objects which are uniquely defined for a

introduce artificial topological features in sparsely sampled,, o jar point set. Reflecting the topological structure of a
regions and diminish the flattened or elongated morphology,,int gistribution, it is one of the most essential concepts

of the spatial patterns. Quite possibly the introduction Ofi_n the field of Computational Topology [26], [27], [28].

more advanced geometry based methods to trace the densgy,nnections to diverse areas in the sciences and engineering
field may prove a major advance towards solving this, o developed

problem (see contribution by Arag-Calvo & Shandarin in - ga06 sampling and processing and structural molecular
this volume). Martinez [19] and Saar [20] have generallzedoiology [24].

the use of Minkowski Functionals by calculating their values Applications of alpha shapes have as yet focussed on

n a hlergrghy of scales generated from Wavelet'stOtheBioIogical systems. Their main application has been in char-
volume.I|m|teq subsampleg Of. the 2(.1': cqtalogue. This ,apécterizing the topology and structure of macromolecules.
proach is particularly effective in dealing with non-Gau35|an-|-he work by Liang and collaborators [29], [30], [31], [32]
point distributions_ since the §moothing is not predicated ONises alpha shapes and betti numbers to assess the voids and
the use of Gaussian smoothing kernels. pockets in an effort to classify complex protein structures,

a highly challenging task given the 10,000-30,000 protein
Alpha Shapes families involving 1,000-4,000 complicated folds. Given the

While most of the above topological techniques depend off'térest in the topology of the cosmic mass distribution
some sort of user-specific smoothing and related threshold td-2]; [13], [14], it is evident thailpha shapeslso provide

specify surfaces of which the topology may be determined@ highly interesting tool for studying the topology of the
An alternative philosophy is to try to let the point or galaxy 9alaxy distribution and N-body simulations of cosmic struc-

distribution define its own natural surfaces. This is preciseljfuré formation. Directly connected to the topology of the
whereAlpha Shapeenter the stage. point distribution itself it would discard the need of user-

) ___defined filter kernels.
Alpha Shapes may be invoked to compute a large variety

of geometrical and topological measures of a point distri-A. Alpha Complex and Alpha Shape: definitions
bution. Here we focus in particular on the determination of Figure 1 provides a direct impression and illustration of

the Betti numbers to characterize'the topolqu of.the weblikeihe concept of alpha shapes, based on hand-drawn slides by
s_pat!al patterns sampled by a dls_crete point - i.e. galaxy g yejshrunnét If we have a point sef and its correspond-
distribution. In essence, the Betti numbe$s counts the ing Delaunay triangulation, we may identify allelaunay

number of k-dimensional holes in an alpha complex. Thesimplices— tetrahedra, triangles, edges, vertices — of the

first three Betti numbers, whose behaviour we will aSSeS§iangulation. For a given non-negative valuegfthe Alpha
here, specify the number of individual compleso), the Complex of a point set consists of all simplices in the

nun|1berdof |_rédepen%ent_ tunnEI§1Q and the numger 'cl)fd Delaunay triangulation which have an empty circumsphere
enclosed voids {,). Betti numbers contain more detailed | <o ared radius less than o equakio

topological information than Minkowski functionals, but
unlike the latter are not sensitive to the actual geometry of an R* < a. (1)
alpha shape. In order to build up an intuitive understandinq_' . ., _

of the behaviour of Betti numbers with respect to the weblike' 1€7€ “€mpty” means that the open sphere does not include
configurations encountered in the Megaparsec Universe, @Y Points ofS. For an extreme valuer = 0 the alpha

in simulations of its formation, we here present a study ofcOMPlex merely consists of the vertices of the point set.
simpler heuristic Voronoi clustering models. On the basis ofl N€ Set also defines a maximum valug..., such that for
their topological simplicity we seek to connect the behaviour® = @max the alpha shape is the convex hull of the point
of Betti numbers to distinct morphological elements of theSet:

large scale Universe, such as filaments, walls, clusters and3We kindly acknowledge permission by Herbert Edelsbrunner for the use
voids. of these drawings.

including the pattern recognition, digital



The Alpha Shapeis the union of all simplices of the consisting ofc components we have
alpha complex. Note that it implies that although the alpha 1
shape is defined for all < o < oo there are only a finite g=c— =X, (2)
number of different alpha shapes for any one point set. The 2
alpha shape is a polytope in a fairly general sense, it can bagherex is the integrated intrinsic curvature of the surface,
concave and even disconnected. Its components can be three- 1 1
dimensional patches of tetrahedra, two-dimensional ones of X = — < ) ds.
triangles, one-dimensional strings of edges and even single 2m Ry Ry
points. The set of all real numbers leads to a family of |ndeed, it is straightforward to see that the topological
shapes capturing the intuitive notion of the overall versusnformation contained in the Euler characteristic is also
fine shape of a point set. Starting from the convex hull of arepresented by the Betti numbers, via an alternating sum
point set and gradually decreasingthe shape of the point relationship. For three-dimensional space, this is
set gradually shrinks and starts to develop cavities. These
cavities may join to form tunnels and voids. For sufficiently X = 2(Bo = P1+ Ba) 4)

small o the alpha shape is empty. While the Eul h terist d the Betii b ,
The process of defining, for two different valuescgfthe | e the Luler charactenistic an € betll numbers give
formation about the connectivity of a manifold, the other

alpha shape for a 2-dimensional point sample is elucidated i . . . .. .
fig. 1. Note that the alpha shape process is never continuou ree Minkowski functionals are sensitive to local manifold
o eformations. The Minkowski functionals therefore give

it proceeds discretely with increasing, marked by the . formation about th metric and tonological proper-
addition of new Delaunay simplices onece exceeds the information about the geometric a opological prope
; ties of a manifold, while the Betti numbers focus only
corresponding level. : . . ;
on its topological properties. However, while the Euler
characteristic only “summarizes” the topology, the Betti
numbers represent a full and detailed characterization of the

Following the description above, one may find that alphatopology: homeomorphic surfaces will have the same Euler
shapes are intimately related to the topology of a point secharacteristic but two surfaces with the samenay not in
As a result they form a direct and unique way of charac-general be homeomorphic !!!
terizing the topology of a point distribution. A complete ) .
quantitative description of the topology is that in terms of C: Computing Betti numbers
Betti numberss, and these may indeed be directly inferred  For simplicial complexes like Delaunay tessellations and
from the alpha shape. Alpha Shapes, the Betti numbers can be defined on the basis

The Betti numbeg, can be considered as the number of of the orientedk-simplices. For such simplicial complexes,
p-dimensional holes of an object or space. Formally, theythe Betti numbers can be computed by counting the number
are the rank of thehomology groupsH,. There is one of k-cycles it contains. For a three-dimensional alpha shape,
homology groupH, per dimensiorp, and its rank is the athree-dimensional simplicial complex, we can calculate the
p-th Betti numberg,. The first Betti number3, specifies Betti numbers by cycling over all its constituent simplices.
the number of independent components of an object. ITo this end, we base the calculation on the following
second Betti numberj;, may be interpreted as the number considerations. When a vertex is added to the alpha complex,
of independent tunnels, arid as the number of independent a new component is created afidincreases by 1. Similarly,
enclosed voids. Tunnels are formed when at a certaialue  if an edge is addeds, is increased by 1 if it creates
an edge is added between two vertices that were already new cycle, which would be an increase in the number
connected. When new faces are added, a tunnel can be filled tunnels. Otherwise, two components get connected so
and destroyed and thus leads to the decreagg.dfoles are  that the number of components is decreased by Gpéds
completely surrounded by a surface or faces and disappeadecreased by 1. If a face is added, the number of holes
when cells are added to the alpha shape. is increased by one if it creates a new cycle. Otherwise,

The Betti numbers completely specify the topology of aa tunnel is filled, so that; is decreased by one. Finally,
manifold in terms of its connectivity. In this sense, theywhen a (tetrahedral) cell is added, a hole is filled up and
extend the principal topological characterization known in ais lowered by 1.
cosmological context. Numerous cosmological studies have Following this procedure, the algorithm has to include a
considered thgyenusof the isodensity surfaces defined by technique for determining whether kasimplex belongs to
the Megaparsec galaxy distribution [15], [16]. The gegus a k-cycle. For vertices and cells, and thus 0-cycles and 3-
specifies the number of handles defining a surface and hascgcles, this is rather trivial. For the detection of 1-cycles
direct and simple relation to the Euler characterigtiof the ~ and 2-cycles we used a somewhat more elaborate procedure
manifold, one of the Minkowski functionals. For a manifold involving union-finding structures [33].

®3)

B. Alpha Shape and Topology: Betti numbers



Figure 2. Examples oélpha shapeof the LCDM GIF simulation. Shown are central slices through two alpha shapes (top: low alpha; bottom: high
alpha). The image shows the sensitivity of alpha shapes to the topology of the matter distribution. From: Vegter et al. 2010.

D. Computational Considerations These images testify of the potential power of alpha
ghapes in analyzing the weblike cosmic matter distribution,

For the calculation of the alpha shapes of the point set Wm identifying its morphological elements, their connections

resort to the Computational Geometry Algorithms Library, and in articular also its hierarchical character
CGAL*“. Within this context, Caroli & Teillaud recently P _ :
developed an efficient code for the calculation of two- iOWever, to understand and properly interpret the topo-

dimensional and three-dimensional alpha shapes in period*t‘i’g'Cal mforma_tlon cont_alneq In 'Fhese Images we ne_ed first
spaces. to assess their behaviour in simpler yet similar circum-

The routines to compute the Betti numbers from the alphgtaacesd_'l;o_éhlt_s end{/we mfcroldui:e a set Odf r|1eur|st|c spatial
shapes were developed within our own project. matter distributions, Voronor clustering modets.

IIl. ALPHA SHAPES OF THECosMIC WEB IV. VORONOICLUSTERING MODELS

In a recent stqdy, Ve_gter etal. computed the alpha s_hapes fQ}foronoi Clustering Modelsire a class of heuristic models
a set of GIF simulations of cosmic structure formation [34]'for cellular distributions of matter which use the Voronoi

[35]. It concerns 256° particles GIFN-body simulation, tessellation as the skeleton of the cosmic matter distribution
encompassing a\CDM (Q,, = 0.3,Qy = 0.7,Hy = [37], [38], [39].

70km/s/Mpc) density field within a (periodic) cubic box ' '
with length 1412~ 'Mpc and produced by means of an
adaptiveP*M N-body code [36].

Fig. 2 illustrates the alpha shapes for two different value
of «, for two-dimensional section through the GIF simula-
tion. The top panel concerns a low value @f the bottom
one a high value. The intricacy of the weblike patterns is
very nicely followed. The low alpha configuration highlights . - : .
the interior of filamentary and sheetlike features, and revealgon within the various compor_1ents O.f the cosmic skeleton,
the interconnection between these major structural element@.vowes the complicated details of highly nonlinear small-

The high value alpha shape not only covers an evidentl;?cale interactions of the gravitating matter. Well-defined

larger volume, but does so by connecting to a lot of finer®"d €laborate physical models and/or N-body computer

features in the Cosmic Web. Noteworthy are the tenuou§ImUIationS might fill i_n this aspect, although it would lead
filamentary and planar extensions into the interior of theayvay_f(om the Voronoi mpdel's true purpose and conceptual
voids. simplicity. In the Voronoi models described here we com-
plement the geometrically fixed configuration of the Voronoi
4CGALis aC++ library of algorithms and data structures for Computa- t€SSellations with a heuristic prescription for the location of

tional Geometry, see www.cgal.org. particles or model galaxies within the tessellation.

The aspect which is modelled in great detail by Voronoi
tessellations is that of the large scale clustering of the mor-
Sphological elements of the Cosmic Web. It is the stochastic
yet non-Poissonian geometrical distribution of whals, fila-
mentsandclusterswhich generates the large-scale clustering
properties of matter and the related galaxy populations.

The small-scale distribution of galaxies, i.e. the distribu-



Figure 3. Three different patterns of Voronoi element galaxy distributions, shown in a 3-D cubic setting. The depicted spatial distributions
correspond to a wall-dominated Voronoi Universe (left), a filamentary Voronoi Universe (centre) and a cluster-dominated Voronoi Universe
(right).

A. Voronoi components C. Voronoi Element Models

According to the Voronoi clustering models, each ofwqon0i Element models'are fully heuristic models. They
the geometric elements of the 3-D Voronoi tessellations is, o user-specified spatial galaxy distribution within tedis

identified with a morphological component of the COSMIC fie|4) walls, edgesand verticesof a Voronoi tessellation.
Web. In table | we have listed the various identifications. The initially randomly distributedN model galaxies are
projected onto the relevant Voronoi wall, Voronoi edge or
Geometric Component Cosmic Structure Voronoi vertex or retained within the interior of the Voronoi
cell in which they are located. The field galaxies define a
sample of randomly distributed points throughout the entire
model volume. The Voronoi Element Models are particularly
Voronoi Wall Walls, Sheets, Superclusters apt for studying systematic properties of spatial galaxy
distributions confined to one or more structural elements of
nontrivial geometric spatial patterns.
Voronoi Vertex Clusters Simple Voronoi Element Modgi$ace their model galaxies
exclusively in either walls, edges or vertices. The versatility
of the Voronoi element model also allows combinations in
Table | . . . . .

I DENTIFICATION OF GEOMETRIC COMPONENTS INVORONO! which field (cell), wall, filament and vertex distributions

TESSELLATIONS WITH MORPHOLOGICAL COMPONENTS OF THEOSMIC are superimposed. These complete composite particle dis-

Voronoi Cell Voids, Field

Voronoi Edge Filaments, Superclusters

WEs. tributions, Mixed Voronoi Element Modglinclude particles
located in four distinct structural components:
o Field:
B. Voronoi Element and Voronoi Evolution Models Particles located in thaterior of Voronoi cells
We distinguish two different yet complementary approaches, \(/l\./eillrandomly distributed across the entire model box)
“Voronoi Element models”and “Voronoi Evolution mod- * Pat: | ithi d d théo i wall
els”. Both the Voronoi Element Models and the Voronoi Fﬁ‘z;rlr?eer]St Within and aroun ronor wails
Evolution Models are obtained by projecting an initially ¢ . i _
random distribution of N sample points/galaxies onto the Eﬁ:ggles within and araund théoranol edges
[}

walls, edges or vertices of the Voronoi tessellation defined
by M nuclei. The Voronoi Element Models do this by a
heuristic and user-specified mixture of projections on theThe characteristics of the patterns and spatial distribution in
various geometric elements of the Voronoi skeleton. Thehe composite Voronoi Element models can be varied and
Voronoi Evolution Models accomplish this via a gradual tuned according to the fractions of galaxies in in Voronoi
motion of the galaxies from their initial random location walls, in Voronoi edges, in Voronoi vertices and in the field.
in their Voronoi cell, directed radially away from the cell's These fractions are free parameters to be specified by the
nucleus. user.

Particles within and around théoronoi vertices



Figure 4. Four alpha shapes of a Voronoi filament model realization. It concerns a sample of 200000 particles in a periodi®) Box'dfipc size
with 8 Voronoi cells. From top left to bottom righti=0.5 x 104, 1.0 x 104, 2 x 10~ and4.0 x 10~%. See text.

In fig. 3 we have shown three different three-dimensionaldevelopment of structure and makes the Universe resemble a
Simple Voronoi Element Modaalaxy distributions. The soapsud of expanding bubbles [40]. While the galaxies move
lefthand model realization corresponds to the model inaway from the void centres, and stream out of the voids
which galaxies are exclusively located inside walls, a secontbwards the sheets, filaments and clusters in the Voronoi
one where these are concentrated in and around filamentetwork the fraction of galaxies in the voids (cell interior),
and the third one restricted to galaxies located within clusthe sheets (cell walls), filaments (wall edges) and clusters
ters. (vertices) is continuously changing and evolving. The details
of the model realization depends on the time evolution

D. Voronoi Evolution Models specified by the particular Voronoi Evolution Model.

The second class of Voronoi models is that of Yoeonoi
Evolution modelsThey attempt to provide weblike galaxy  Within the class of Voronoi Evolution Models the most
distributions that reflect the outcome of realistic cosmicrepresentative and most frequently used are \heonoi
structure formation scenarios. They are based upon thkinematic modelsThey form the idealized and asymptotic
notion that voids play a key organizational role in the description of the outcome of hierarchical gravitational
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Figure 5. Topological and Geometric parameters Voronoi filament model. For a Voronoi filament model we show an example of an alpha shape (top
right), along with the behaviour of five topological parameters as a functien @he different colours of the alpha shape represent the different connected
components. Top left3y, the number of components of the alpha shape. Centredeftthe number of tunnels in the alpha shape. Centre rightthe

number of (surrounded) holes in the alpha shape. Bottom left: total surface area of the alpha shapes. Bottom right: total volume of the alpha shapes. Blue
lines: realization with 8 Voronoi cells in box. Red lines: realization with 64 cells in box.

structure formation process, with single-sized voids formingprimordial density field.

around depressions in the primordial density field. The This is translated into a scheme for the displacement of
Voronoi Kinematic Model'simulates” the asymptotic we- jnjtially randomly distributed galaxies within the Voronoi
blike galaxy distribution implied by the hierarchical void skeleton. Within a void, the mean distance between galaxies
formation process by assuming a single-size dominated voighcreases uniformly in the course of time. When a galaxy
population. It is based upon the notion that voids playtries to enter an adjacent cell, the velocity component per-
a key organizational role in the development of structurependicular to the cell wall disappears. Thereafter, the galaxy
and makes the Universe resemble a soapsud of expandikgntinues to move within the wall, until it tries to enter the
bubbles [40], forming voids forming around a dip in the next cell; it then loses its velocity component towards that



cell, so that the galaxy continues along a filament. Finally, itmorphological and topological structure of the cosmic matter
comes to rest in a node, as soon as it tries to enter a fourttiistribution.
neighbouring void. ,
A. Filament Model topology
Kinematic Model Configurations We take the Voronoi filament model as a case study.

The resulting evolutionary progression within the Voronoi !tS topology and geometry is studied by following the
kinematic scheme proceeds from an almost featureless raf€haviour of the three Betti numbefs, 4, and §; of the
dom distribution towards a distribution in which matter 0rresponding alpha shapes as a function of the parameter

ultimately aggregates into conspicuous compact cluster-lik& AlS0 we adress two of the Minkowski functionals for the
clumps. alpha shapes, namely their volume and surface area (note

The steadily increasing contrast of the various structura‘hat the Euler characteristic is already implicitly included in

features is accompanied by a gradual shift in topologicaFhe _Betti numbers). _ )
nature of the distribution. The virtually uniform and feature- Fig. 5 shows the relation between the Betti numbers,

less particle distribution at the beginning ultimately unfoldsSurface and volume of the alpha shapes and the value of
into a highly clumped distribution of almost only clusters @ 1he first Betti numberf, decreases monotonously @s

(vertices). This evolution involves a gradual progression Via{'ncreases. This Betti number specifies the number of isolated

a wall-like through a filamentary towards an ultimate cluster-cCOmPonents in the alpha shape, andvat 0 it is equal to

dominated matter distribution. By then nearly all matter hasIhe number of points of the samplg;(a = 0) = 2(_)0000'
streamed into the nodal sites of the cellular network. At larger o, more and more components merge into larger
entities, which explains the gradual decreaseggfwith

increasingo.

The second Betti numbefj;, represent the number of
independent tunnels. At first, at small values\df increases

Our topological analysis consists of a study of the systemsteeply, as the large number of individual components grow
atic behaviour of the Betti numbers, 51 and3,, and the  as more Delaunay edges are added to them. Once isolated
surface and volume of the alpha shapes of Voronoi clusteringomponents start to fill up and merge with others, at values
models (see [34], [35]). For each point sample we investigate, > 0.25 x 1074, we see a steep decrease of the Betti
the alpha shape for the full range afparameters. numberf3;.

We generated 12 Voronoi clustering models. Each of In the case of the singly morphological distribution of
these contained 200000 particles within a periodic box othe Voronoi filament model the third Betti numbeélk;, has
size 100 h~*Mpc. Of each configuration, we made two a behaviour resembling that ¢f;: a peaked distribution
realizations, one with 8 centres and Voronoi cells and onaround a finite value ofv. This Betti number represents
with 64. One class of models consisted of pure Voronoithe number of holes in the alpha shape and it is easy
element models. One of these is a pure Voronoi wall modelto understand that at small values this number quickly
in which all particles are located within the walls of the increases as each of the individual alpha shape components
Voronoi tessellation. The other is a pure filament model.gets extended with new Delaunay simplices. However, once
In addition, there are 4 Voronoi kinematic models, ranginga: gets beyond a certain value this will include more and
from a mildly evolved to a strongly evolved configuration. In more tetrahedra. These start to fill up the holes. Notice that
all situations, the clusters, filaments and walls have a finitén the given example of the Voronoi filament model this
Gaussian width of?; = 1.0 h~'Mpc. occurs ata ~ 0.45 x 10~* (also see fig. 6), substantially

An impression of the alpha shape development may béeyond the peak in thg; distribution: on average larger
obtained from the four panels in fig. 4. Different colours values ofa. are needed to add complete Delaunay tetrahedra
depict different individual components of the alpha shapeto the alpha shape.
For the smallest value ofy, « = 0.5 x 107%, we see We also studied two additonal Minkowski functionals,
that the Delaunay simplices contained in the alpha shapeolume and surface, to assess the geometrical properties
delineate accurately nearly all the edges/filaments in thef the evolving alpha shapes of the Voronoi filament
particle distribution. Asx increase, going from the topleft models. The results are shown in the bottom panels of
panel down to the bottom right one, we find that the alphdig. 5. Evidently, the volume of the alpha shape increases
shape fills in the planes of the Voronoi tessellation. Formonotonously asy becomes larger and more and more
even larger values af,, the alpha shape includes the largertetrahedral cells become part of the alpha shape. The surface
Delaunay simplices that are covering part of the interiorarea has a somewhat less straightforward behaviour. Over a
of the Voronoi cells. It is a beautiful illustration of the substantial range the surface area grows mildy as individual
way in which alpha shapes define, as it were, naturallycomponents of the alpha shape grow. When these compo-
evolving surfaces that are sensitive to every detail of thenents start to merge, and especially when holes within the

V. TOPOLOGICALANALYSIS OF VORONOICLUSTERING
MODELS
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Figure 6. Third Betti numbe6, for different clustering models. Shown are the cure$a) for six Voronoi clustering models. Top left: Voronoi filament
model. Top right: Voronoi wall model. Centre left to Bottom right panel: four stages of the Voronoi kinematic model, going from a moderately evolved
model dominated by walls (centre left) to a highly evolved one dominated by filaments and clusters (bottom right).

components get filled up, the surface area shrinks rapidlysensitive to the underlying distribution. In fact, the deriva-

Once, the whole unit cube is filled, the surface area hasive 93,/0«a contains interesting features, like a minimum

shrunk to zero. and a varying width, which are potentially interesting for
discriminating between the underlying topologies.

B. Betti Systematics

umber of holesp,

Having assessed one particular Voronoi clustering mode’JI\_Ihe most outstanding Betti number @, i.e. the number

in detail, we may try to identify the differences between theOf holes in an alpha shape. As one may infer from fig. 6,

different models. While this is stll the subject of ongoing ubstantial and systematic differences between different
research, we find substantial differences between the modefnsOolels can be obgerved This concerns not only the values
on a few particular aspects. Here we discuss two in more . : . y
. and range over whicly reaches a maximum, as for the

detail: . . .

pure filament and wall models, but even entirely different
Number of componentsi, systematic behaviour in the case of the more elaborate and
While for all models the curvedy(a) is a monotonously complex Voronoi kinematic models (see e.g. the review by
decreasing function ofy, the range over whiclg, differs  Van de Weygaert 2010 [41] and [39]).

substantially from unity and the rate of decrease are highly In the case of the kinematic models we find more than



Figure 7. Cartoon illustrating the idea of persistence. Two alpha shapes corresponding to a random point distribution on the surface of a torus. The alpha
shape on the left has 18 holes, of which only the central one is significant. The alpha shape on the right, corresponding t@ edataies this one
hole.

one peak in the3;(a) distribution, each corresponding to we even see the rise of a third peak at much smaller values
different morphological components of the particle distribu-of « (bottom panels). This clearly corresponds to the holes
tion. In this respect, it is revealing to see follow the changesn the high density and compact cluster regions.

in B2(a) as we look at different evolutionary stages.

The four panels from centre left to bottom right in flg 6 VI. CONCLUSIONS ANDPROSPECTS PERSISTENCE
correspond to four different stages of evolution. The centre
left one concerns a moderately evolved matter distribution, \we have established the promise of alpha shapes for
dominated by walls. The centre right panel corresponds to gheasuring the topology of Megaparsec galaxy distribution
stage at which walls and filaments are approximately equallyy, the Cosmic Web by studying the Betti humbers and
prominent. The bottom left panel is a kinematic modelseveral Minkowski functionals of a set of heuristic Voronoi
in which filaments represent more thdf% of the mass, clustering models. Alpha Shape analysis has the great
while walls and the gradually more prominent clusters eachdvantage of being self-consistent and natural, involving
represent arounzb% of the particles. The final bottom right shapes and surfaces that are entirely determined by the point
diagram corresponds to a highly evolved mass distributiongistribution, independent of any artificial filtering.
with clusters and filaments representing each arotitd The one outstanding issue we have not adressed is that
of the particles. of noise in the dataset. Discrete point distributions are

The different morphological patterns of the Voronoi kine- necessarily beset by shotnoise. As a result, the alpha shapes
matic models are strongly reflected in the behaviour ofwill reflect the noise in the point distribution. The induced
Ba2(a). In the centre left panel we find a strong peak atirregularities in the alpha shapes induce holes and tunnels
a ~ 5 x 10~%, with a shoulder at lower values. The peak which do not represent any real topological structure but
reflects the holes defined by the walls in the distribution,nonetheless influence the values of the Betti numbers.
while the shoulder finds its origin in the somewhat smaller Edelsbrunner et al. (2000) [42] introduced the concept of
holes defined by filaments: the average distance betwegrersistenceo seek to filter out the insignificant structures
walls is in the order of the Voronoi cell size, while the (see also [23], and [25] for a detailed and insightful review).
average filament distance is more related to the VoronoThe basic idea is that holes and tunnels that remain in
wall size. The identity of the peaks becomes more cleaexistence over a range afvalues are significant and should
when turning to the two peak distribution in the centre rightbe included in the Betti number calculation. The range is a
panel, in which the strong peak at~ 1 x 10~* is a direct  user-defined persistence parameteFhe implementation of
manifestation of the strongly emerged filaments in the mattethe concept of persistence in our topological study will be
distribution. As the shift to filaments and clusters continuesadressed in forthcoming work.
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