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Abstract—We study the topology of the Megaparsec Cosmic
Web on the basis of the Alpha Shapes of the galaxy distribution.
The simplicial complexes of the alpha shapes are used to
determine the set of Betti numbers (βk, k = 1, . . . , D), which
represent a complete characterization of the topology of a
manifold. This forms a useful extension of the geometry and
topology of the galaxy distribution by Minkowski functionals,
of which three specify the geometrical structure of surfaces
and one, the Euler characteristic, represents a key aspect of its
topology. In order to develop an intuitive understanding for the
relation between Betti numbers and the runningα parameter
of the alpha shapes, and thus in how far they may discriminate
between different topologies, we study them within the context
of simple heuristic Voronoi clustering models. These may be
tuned to consist of a few or even only one specific morphological
element of the Cosmic Web, ie. clusters, filaments or sheets.

Keywords-Cosmology: theory - large-scale structure of Uni-
verse - Methods: data analysis - techniques: image processing -
Computational Geometry: tessellations - Computational Topol-
ogy

I. I NTRODUCTION: THE COSMIC WEB

The large scale distribution of matter revealed by galaxy sur-
veys features a complex network of interconnected filamen-
tary galaxy associations. This network, which has become
known as theCosmic Web[1], contains structures from a few
megaparsecs1 up to tens and even hundreds of Megaparsecs
of size. Galaxies and mass exist in a wispy weblike spatial
arrangement consisting of dense compact clusters, elongated
filaments, and sheetlike walls, amidst large near-empty void
regions, with similar patterns existing at earlier epochs,
albeit over smaller scales. The hierarchical nature of this
mass distribution, marked by substructure over a wide range
of scales and densities, has been clearly demonstrated [2].
Its appearance has been most dramatically illustrated by the
recently produced maps of the nearby cosmos, the 2dFGRS,

1The main measure of length in astronomy is the parsec. Technically
a parsec is the distance at which we would see the distance Earth-Sun at
an angle of 1 arcsec. It is equal to 3.262 lightyears= 3.086 × 1013km.
Cosmological distances are substantially larger, so that a Megaparsec (=
106 pc) is the regular unit of distance. Usually this goes along withh, the
cosmic expansion rate (Hubble parameter)H in units of 100 km/s/Mpc
(h ≈ 0.71).

the SDSS and the 2MASS redshift surveys [3], [4], [5]2.
The vast Megaparsec cosmic web is one of the most strik-

ing examples of complex geometric patterns found in nature,
and certainly the largest in terms of sheer size. Computer
simulations suggest that the observed cellular patterns are a
prominent and natural aspect of cosmic structure formation
through gravitational instability [6], the standard paradigm
for the emergence of structure in our Universe [7], [8].

A. Web Analysis

Despite the multitude of elaborate qualitative descrip-
tions it has remained a major challenge to characterize
the structure, geometry and topology of the Cosmic Web.
Many attempts to describe, let alone identify, the features
and components of the Cosmic Web have been of a rather
heuristic nature. The overwhelming complexity of both the
individual structures as well as their connectivity, the lack
of structural symmetries, its intrinsic multiscale nature and
the wide range of densities that one finds in the cosmic
matter distribution has prevented the use of simple and
straightforward instruments.

In the observational reality galaxies are the main tracers
of the cosmic web and it is mainly through the measurement
of the redshift distribution of galaxies that we have been able
to map its structure. Likewise, simulations of the evolving
cosmic matter distribution are almost exclusively based upon
N-body particle computer calculations, involving a discrete
representation of the features we seek to study. Both the
galaxy distribution as well as the particles in an N-body
simulation are examples ofspatial point processesin that
they arediscretely sampledand have anirregular spatial
distribution.

Topology of the Cosmic Density Field
For furthering our understanding of the Cosmic Web, and to

2Because of the expansion of the Universe, any observed cosmic object
will have its light shifted redward: its redshiftz. According to Hubble’s
law, the redshiftz is directly proportional to the distancer of the object, for
z ¿ 1: cz = Hr (with c the velocity of light, andH ≈ 71km/s/Mpc the
Hubble constant). Because it is extremely cumbersome to measure distances
r directly, cosmologists resort to the expansion of the Universe and usez
as a distance measure. Because of the vast distances in the Universe, and
the finite velocity of light, the redshiftz of an object may also be seen as
a measure of the time at which it emitted the observed radiation.



Figure 1. Illustration of Alpha Shapes. For two different values ofα, the figure shows the relation between the 2-D point distribution, the value ofα
and the resulting alpha shape. Around each point in the point sample, circles of radiusR2 = α are drawn. The outline of the corresponding Voronoi
tessellation within the space covered by the circles is indicated by the edges (top). All Delaunay simplices - vertices, edges and cells - entirely located
within this space are shown in black (centre). The final resulting alpha shape is shown in the bottom panel. Left: smallα value. Right: largeα value.
Based on transparencies of H. Edelsbrunner, used at the Jigsaw conference, Leiden, 2006.

investigate its structure and dynamics, it is of prime impor-
tance to have access to a set of proper and objective analysis
tools. In this contribution we address the topological and
morphological analysis of the large scale galaxy distribution.
To this end, we focus in particular on the alpha shapes of
the galaxy distribution, one of the principal concepts from
the field of Computational Topology [9].

In numerous previous studies, the topology and geometry
of the cosmic matter distribution have been adressed in a
variety of ways. A direct probe of the shape of the local
matter distribution is the statistical distribution of inertial
moments [10], [11], [12]. These concepts are closely related

to the full characterization of the local geometry of the
matter distribution in terms of four Minkowski functionals
[13], [14]. These are the volume, surface area, integrated
mean curvature and Euler characteristic of the enclosed
density surfaces. The Minkowski functionals are solidly
based in the theory of spatial statistics and also have the
great advantage of being known analytically in the case of
Gaussian random fields. In particular, the Euler characteristic
or the closely relatedgenusof the density field has received
substantial attention as a strongly discriminating factor be-
tween intrinsically different spatial patterns [15], [16].

The Minkowski functionals provide global characterisa-



tions of structure. An attempt to extend its scope towards
providing locally defined topological measures of the den-
sity field has been developed in the SURFGEN project
defined by Sahni and Shandarin and their coworkers [17],
[18]. It involves a local topology characterization in terms
of Shapefinders, the ratios of Minkowski functionals. The
main problem remains the user-defined, and thus potentially
biased, nature of the continuous density field inferred from
the sample of discrete objects. The usual filtering techniques
suppress substructure on a scale smaller than the filter radius,
introduce artificial topological features in sparsely sampled
regions and diminish the flattened or elongated morphology
of the spatial patterns. Quite possibly the introduction of
more advanced geometry based methods to trace the density
field may prove a major advance towards solving this
problem (see contribution by Aragón-Calvo & Shandarin in
this volume). Martinez [19] and Saar [20] have generalized
the use of Minkowski Functionals by calculating their values
in a hierarchy of scales generated from wavelet-smoothed
volume limited subsamples of the 2dF catalogue. This ap-
proach is particularly effective in dealing with non-Gaussian
point distributions since the smoothing is not predicated on
the use of Gaussian smoothing kernels.

Alpha Shapes
While most of the above topological techniques depend on
some sort of user-specific smoothing and related threshold to
specify surfaces of which the topology may be determined.
An alternative philosophy is to try to let the point or galaxy
distribution define its own natural surfaces. This is precisely
whereAlpha Shapesenter the stage.

Alpha Shapes may be invoked to compute a large variety
of geometrical and topological measures of a point distri-
bution. Here we focus in particular on the determination of
the Betti numbers to characterize the topology of the weblike
spatial patterns sampled by a discrete point - i.e. galaxy -
distribution. In essence, the Betti numbersβk counts the
number of k-dimensional holes in an alpha complex. The
first three Betti numbers, whose behaviour we will assess
here, specify the number of individual complex (β0), the
number of independent tunnels (β1) and the number of
enclosed voids (β2). Betti numbers contain more detailed
topological information than Minkowski functionals, but
unlike the latter are not sensitive to the actual geometry of an
alpha shape. In order to build up an intuitive understanding
of the behaviour of Betti numbers with respect to the weblike
configurations encountered in the Megaparsec Universe, or
in simulations of its formation, we here present a study of
simpler heuristic Voronoi clustering models. On the basis of
their topological simplicity we seek to connect the behaviour
of Betti numbers to distinct morphological elements of the
large scale Universe, such as filaments, walls, clusters and
voids.

II. A LPHA SHAPES

Alpha Shapeis a description of the (intuitive) notion of the
shape of a discrete point set.Alpha Shapesof a discrete
point distribution are subsets of a Delaunay triangulation
and were introduced by Edelsbrunner and collaborators [9],
[21], [22], [23] (for a recent review see [24], and the
excellent book by Edelsbrunner & Harer 2010 [25] for a
thorough introduction to the subject). Alpha Shapes are
generalizations of the convex hull of a point set and are
concrete geometric objects which are uniquely defined for a
particular point set. Reflecting the topological structure of a
point distribution, it is one of the most essential concepts
in the field of Computational Topology [26], [27], [28].
Connections to diverse areas in the sciences and engineering
have developed, including the pattern recognition, digital
shape sampling and processing and structural molecular
biology [24].

Applications of alpha shapes have as yet focussed on
biological systems. Their main application has been in char-
acterizing the topology and structure of macromolecules.
The work by Liang and collaborators [29], [30], [31], [32]
uses alpha shapes and betti numbers to assess the voids and
pockets in an effort to classify complex protein structures,
a highly challenging task given the 10,000-30,000 protein
families involving 1,000-4,000 complicated folds. Given the
interest in the topology of the cosmic mass distribution
[15], [13], [14], it is evident thatalpha shapesalso provide
a highly interesting tool for studying the topology of the
galaxy distribution and N-body simulations of cosmic struc-
ture formation. Directly connected to the topology of the
point distribution itself it would discard the need of user-
defined filter kernels.

A. Alpha Complex and Alpha Shape: definitions

Figure 1 provides a direct impression and illustration of
the concept of alpha shapes, based on hand-drawn slides by
Edelsbrunner3. If we have a point setS and its correspond-
ing Delaunay triangulation, we may identify allDelaunay
simplices– tetrahedra, triangles, edges, vertices – of the
triangulation. For a given non-negative value ofα, theAlpha
Complex of a point set consists of all simplices in the
Delaunay triangulation which have an empty circumsphere
with squared radius less than or equal toα,

R2 ≤ α . (1)

Here “empty” means that the open sphere does not include
any points ofS. For an extreme valueα = 0 the alpha
complex merely consists of the vertices of the point set.
The set also defines a maximum valueαmax, such that for
α ≥ αmax the alpha shape is the convex hull of the point
set.

3We kindly acknowledge permission by Herbert Edelsbrunner for the use
of these drawings.



The Alpha Shapeis the union of all simplices of the
alpha complex. Note that it implies that although the alpha
shape is defined for all0 ≤ α < ∞ there are only a finite
number of different alpha shapes for any one point set. The
alpha shape is a polytope in a fairly general sense, it can be
concave and even disconnected. Its components can be three-
dimensional patches of tetrahedra, two-dimensional ones of
triangles, one-dimensional strings of edges and even single
points. The set of all real numbersα leads to a family of
shapes capturing the intuitive notion of the overall versus
fine shape of a point set. Starting from the convex hull of a
point set and gradually decreasingα the shape of the point
set gradually shrinks and starts to develop cavities. These
cavities may join to form tunnels and voids. For sufficiently
small α the alpha shape is empty.

The process of defining, for two different values ofα, the
alpha shape for a 2-dimensional point sample is elucidated in
fig. 1. Note that the alpha shape process is never continuous:
it proceeds discretely with increasingα, marked by the
addition of new Delaunay simplices onceα exceeds the
corresponding level.

B. Alpha Shape and Topology: Betti numbers

Following the description above, one may find that alpha
shapes are intimately related to the topology of a point set.
As a result they form a direct and unique way of charac-
terizing the topology of a point distribution. A complete
quantitative description of the topology is that in terms of
Betti numbersβk and these may indeed be directly inferred
from the alpha shape.

The Betti numberβp can be considered as the number of
p-dimensional holes of an object or space. Formally, they
are the rank of thehomology groupsHp. There is one
homology groupHp per dimensionp, and its rank is the
p-th Betti numberβp. The first Betti numberβ0 specifies
the number of independent components of an object. In
second Betti number,β1, may be interpreted as the number
of independent tunnels, andβ2 as the number of independent
enclosed voids. Tunnels are formed when at a certainα value
an edge is added between two vertices that were already
connected. When new faces are added, a tunnel can be filled
and destroyed and thus leads to the decrease ofβ1. Holes are
completely surrounded by a surface or faces and disappears
when cells are added to the alpha shape.

The Betti numbers completely specify the topology of a
manifold in terms of its connectivity. In this sense, they
extend the principal topological characterization known in a
cosmological context. Numerous cosmological studies have
considered thegenusof the isodensity surfaces defined by
the Megaparsec galaxy distribution [15], [16]. The genusg
specifies the number of handles defining a surface and has a
direct and simple relation to the Euler characteristicχ of the
manifold, one of the Minkowski functionals. For a manifold

consisting ofc components we have

g = c − 1
2

χ , (2)

whereχ is the integrated intrinsic curvature of the surface,

χ =
1
2π

∮ (
1

R1R2

)
dS . (3)

Indeed, it is straightforward to see that the topological
information contained in the Euler characteristic is also
represented by the Betti numbers, via an alternating sum
relationship. For three-dimensional space, this is

χ = 2 (β0 − β1 + β2) (4)

While the Euler characteristic and the Betti numbers give
information about the connectivity of a manifold, the other
three Minkowski functionals are sensitive to local manifold
deformations. The Minkowski functionals therefore give
information about the geometric and topological proper-
ties of a manifold, while the Betti numbers focus only
on its topological properties. However, while the Euler
characteristic only “summarizes” the topology, the Betti
numbers represent a full and detailed characterization of the
topology: homeomorphic surfaces will have the same Euler
characteristic but two surfaces with the sameχ may not in
general be homeomorphic !!!

C. Computing Betti numbers

For simplicial complexes like Delaunay tessellations and
Alpha Shapes, the Betti numbers can be defined on the basis
of the orientedk-simplices. For such simplicial complexes,
the Betti numbers can be computed by counting the number
of k-cycles it contains. For a three-dimensional alpha shape,
a three-dimensional simplicial complex, we can calculate the
Betti numbers by cycling over all its constituent simplices.
To this end, we base the calculation on the following
considerations. When a vertex is added to the alpha complex,
a new component is created andβ0 increases by 1. Similarly,
if an edge is added,β1 is increased by 1 if it creates
a new cycle, which would be an increase in the number
of tunnels. Otherwise, two components get connected so
that the number of components is decreased by one:β0 is
decreased by 1. If a face is added, the number of holes
is increased by one if it creates a new cycle. Otherwise,
a tunnel is filled, so thatβ1 is decreased by one. Finally,
when a (tetrahedral) cell is added, a hole is filled up andβ2

is lowered by 1.
Following this procedure, the algorithm has to include a

technique for determining whether ak-simplex belongs to
a k-cycle. For vertices and cells, and thus 0-cycles and 3-
cycles, this is rather trivial. For the detection of 1-cycles
and 2-cycles we used a somewhat more elaborate procedure
involving union-finding structures [33].



Figure 2. Examples ofalpha shapesof the LCDM GIF simulation. Shown are central slices through two alpha shapes (top: low alpha; bottom: high
alpha). The image shows the sensitivity of alpha shapes to the topology of the matter distribution. From: Vegter et al. 2010.

D. Computational Considerations

For the calculation of the alpha shapes of the point set we
resort to the Computational Geometry Algorithms Library,
CGAL 4. Within this context, Caroli & Teillaud recently
developed an efficient code for the calculation of two-
dimensional and three-dimensional alpha shapes in periodic
spaces.

The routines to compute the Betti numbers from the alpha
shapes were developed within our own project.

III. A LPHA SHAPES OF THECOSMIC WEB

In a recent study, Vegter et al. computed the alpha shapes for
a set of GIF simulations of cosmic structure formation [34],
[35]. It concerns a2563 particles GIFN -body simulation,
encompassing aΛCDM (Ωm = 0.3,ΩΛ = 0.7,H0 =
70 km/s/Mpc) density field within a (periodic) cubic box
with length 141h−1Mpc and produced by means of an
adaptiveP3M N -body code [36].

Fig. 2 illustrates the alpha shapes for two different values
of α, for two-dimensional section through the GIF simula-
tion. The top panel concerns a low value ofα, the bottom
one a high value. The intricacy of the weblike patterns is
very nicely followed. The low alpha configuration highlights
the interior of filamentary and sheetlike features, and reveals
the interconnection between these major structural elements.
The high value alpha shape not only covers an evidently
larger volume, but does so by connecting to a lot of finer
features in the Cosmic Web. Noteworthy are the tenuous
filamentary and planar extensions into the interior of the
voids.

4CGALis a C++ library of algorithms and data structures for Computa-
tional Geometry, see www.cgal.org.

These images testify of the potential power of alpha
shapes in analyzing the weblike cosmic matter distribution,
in identifying its morphological elements, their connections
and in particular also its hierarchical character.

However, to understand and properly interpret the topo-
logical information contained in these images we need first
to assess their behaviour in simpler yet similar circum-
stances. To this end, we introduce a set of heuristic spatial
matter distributions, Voronoi clustering models.

IV. V ORONOI CLUSTERING MODELS

Voronoi Clustering Modelsare a class of heuristic models
for cellular distributions of matter which use the Voronoi
tessellation as the skeleton of the cosmic matter distribution
[37], [38], [39].

The aspect which is modelled in great detail by Voronoi
tessellations is that of the large scale clustering of the mor-
phological elements of the Cosmic Web. It is the stochastic
yet non-Poissonian geometrical distribution of thewalls, fila-
mentsandclusterswhich generates the large-scale clustering
properties of matter and the related galaxy populations.

The small-scale distribution of galaxies, i.e. the distribu-
tion within the various components of the cosmic skeleton,
involves the complicated details of highly nonlinear small-
scale interactions of the gravitating matter. Well-defined
and elaborate physical models and/or N-body computer
simulations might fill in this aspect, although it would lead
away from the Voronoi model’s true purpose and conceptual
simplicity. In the Voronoi models described here we com-
plement the geometrically fixed configuration of the Voronoi
tessellations with a heuristic prescription for the location of
particles or model galaxies within the tessellation.



Figure 3. Three different patterns of Voronoi element galaxy distributions, shown in a 3-D cubic setting. The depicted spatial distributions
correspond to a wall-dominated Voronoi Universe (left), a filamentary Voronoi Universe (centre) and a cluster-dominated Voronoi Universe
(right).

A. Voronoi components

According to the Voronoi clustering models, each of
the geometric elements of the 3-D Voronoi tessellations is
identified with a morphological component of the Cosmic
Web. In table I we have listed the various identifications.

Geometric Component Cosmic Structure

Voronoi Cell Voids, Field

Voronoi Wall Walls, Sheets, Superclusters

Voronoi Edge Filaments, Superclusters

Voronoi Vertex Clusters

Table I
IDENTIFICATION OF GEOMETRIC COMPONENTS INVORONOI

TESSELLATIONS WITH MORPHOLOGICAL COMPONENTS OF THECOSMIC

WEB.

B. Voronoi Element and Voronoi Evolution Models

We distinguish two different yet complementary approaches,
“Voronoi Element models”and “Voronoi Evolution mod-
els”. Both the Voronoi Element Models and the Voronoi
Evolution Models are obtained by projecting an initially
random distribution ofN sample points/galaxies onto the
walls, edges or vertices of the Voronoi tessellation defined
by M nuclei. The Voronoi Element Models do this by a
heuristic and user-specified mixture of projections on the
various geometric elements of the Voronoi skeleton. The
Voronoi Evolution Models accomplish this via a gradual
motion of the galaxies from their initial random location
in their Voronoi cell, directed radially away from the cell’s
nucleus.

C. Voronoi Element Models

“Voronoi Element models”are fully heuristic models. They
are user-specified spatial galaxy distribution within thecells
(field), walls, edgesand verticesof a Voronoi tessellation.
The initially randomly distributedN model galaxies are
projected onto the relevant Voronoi wall, Voronoi edge or
Voronoi vertex or retained within the interior of the Voronoi
cell in which they are located. The field galaxies define a
sample of randomly distributed points throughout the entire
model volume. The Voronoi Element Models are particularly
apt for studying systematic properties of spatial galaxy
distributions confined to one or more structural elements of
nontrivial geometric spatial patterns.

Simple Voronoi Element Modelsplace their model galaxies
exclusively in either walls, edges or vertices. The versatility
of the Voronoi element model also allows combinations in
which field (cell), wall, filament and vertex distributions
are superimposed. These complete composite particle dis-
tributions,Mixed Voronoi Element Models, include particles
located in four distinct structural components:

• Field:
Particles located in theinterior of Voronoi cells
(i.e. randomly distributed across the entire model box)

• Wall:
Particles within and around theVoronoi walls.

• Filament:
Particles within and around theVoronoi edges.

• Blobs:
Particles within and around theVoronoi vertices.

The characteristics of the patterns and spatial distribution in
the composite Voronoi Element models can be varied and
tuned according to the fractions of galaxies in in Voronoi
walls, in Voronoi edges, in Voronoi vertices and in the field.
These fractions are free parameters to be specified by the
user.



Figure 4. Four alpha shapes of a Voronoi filament model realization. It concerns a sample of 200000 particles in a periodic box of50 h−1Mpc size
with 8 Voronoi cells. From top left to bottom right:α=0.5× 10−4, 1.0× 10−4, 2× 10−4 and4.0× 10−4. See text.

In fig. 3 we have shown three different three-dimensional
Simple Voronoi Element Modelgalaxy distributions. The
lefthand model realization corresponds to the model in
which galaxies are exclusively located inside walls, a second
one where these are concentrated in and around filaments
and the third one restricted to galaxies located within clus-
ters.

D. Voronoi Evolution Models

The second class of Voronoi models is that of theVoronoi
Evolution models. They attempt to provide weblike galaxy
distributions that reflect the outcome of realistic cosmic
structure formation scenarios. They are based upon the
notion that voids play a key organizational role in the

development of structure and makes the Universe resemble a
soapsud of expanding bubbles [40]. While the galaxies move
away from the void centres, and stream out of the voids
towards the sheets, filaments and clusters in the Voronoi
network the fraction of galaxies in the voids (cell interior),
the sheets (cell walls), filaments (wall edges) and clusters
(vertices) is continuously changing and evolving. The details
of the model realization depends on the time evolution
specified by the particular Voronoi Evolution Model.

Within the class of Voronoi Evolution Models the most
representative and most frequently used are theVoronoi
kinematic models. They form the idealized and asymptotic
description of the outcome of hierarchical gravitational



Figure 5. Topological and Geometric parameters Voronoi filament model. For a Voronoi filament model we show an example of an alpha shape (top
right), along with the behaviour of five topological parameters as a function ofα. The different colours of the alpha shape represent the different connected
components. Top left:β0, the number of components of the alpha shape. Centre left:β1, the number of tunnels in the alpha shape. Centre right:β2, the
number of (surrounded) holes in the alpha shape. Bottom left: total surface area of the alpha shapes. Bottom right: total volume of the alpha shapes. Blue
lines: realization with 8 Voronoi cells in box. Red lines: realization with 64 cells in box.

structure formation process, with single-sized voids forming
around depressions in the primordial density field. The
Voronoi Kinematic Model“simulates” the asymptotic we-
blike galaxy distribution implied by the hierarchical void
formation process by assuming a single-size dominated void
population. It is based upon the notion that voids play
a key organizational role in the development of structure
and makes the Universe resemble a soapsud of expanding
bubbles [40], forming voids forming around a dip in the

primordial density field.
This is translated into a scheme for the displacement of

initially randomly distributed galaxies within the Voronoi
skeleton. Within a void, the mean distance between galaxies
increases uniformly in the course of time. When a galaxy
tries to enter an adjacent cell, the velocity component per-
pendicular to the cell wall disappears. Thereafter, the galaxy
continues to move within the wall, until it tries to enter the
next cell; it then loses its velocity component towards that



cell, so that the galaxy continues along a filament. Finally, it
comes to rest in a node, as soon as it tries to enter a fourth
neighbouring void.

Kinematic Model Configurations
The resulting evolutionary progression within the Voronoi
kinematic scheme proceeds from an almost featureless ran-
dom distribution towards a distribution in which matter
ultimately aggregates into conspicuous compact cluster-like
clumps.

The steadily increasing contrast of the various structural
features is accompanied by a gradual shift in topological
nature of the distribution. The virtually uniform and feature-
less particle distribution at the beginning ultimately unfolds
into a highly clumped distribution of almost only clusters
(vertices). This evolution involves a gradual progression via
a wall-like through a filamentary towards an ultimate cluster-
dominated matter distribution. By then nearly all matter has
streamed into the nodal sites of the cellular network.

V. TOPOLOGICAL ANALYSIS OF VORONOI CLUSTERING

MODELS

Our topological analysis consists of a study of the system-
atic behaviour of the Betti numbersβ0, β1 andβ2, and the
surface and volume of the alpha shapes of Voronoi clustering
models (see [34], [35]). For each point sample we investigate
the alpha shape for the full range ofα parameters.

We generated 12 Voronoi clustering models. Each of
these contained 200000 particles within a periodic box of
size 100 h−1Mpc. Of each configuration, we made two
realizations, one with 8 centres and Voronoi cells and one
with 64. One class of models consisted of pure Voronoi
element models. One of these is a pure Voronoi wall model,
in which all particles are located within the walls of the
Voronoi tessellation. The other is a pure filament model.
In addition, there are 4 Voronoi kinematic models, ranging
from a mildly evolved to a strongly evolved configuration. In
all situations, the clusters, filaments and walls have a finite
Gaussian width ofRf = 1.0 h−1Mpc.

An impression of the alpha shape development may be
obtained from the four panels in fig. 4. Different colours
depict different individual components of the alpha shape.
For the smallest value ofα, α = 0.5 × 10−4, we see
that the Delaunay simplices contained in the alpha shape
delineate accurately nearly all the edges/filaments in the
particle distribution. Asα increase, going from the topleft
panel down to the bottom right one, we find that the alpha
shape fills in the planes of the Voronoi tessellation. For
even larger values ofα, the alpha shape includes the larger
Delaunay simplices that are covering part of the interior
of the Voronoi cells. It is a beautiful illustration of the
way in which alpha shapes define, as it were, naturally
evolving surfaces that are sensitive to every detail of the

morphological and topological structure of the cosmic matter
distribution.

A. Filament Model topology

We take the Voronoi filament model as a case study.
Its topology and geometry is studied by following the
behaviour of the three Betti numbersβ0, β1 and β2 of the
corresponding alpha shapes as a function of the parameter
α. Also we adress two of the Minkowski functionals for the
alpha shapes, namely their volume and surface area (note
that the Euler characteristic is already implicitly included in
the Betti numbers).

Fig. 5 shows the relation between the Betti numbers,
surface and volume of the alpha shapes and the value of
α. The first Betti number,β0, decreases monotonously asα
increases. This Betti number specifies the number of isolated
components in the alpha shape, and atα = 0 it is equal to
the number of points of the sample,β0(α = 0) = 200000.
At larger α, more and more components merge into larger
entities, which explains the gradual decrease ofβ0 with
increasingα.

The second Betti number,β1, represent the number of
independent tunnels. At first, at small values ofα it increases
steeply, as the large number of individual components grow
as more Delaunay edges are added to them. Once isolated
components start to fill up and merge with others, at values
α > 0.25 × 10−4, we see a steep decrease of the Betti
numberβ1.

In the case of the singly morphological distribution of
the Voronoi filament model the third Betti number,β2, has
a behaviour resembling that ofβ1: a peaked distribution
around a finite value ofα. This Betti number represents
the number of holes in the alpha shape and it is easy
to understand that at smallα values this number quickly
increases as each of the individual alpha shape components
gets extended with new Delaunay simplices. However, once
α gets beyond a certain value this will include more and
more tetrahedra. These start to fill up the holes. Notice that
in the given example of the Voronoi filament model this
occurs atα ≈ 0.45 × 10−4 (also see fig. 6), substantially
beyond the peak in theβ1 distribution: on average larger
values ofα are needed to add complete Delaunay tetrahedra
to the alpha shape.

We also studied two additonal Minkowski functionals,
volume and surface, to assess the geometrical properties
of the evolving alpha shapes of the Voronoi filament
models. The results are shown in the bottom panels of
fig. 5. Evidently, the volume of the alpha shape increases
monotonously asα becomes larger and more and more
tetrahedral cells become part of the alpha shape. The surface
area has a somewhat less straightforward behaviour. Over a
substantial range the surface area grows mildy as individual
components of the alpha shape grow. When these compo-
nents start to merge, and especially when holes within the



Figure 6. Third Betti numberβ2 for different clustering models. Shown are the curvesβ2(α) for six Voronoi clustering models. Top left: Voronoi filament
model. Top right: Voronoi wall model. Centre left to Bottom right panel: four stages of the Voronoi kinematic model, going from a moderately evolved
model dominated by walls (centre left) to a highly evolved one dominated by filaments and clusters (bottom right).

components get filled up, the surface area shrinks rapidly.
Once, the whole unit cube is filled, the surface area has
shrunk to zero.

B. Betti Systematics

Having assessed one particular Voronoi clustering model
in detail, we may try to identify the differences between the
different models. While this is still the subject of ongoing
research, we find substantial differences between the models
on a few particular aspects. Here we discuss two in more
detail:

Number of components:β0

While for all models the curveβ0(α) is a monotonously
decreasing function ofα, the range over whichβ0 differs
substantially from unity and the rate of decrease are highly

sensitive to the underlying distribution. In fact, the deriva-
tive ∂β0/∂α contains interesting features, like a minimum
and a varying width, which are potentially interesting for
discriminating between the underlying topologies.

Number of holes:β2

The most outstanding Betti number isβ2, i.e. the number
of holes in an alpha shape. As one may infer from fig. 6,
substantial and systematic differences between different
models can be observed. This concerns not only the values
and range over whichβ2 reaches a maximum, as for the
pure filament and wall models, but even entirely different
systematic behaviour in the case of the more elaborate and
complex Voronoi kinematic models (see e.g. the review by
Van de Weygaert 2010 [41] and [39]).

In the case of the kinematic models we find more than



Figure 7. Cartoon illustrating the idea of persistence. Two alpha shapes corresponding to a random point distribution on the surface of a torus. The alpha
shape on the left has 18 holes, of which only the central one is significant. The alpha shape on the right, corresponding to a largerα contains this one
hole.

one peak in theβ2(α) distribution, each corresponding to
different morphological components of the particle distribu-
tion. In this respect, it is revealing to see follow the changes
in β2(α) as we look at different evolutionary stages.

The four panels from centre left to bottom right in fig. 6
correspond to four different stages of evolution. The centre
left one concerns a moderately evolved matter distribution,
dominated by walls. The centre right panel corresponds to a
stage at which walls and filaments are approximately equally
prominent. The bottom left panel is a kinematic model
in which filaments represent more than40% of the mass,
while walls and the gradually more prominent clusters each
represent around25% of the particles. The final bottom right
diagram corresponds to a highly evolved mass distribution,
with clusters and filaments representing each around40%
of the particles.

The different morphological patterns of the Voronoi kine-
matic models are strongly reflected in the behaviour of
β2(α). In the centre left panel we find a strong peak at
α ≈ 5 × 10−4, with a shoulder at lower values. The peak
reflects the holes defined by the walls in the distribution,
while the shoulder finds its origin in the somewhat smaller
holes defined by filaments: the average distance between
walls is in the order of the Voronoi cell size, while the
average filament distance is more related to the Voronoi
wall size. The identity of the peaks becomes more clear
when turning to the two peak distribution in the centre right
panel, in which the strong peak atα ≈ 1× 10−4 is a direct
manifestation of the strongly emerged filaments in the matter
distribution. As the shift to filaments and clusters continues,

we even see the rise of a third peak at much smaller values
of α (bottom panels). This clearly corresponds to the holes
in the high density and compact cluster regions.

VI. CONCLUSIONS ANDPROSPECTS: PERSISTENCE

We have established the promise of alpha shapes for
measuring the topology of Megaparsec galaxy distribution
in the Cosmic Web by studying the Betti numbers and
several Minkowski functionals of a set of heuristic Voronoi
clustering models. Alpha Shape analysis has the great
advantage of being self-consistent and natural, involving
shapes and surfaces that are entirely determined by the point
distribution, independent of any artificial filtering.

The one outstanding issue we have not adressed is that
of noise in the dataset. Discrete point distributions are
necessarily beset by shotnoise. As a result, the alpha shapes
will reflect the noise in the point distribution. The induced
irregularities in the alpha shapes induce holes and tunnels
which do not represent any real topological structure but
nonetheless influence the values of the Betti numbers.

Edelsbrunner et al. (2000) [42] introduced the concept of
persistenceto seek to filter out the insignificant structures
(see also [23], and [25] for a detailed and insightful review).
The basic idea is that holes and tunnels that remain in
existence over a range ofα values are significant and should
be included in the Betti number calculation. The range is a
user-defined persistence parameterp. The implementation of
the concept of persistence in our topological study will be
adressed in forthcoming work.
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