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A convolution is an integral that expresses the amount of overlap of one function ¢ as it is shifted
over another function ¢#. It therefore "blends" one function with another. For example, in synthesis
imaging, the measured dirty map is a convolution of the "true" CLEAN map with the dirty beam (the
Fourier transform of the sampling distribution). The convolution is sometimes also known by its
German name, faltung ("folding").

Abstractly, a convolution is defined as a product of functions # and g that are objects in the algebra
of Schwartz functions in R*. Convolution of two functions ¢ and g over a finite range [0, ] is given
by

f*gsff[’{]g[t—?]d?, (1)

where the symbol #+g (occasionally also written as f & g) denotes convolution of # and g.
Convolution is more often taken over an infinite range,

f*gs_fmf[ﬂg[é—ﬂd?=fmg[ﬂf[r—ﬂd1 @

(Bracewell 1999, p. 25).
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The animations above graphically illustrate the convolution of two rectangle functions (left) and two
Gaussians (right). In the plots, the green curve shows the convolution of the blue and red curves as
a function of #, the position indicated by the vertical green line. The gray region indicates the
product g (7] f (¢ - 7) as a function of ¢, so its area as a function of # is precisely the convolution.

The convolution of two rectangle functions /' =TTy, » [¥) and g =Tl &, [#] has the particularly
simple form

Frg=[l-t—a) I -t —a1) - —¢2 —aa) 11

oty —a) — =ty )T (— 2y — )+ (£ — 22 —2) TL(F— 2 — )] @)

Even more amazingly, the convolution of two Gaussians f — g-¥-#11*/[ o) Jlo1+ 2w and
g = el F%]/[g—2 /2 7) is another Gaussian
frg = b )

A2 +ad) @

Let #, g, and & be arbitrary functions and # a constant. Convolution satisfies the properties

Seg =guf ()]
Fulgwk) = (Fug)nk (6)
Frlg+2) = (Frg)+(fh) 7)
(Bracewell 1999, p. 27), as well as
alfrg) =lmfleg=rxlung (8)
Taking the derivative of a convolution gives
& £ £z
EUF*SJ—E*S'M’E*E- (9)

The area under a convolution is the product of areas under the factors,

_[:U‘*gldx - _[:[I:f[ajg[x—ajda]dx 10)

- _[:f(.e.s)u:g[x—a]dx]am (11)
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i, [_[:ftsz]du] [Kg(x)afx]. (12)

The horizontal function centroids add

@ (Feglh =0 3+ gh (13)
as do the variances
G (gl =0+ g (14)
where
. £°O°°x’“ Fidx
@ fr= W (15)

There is also a definition of the convolution which arises in probability theory and is given by
FO+00 = [Fe-0a00), (16)

where [F (¢~ x)d G (%] is a Stieltjes integral.

SEE ALSO: Autocorrelation, Cauchy Product, Convolution Theorem, Cross-Correlation, Recurrence
Plot, Wiener-Khinchin Theorem. [Pages Linking Here]
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