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Summary. The CLEAN method (Hégbom, 1974), which
is a deconvolution method, is analysed mathematically
for the 1-dimensional case. It is shown that the method is
equivalent to solving a system of linear equations by an
iterative method (Temple, 1938). A criterion of con-
vergence is given. In typical applications of the method
the solution of the system of equations is nof unique and
the consequences for the CLEAN solution are discussed.

By applying the analysis to maps which are obtained
from Fourier transformed data the convergence criterion
is shown to be equivalent to the condition that all weights
used for the Fourier transform have to be non-negative.
It is proven that the method is in fact a statistically correct
least-squares fit of sine functions to the observed data
(the visibility function). The choice of clean beam and
the effects of adding residuals are analysed.

An error analysis is given which allows the errors in
interpolated and extrapolated information to be deter-
mined. Some numerical examples of error calculations
are given.

The extension of the present analysis to 2 dimensional
distributions is briefly discussed in an Appendix.

Key words: CLEAN — data-processing — Fourier
transform — statistics — radio astronomy

1. Introduction

In recent years there has been an increasing number of
radio synthesis observations where the iterative beam
removing technique, known under the name CLEAN has
been used successfully (Hégbom, 1974; Schwarz et al.,
1973; Rogstad et al., 1971). This technique proves to be
useful under a variety of different circumstances. CLEAN
is in its simplicity intuitively appealing, but until now no
criteria have been available to decide under which condi-
tions the method may be applied and what the limitations
are. Most of the users probably have made various tests
to convince themselves that the method works for their

application. The more widespread the use of the method
gets, the more urgent it is to establish some criteria for
its range of applications in order to avoid incorrect use
which may lead to wrong results.

In this paper the method is analysed mathematically
and statistically to give a basis from which criteria can be
developed to decide under which conditions CLEAN
works. Such an analysis provides the basis for further
refinements of CLEAN. It can also be useful in comparing
this method with other methods, such as the proposed
“maximum entropy’ method (Ables, 1974).

In Part I we discuss the method in its simple form, as
seen by most users, namely as a deconvolution procedure.
Although they mostly use Fourier transformed data it is
not immediately apparent that this is important. But in
Part IT we shall see that CLEAN is especially suited for
such Fourier transformed data. It will be shown that
CLEAN is not just another deconvolution procedure, but
is a statistically correct fitting procedure, when dealing
with noisy Fourier transformed data.

Part I. CLEAN as a Deconvolution

2. The Mathematical Description of the Method

The foundation of the basic ideas of CLEAN is given in
the paper by Hégbom, 1974. In order to make the
present paper more easily understood, we give a very
brief summary of the method, introducing at the same
time the required mathematical symbols.

2.1. Brief Description of the Method and Definitions of
Terms

The method is used in the case that one has an observed
map, the “dirty’’> map (d), which is the convolution of the
brightness distribution (t,) with an instrumental response,
called the “dirty”” beam (b) (this nomenclature comes
from the application of the method in radio astronomy;
in optics these terms correspond to ““image”’, ‘object™
and “point-spread function”, respectively). The “dirty”

beam may have some unwanted secondary responses, as
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sidelobes, wings, etc. The aim of the method is to remove
the effects of these secondary responses. This is done in
two steps: first a deconvolution step in which the dirty
map is decomposed in a set of scaled é-functions, the
components, t, which, when convolved with the ““dirty”
beam would reproduce the original ““dirty’* map. Second,
the components are convolved with a hypothetical
“clean” beam, h, which is free from the unwanted
responses. This finally gives the ““clean’ map, c. We can
also define a ““ true clean> map, c,, which is the convolu-
tion of the (“true’) brightness distribution with the
“clean’’ beam 4.

d = b*t = “dirty” map,
c=h*="

co = h*ty = “trueclean” map .

clean’ map,

.1

The deconvolution need not be complete, i.e. leaving
residuals, r, which often are added to the “clean’ map
(see Sect. 9). The “clean’ map c can be regarded as an
estimate of the ‘““true clean’ map c¢,. We denote the
“true” distributions and quantities by adding the sub-
script 0.

The deconvolution is not necessarily unique and this
is the main problem. In order to overcome this, some
extra information about the brightness distribution must
be used. The CLEAN method is designed for the case
that the brightness distribution contains only a few
sources at well separated, small regions, i.e. the brightness
distribution is essentially empty. CLEAN makes use of
these characteristics in the following way: it searches for
the maximum in the correlation between the ‘“dirty’’ map
and the ‘“dirty”” beam, which is in some applications
identical (or in general close) to the absolute largest
value in the ““dirty”” map. We can make the plausible
(but not necessary) assumption that this response is
mainly due to a real signal and only a minor part comes
from the filter response from other sources placed further
away. Some fraction g times the absolute largest value is
accepted as a first approximation of the set of 8-functions.
A dirty beam pattern scaled by this value and centered
at the corresponding position is subtracted from the
dirty map thereby removing a great deal of the unwanted
secondary responses. The procedure is repeated on the
remaining map and by successive iterations one builds
up the set of 8-functions. Overcorrection in an early
stage is later corrected automatically, because the method
allows also corrections of negative intensities.

2.2. Simplifying Assumptions
The maps are in general continuous functions of one or
more coordinates. However, in order to make the method
directly applicable for pratical cases we assume that the
maps are sampled at a finite number N points.

In this first part we will make another assumption,
namely  that the brightness distribution is sampled
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adequately. In Part II this requirement is not used
anymore; there we assume only, that the “dirty”” map
is sampled adequately. For further simplification of the
mathematical formulation we restrict ourselves to one-
dimensional maps. The two-dimensional case can be
treated as an extension of the one-dimensional case
described here (see Appendix).

2.3. The Vector and Matrix Notation

The above restrictions enable us to formulate the method
CLEAN in an algebraically simple way. The maps and
the scaled delta functions, the components, will be
written as vectors containing N elements (d, ¢, ¢,, t, t,).
An individual element is referred to as “element at a given
position”. The “dirty’” and the “clean’’ beam are written
in matrix notation, in the following way:

1 b, by, bs by_:
b]_ 1 b1 b2 bN—2
B= b, b, 1 b, 2.2)
by_. N 1

Thereby a regular grid of coordinates is used and the
“dirty”” beam is assumed to be symmetric. This results
in a “Toeplitz”” matrix. The convolution can now be
written as a multiplication of a square matrix with a
vector, i.e.

d = Bt,. 2.3)

If we consider a subset of the above equations, we get
a matrix of the more general form (W < N)

1 bo,1 bo,2 bo,w-1
B — bl,o 1 bl 2 (2-4)
bw-1,0 bw-11 bW 1,2 .- 1

The symmetry of the beam leads to a symmetric matrix,
that means that b; ,, = b, ;. Such a subset of the equation
will be discussed in Section 4. The above notation can also
be used in the general case, when the sampling is at arbi-
trary coordinates. A simple example may illustrate this.

Example: t, is given at 4 coordinates, x, to x,. The
beam at the relative distance x; — x; is b(x; — xk) We
now have the following scheme:

coordinate: X1 Xg X3 Xq
to to, to, tog to,
d d, d, d; d,

The “dirty’” map d is the convolution of t, with the
beam, written explicitely:

d]_ = t01 + tozb(x2 —_ x1) —+ toab(x:; — xl) + tolb(x4 - x1)
dy = to,b(x; — X3) + to, + tosb(Xs — X2) + 1o b(Xs — X3)

da = tollb(xl —_ X3) + t02b(x2 - xa) + th + t04b(x4 - x3)
d4 = tolb(xl - X4) + tozb(xz - x4) + toab(X3 - x4) + t04.
2.5
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The coefficients of the 7, are the elements b, of the
matrix B. A symmetric beam means that b(x; — x;;) =
b(x, — x;), therefore the matrix B is symmetric and there
are at most six independent elements, corresponding to
the values of the beam at the relative distances of the
four coordinates.

An additional symmetry of the matrix B can arise in
Fourier transformed data (cf. Sect. 6.1).

In this paper we will use sometimes a special type of
beam, the ““uniform weight”” beam. The name comes
from the definition of a beam being the Fourier transform
of a set of weights, see Part II. If the non-zero weights
are all equal, this leads to a beam with the characteristic
that its self-convolution is the original beam times a scale
factor f; in matrix notation:

BB =/B. (2.6)

Although it is quite a special type of beam, it makes many
concepts of CLEAN more easily understandable in
Part 1. All those parts involving the “uniform weight”’
beam will be made more general in Part II.

2.4. The Algebraic Formulation of the Iteration Process

The iteration process we can now describe, introducing
t’ and r, the components and residuals, respectively, after
a number of iterations:

r=d-Bt. Q@7

A factor g times the absolute largest value of the
residuals is considered as the next approximation of the
set of components, and the scaled response of the dirty
beam is subtracted from the dirty map. The remaining
map is searched again for the absolute largest value, to be
used for the correction in the next iteration, etc.

If we denote by r,, the largest absolute value of the
residuals found at a position m, the correction to the
vector of the components ¢’ can be expressed as

&' =(0,...,0, +gr,,0,...,0). (2.8)
The set of components is updated
t" =t + 8t', 2.9

and the convolution with the dirty beam is subtracted
from the residuals

r'=r— Bét'. (2.10)
For the next iteration we get
r"=r' — Bét" =r — B(t' + &t"). (2.11)

Working backwards substituting the residuals of the
previous iterations, using the above recursion relations
(2.9) and (2.10) we get

r=d-B> 5",

which is equivalent to Equation (2.7).

(2.12)
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If the residuals converge to zero, then one solves
Bt=d, (2.13)

a system of N linear equations, by an iterative method.
This method is in fact a relaxation method discussed by
Southwell (1935) and Temple (1938), see also Forsythe
and Wasow (1960).

If the determinant of B, det (B) # 0, then the solution
is unique and t = t,. If, however, det (B) = 0, then there
is only a solution if d is a linear combination of the
vectors, corresponding to the lines of the matrix B,
i.e. d is in the range of B; the solution is not unique.

The method is very similar to the well known Gauss-
Seidel method, to solve linear equations by an interative
method. There the corrections 8t’ are calculated syste-
matically at the positions 1 to N, and g = 1.

3. Criterion of Convergence

Temple (1938) proved that the method converges starting
from any initial approximation if the matrix B is sym-
metric and positive definite. The convergence is fastest
if the gain factor g = 1.

We will outline the proof briefly: we define the norm

0 =(t' — t)TB(t’ — t,) = AtTBAt, 3.1
with
At=t"—t,. 3.2)

The difference of the norm in two consecutive iterations
is :

80 = At'TBAt' — At™BAt (withAt' = t" —t;). (3.3)

For a correction 6t’ = t” — t' this can be written, making
use of the symmetry of B

80 = 26t'"BAt + 8t'"Bst’ . 3.4

Using for the correction 8t’ as defined in Eq. (2.8) the
expression simplifies to

8Q = —2gr2 + (gra)?

= (g% — 29)ra. (3.5
80 is negative if
0<g<2. (3.6)

In other words: the norm Q is a monotonically decreas-
ing quantity with lower bound 0 (because B is assumed
to be positive definite). It can become zero only if At = 0.
The above derivation holds more generally for any
residual, instead of r,,.

From the above it follows that 8Q converges to zero,
therefore r,,, the maximum absolute residual, converges
to zero too, i.e. all residuals converge to zero.

From Equations (2.7) and (3.2) we have

r = —BAt, (3.7
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and solving the equation

At =—B~'r. (3.8)

The inverse matrix B~! exists, because B is positive
definite. Substituting At in Equation (3.1) we get

Q0 =r"B'r. 3.9)

The norm converges to zero, therefore At also has to
converge towards zero and the Equation (2.3) is solved.

3.1. B is Positive Semi-definite

In the previous case where the matrix B is positive
definite, the deconvolution step in CLEAN is just a way
to solve the Equation (2.3), which gives a unique result.
But as already mentioned, CLEAN is particularly suited
for applications where the maps are the Fourier trans-
form of the observed data. The matrix B can then be
made to be positive semi-definite only, and the rank
(R < N) of the matrix will be known.

The proof of convergence is first given in Forsythe and
Wasow (1960).

The solution may contain any contribution z, which
is a solution of the homogeneous equation

Bz, =0. (3.10)

z, we call a ‘“zero-eigenvector”, i.e. an eigenvector
belonging to an eigenvalue 0. Its contribution to Q is
zero.

Adding in Equation (3.7) z, to At we get

0 = (At + zo)"B(At + z,) = AtTBAt. (3.11)

Although r and Q converge to zero, (At + z,) does not
necessarily converge towards zero.

We then have one of the infinitely many solutions,
t = t, + Z,, of the Equation (2.13). Q can now also be
expressed by replacing t, by t:

0=t —-tBt —1t). (3.12)

In the case of a uniform-weight beam Q can expressed
in terms of r only, even though B~ does not exist
(cf. Eq. (3.9)). Multiplying Equation (3.7) by B

Br = BBAt = fBAt, (3.13)

where f is the normalizing factor, we can substitute the
right-hand side of above Equation into (3.1).

0 = (1/f)AtBr
= (1/)r2.

In other words: in the case of a ““uniform weight”” beam
the norm Q is just a constant factor times the sum of
squares of the residuals. )
Note: If the method CLEAN is tested with ad hoc
numerical examples, as is done sometimes, the two criteria

3.149)
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of convergence, i.e. that B has to be at least positive
semi-definite and that d has to be in the range of B, can
easily be violated ; the tests then can lead to divergence.

4. The Solution of a Subsystem of Equations
(““Window>* CLEAN)

In this section we will discuss the solution of a subsystem
of the Equation (2.13). We assume that the N by N
matrix B is positive semi-definite, det (B) = 0 and that
the dirty map d is in the range of B. Further, we assume
that R, the rank of the matrix, is known (see Sect. 6.2).
Suppose the deconvolution process is started and
components are found at various positions, say W
different positions; we now allow no new positions to be
selected and in this way we define a “window” of W
positions. Or one can also define a priori a window of
W positions, e.g. the positions within a certain area. The
iteration process can be continued, thereby searching the
maximum residual only within the “window” and
improving the amplitudes of the W components. By this
method, which we call the “window”’-CLEAN method,
one forces N — W components of t to be exactly zero.

@.1)

The upper index added to the vectors indicates the
number of non-zero elements. In practice not all residuals
have to be calculated at each iteration, once the set of W
positions is defined. One can define a submatrix By,
consisting of the columns and rows corresponding to the
non-zero positions of Wt and corresponding vectors ty
and dy of length W. One then merely solves a subsystem
of W equations:

BWit = g — W-wy

Bth = dW . (4_2)

The solution ty; can be used to calculate the N — W
residuals according to Equation (4.1). The norm Q con-
verges towards a value Q. If W = R, then Qy and all
residuals ~%r also become zero.

Even if W < R, then it is not always the case that, for
a given window, By is positive definite. There is no
simple criterion to decide in which cases it is, but special
cases are discussed in Section 6.3.

5. The Ambiguity of the Deconvolution Procedure

Either the brightness distribution t, or the solution t can
contain a contribution of a zero-eigenvector. But using
the basic assumption stated in the beginning that the map
is essentially empty, we can put some limits on the
occurrence of zero-eigenvectors.

First we notice that any zero-eigenvector has to be
non-zero in at least R + 1 positions. This is because there
are N — R independent zero-eigenvectors (Cramer,
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1946, p. 115), and therefore at most N — R — 1 positions
can be made zero by a linear combination of these vectors.

We now discuss the uniqueness of the solution for the
case that @ = 0 and that t, contains less than R non-zero
values. In general CLEAN is not bound to R or less
non-zero values. If this number exceeds R, then the
solution is not unique and can contain any zero-eigen-
vectors. If the solution is reached with exactly R posi-
tions, then the solution is unique within that particular
set of R positions but it is not necessarily the correct one.

If the solution requires less than R positions, then it
will in general be unique and correct. Mathematically
speaking, however, there can be exceptions, when certain
relationships hold between the brightness distribution t,
and the sampling of the visibility. In order to exclude these
exceptions, one has to have not more than R|2 components.
This can be proven in the following way: suppose there
are two (exact) solutions, each with < R/2 components.
The difference is a vector, which has at most R non-zero
positions. Since a zero-eigenvector must have at least
R + 1 non-zero positions, the difference vector of the
two solutions cannot be a zero-eigenvector, and hence
the two solutions must be identical.

The uniqueness of the solution is however somewhat
an academic concept, since in most practical applications
of CLEAN the data are affected by noise. Q cannot be
made exactly zero with less than R positions. One wants
to find the most probable solution; this is a statistical
rather than a mathematical concept, cf. Section 8.

Now we have established that, with some a priori
knowledge of the true map, there is a unique solution.
However, we must locate the non-zero values of the true
map. Once the positions of these values are found, it is
easy to solve the equation.

It is a particular characteristic of the method CLEAN
that the evaluation of the solution and the location of the
positions are intimately related.

a) Summarizing the evaluation of the solution:
with each iteration, where possibly a new position is
defined, the norm

is diminished, improving the fit with respect to the true

map t,. With the uniform weight beam defined in
Section 2.3 we can interpret Q as

0= 1'2[]( B

thus the sum of residuals squared is reduced.
b) The location of positions:

the assumption is made that the absolute largest value

of the dirty map (respectively the residuals) indicates the

presence of a non-zero value. Hégbom (1974) has shown

that for the “uniform weight” beam, this value represents

the maximum correlation between “dirty” beam and
“dirty” map.

5.2)
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If indeed the brightness distribution is essentially
empty, then the incorporation of a zero-value, a “false”
position, in the solution does no harm since the final
solution (assuming Q = 0) will make t at this position
exactly zero. This situation can occur when the “true”
map contains several sources, the secondary responses
of which may add up. The CLEAN method using a loop
gain g = 1 can then give rise to a damped oscillatory
behaviour of the iteration process and to additional
“false” positions. In this case a small loop gain is
advisable. The loop gain can even be made infinitesimally
small with finite computing effort; this will be discussed
elsewhere.

Another interpretation of the procedure will be given
in Section 7. In contrast to CLEAN the Gauss-Seidel
method (cf. Sect. 2.4) selects all N positions and does not
take into account the emptiness of the brightness
distribution.

An often applied method is either to search only for
the maximum (positive) residuals or to allow only
positive components; this is legitimate, since Q decreases
always, but does not necessarily lead to convergence for
it can happen that all residuals become negative. There-
fore this method, which makes use of the positiveness of
the sky, can only be applied in the beginning of the phase
b) to define a “window”’. The requirements of positive-
ness of the residuals and small loop gain can often be
used in combination. Thereby the sum of the com-
ponents (the total intensity) is steadily increased during
the iteration process.

Part II. CLEAN as a Least Squares Fit
6. Method CLEAN Applied to Fourier Transformed Data

In radio astronomy the method CLEAN is often used
in connection with interferometer and synthesis observa-
tions, where the maps are derived from a Fourier
transform of the observed data. The discussion in this
and the following sections is applicable to such data as
well as to other data for which the Fourier transform is
used to obtain the result, e.g. spectra from auto-
correlators.

So far the method CLEAN has been described as a
deconvolution procedure. Here we will show that the
method is especially well suited for Fourier transformed
data and that it can be looked at as a fitting procedure
of sine-functions in a least square sense.

6.1. Definitions

We define the “true”” map (the brightness-distribution
multiplied by the primary beam pattern of the individual
antennas) by its Fourier transform, the “true’” visibility
Vo(u) (including noise). The “true’ visibility is sampled
at a finite number of points by interferometric observa-

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1978A%26A....65..345S

N

34

FI978ACA 7 2.650

350

tions, at values u = u,,, where u, is the effective base-line.
To each observation a weight w(u,,) is attached.

Because the true map is real we do not have to observe
at u = —u,, but assign to this point the conjugate com-
plex value of the observed visibility: V(—u,) = V(uy);
we can also define w(—u,) = w(u,). The number of
observations R is the number of observed amplitudes and
phases (counted separately) of the complex quantity. If
u = 0, the so-called zero-spacing, then only an amplitude
is measured, the phase being zero by definition. R is
odd or even if the zero-spacing is or is not measured
respectively.

The “dirty” map is the Fourier transform of the
visibility times the weights:

d <> (w(e)- Volue)) = (W-Vo(u)) , 6.1)

R
d(x,) = Z w(u,) - Volu) exp(—i2mxu,), n=1,...,N,
k=1
where we take by definition

R
z w(u,) = 1. 6.2)
k=1
As before we write d(x,) as a vector d, similarly we
write w.
The “dirty”” beam has to be calculated for all differ-
ences

AXpm = Xp — Xm» 6.3)
as the Fourier transform of the weights

R
b(Ax,,) = Z w(uy) exp (27 Ax qly) . 6.4)

k=1

Since w(—u,) = w(u,) the beam is symmetric and we
have

b(— Axnm) = b(Axnm) s (65)
and also
b0) = 1. (6.6)

The b(Ax,,) can be arranged in a matrix B as defined in
Section 2, Equation (2.4).

Mostly the Fourier transform is performed into a
regular grid of N points, therefore

Axym = lAx, 6.7

and the dirty beam can be written also as a vector, b. For
computational efficiency the visibilities are often also
forced into a regular grid, especially when the fast
Fourier transform algorithm is to be used. The observed
points are either interpolated or assigned to the closest
gridpoint. Assuming a correct interpolation the weights
then represent a vector of length N, where R points have
non-zero weight. With a grid-interval of Au the “dirty”>
map becomes periodic with a period of 1/Au and

Ax = 1/(NAu). (6.8)

U. J. Schwarz: CLEAN

This results in an extra symmetry of the beam

b(IAx) = b(N — I + 1)Ax). (6.9)
The matrix B becomes then circulant
1 b, b, b3 ... by b,
B — by 1 b, b, bs b, ’ (6.10)
B b ... by 1

with b, = b(nAx).
In this discrete case the Fourier transform, denoted
by DFT, becomes

DFT
d<—— (WVO) ’

N/i2~-1
dy= > wVo,exp(—i2nkn|N), (6.11)
k=-N/2
and the inverse defined by
N
wiVo, = (1/N) > dy exp(i2nkn|N) . (6.12)
n=1

In this discrete case the visibility can also be written as a
vector, V.

We define here a ““function product”, using the
symbol X, for the simplification of the notation especially
in connection with the convolution theorem. This product
is defined by:

Z = XRY = (X101, XoVor- - -» XyPn) - (6.13)

Summarizing the definitions, we have the following
Fourier transform pairs

DFT

bc——w, (6.14)
<2, WRVy). (6.15)

Taking the Fourier transform of both sides of the
deconvolution Equation (2.3)

WXV =wRV,, (6.16)

where we define the Fourier transform of the com-
ponents ¢

V<£‘T—>t.

(6.17)

One sees that V equals the true visibility V, in ‘those
positions, where w is non-zero.

6.2. Convergence

The method CLEAN converges under three conditions
(cf. Sect. 3): (i) the matrix B must be symmetric, (ii) B has
to be positive definite or positive semi-definite, and
(iii) the dirty map d has to be in the range of B. In this
section we will consider these conditions.

In Equation (6.5) the symmetry of the dirty beam has
been proven, hence the matrix B is symmetric. The two
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other conditions can be tested by applying the theory of
quadratic forms, using the eigenvalues and eigenvectors
of the matrix B. All eigenvalues are real, because B is
symmetric. They are readily found by applying the
convolution theorem of the Fourier transform. The

eigenvalues A; are defined by the equation
BZj = Aij N (6.18)

where z, are the corresponding eigenvectors. Taking the
Fourier transform one gets

Nwkt, = AL, (6.19)
with

7, <225 g, (6.20)
Equation (6.19) can be satisfied with

A= Nw, (6.21)
and

¢ =(0,...,0,1,0,...,0), j=1,...,N, (6.22)

with the element 1 at the position j. The eigenvector z;
is the Fourier transform of §;. One has now Nindependent
eigenvectors, belonging to the eigenvalues A; = Nw;,. The
eigenvalues of the matrix B are just a constant times the
weights.

The theorems of quadratic forms allow us to distinguish
the following three cases:

(i) B is positive definite if all weights w,, > 0.
(ii) B is positive semi-definite if w,, = 0, with at least
one wy = 0.
(iii) B is indefinite if there is at least one w;, < 0.

The method CLEAN can therefore be used for the cases
(i) and (ii). It is case (ii), however, for which the method
CLEAN is primarily designed, since, when the observa-
tions are not complete (i.e. some weights are zero) the
‘““dirty”” beam has sidelobes and grating-responses. The
rank R of the matrix is the number of non-zero weights,
i.e. the number of observations as defined in Section 6.1.
The determinant |B| is the product of the eigenvalues,
it is zero for case (ii) (R < N) and the system of linear
Equations (2.3) has no unique solution.
The eigenvector z; is the Fourier transform of &;

z; = (1, exp(i2aj/N), exp(i272j/N, .. .) . (6.23)

Combining pairs of eigenvectors z; and zy_; by adding
and subtracting respectively, one gets a new set of eigen-
vectors

z; = (1, cos (2nj/N), cos 2n2j/N),...),

zy_; = (0, sin 2@j/N), sin 2#2j/N),...) . (6.24)
This means that to each weight w; = wy _; there belongs
a pair of eigenvectors which can be combined to give a
sine-wave of given frequency of any phase.

The dirty map d is the Fourier transform of the
visibility times the weights, therefore it is a sum of sine-
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waves belonging to the weights of non-zero value. This
means that d is indeed in the range of the matrix B; this is
in fact the convolution theorem.

In the more general case of the direct Fourier trans- -
form the matrix B is an infinite ““Toeplitz”’-matrix and
there is a similar relation between the eigenvalues and the
Fourier transform (Toeplitz, 1911).

6.3. Positive Definiteness of the Subsystem of Equations

It is important that in the “window” CLEAN the sub-
matrix By, is positive definite, as mentioned in Section 4.

If the sampling function w is non-zero at arbitrary grid
points and the “window” CLEAN is applied at an
arbitrary set of W(< R) points, there is no simple rule
which allows us to predict if By, is positive definite or not.
However, in two complementary special casesit is possible
to prove the positive definiteness of By, (Buurema, 1974,
private communication).

(i) wis arbitrary. For any set of W( < R) points within
an interval of R adjacent grid points, By is positive
definite. One can easily see that if the “dirty’” beam has
grating responses of 100%, then this interval is the
distance between the main response of the beam and the
first grating response.

(i) w is non-zero at regularly spaced grid points with
the spacing equal to £ times the grid distance. If £ = 1
then all sets of W “cleaned” points give a positive
definite matrix By. If € = 2, 3,..., this gives rise to
grating responses of amplitude 1 in the “dirty”’ beam. Any
set of W points is legitimate, unless there are pairs of
points which have a mutual distance equal to the
distance of the grating response, i.e. N/¢ times the grid
interval.

1. The Deconvolution Step as a Least Squares Fit

In this section we will look what the deconvolution step
does in the domain of the Fourier transform. We will
see that the norm Q introduced in Section 1 has a simple
meaning; it is the weighted sum of squares of the Fourier
transform of t’ — t,. These relations are derived in
Section 7.1. This property of the norm Q can be used to
show that the method CLEAN performs a least squares
fit in the Fourier transform domain (Section 7.2), using
a sybsystem of the system Equation (4.2). A necessary
condition for the validity of the concept of a least squares
fit is that the subsystem must have a unique solution,
i.e. the submatrix By has to be positive definite (not only
positive semi-definite!).

7.1. The Norm Q and the Visibility

If one writes the norm Q, Equation (3.12), in the form
using relation (3.7)

o=@t —-t)r, 7.1
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and applies Parceval’s theorem one can replace (t" — t)
and r by their Fourier transforms
DFT

(t' —t)«—>V' —V = AV, (7.2)

—r=Bt — d<«—ts (WRV’' — WRV) = wXAV,
(7.3)

and oﬁe gets

Q = AV(WAXV) = > W, AVZ. (7.4)

Equation (4.4) shows that Q is the weighted sum of
squares of the differences AV in the Fourier transform
domain. These are the differences between the Fourier
transform of the approximation t’ of the CLEAN
process and the Fourier transform of the solution t,
which equals the observed visibility V, at those positions,
where w is non-zero. Especially if Q@ = 0, then AV is zero
at the non-zero positions of w.

7.2. Minimalization of the Sum of Square Deviations

In each step of the iteration process the norm Q is
reduced. This means that the set of components t’ is
improved in each step, such that their Fourier transform
approximates closer and closer the observed visibility
function. If at a given number of positions, W, no new
positions are allowed and the iteration process continued
with W positions (“window” CLEAN), then the norm
approaches Qy 2 0, the residuals within the window
becoming zero. If we assume the W by W matrix By is
positive definite, then any change of the components
would result in finite residuals within the window and the
norm Q would increase; therefore Qy is a minimum.
One can show that

AQw = Q’w - Qw = (ﬂv - tw)TBw(t;av - tw) . (7-5)

Since By is positive definite, AQy, is indeed always posi-
tive unless ty = ty. Equation (7.5) is very similar to the
general definition of Q, cf. Equation (3.1); the difference
is that here (i) the summation takes place only over the
W positions of the “window”’ and (ii) ty is not a solution
of the original system of equations, t, but only a solution
of the subsystem of equations, Equation (4.2).

The Fourier transform of ™t is the sum of sine-
functions belonging to each of the components of .
Because the norm Qy is the weighted sum of squares of
the difference of the superposition of sine-functions with
the observed visibility V,, we can interpret CLEAN as a
fit of sine-functions to the observed visibility in a least
squares sense, where the components play the role of
parameters, characterizing the sine-functions. If we
take W = R then we determine as many unknowns as
there are observations. This solves not only the sub-
system, but also the original system and therefore r
becomes zero in all N points.

It may appear arbitrary that the CLEAN method fits

U. J. Schwarz: CLEAN

sine-functions to the observed visibility. But if the real
map consists only of pointlike sources, then the sine-
function is the most appropriate choice. If a pointlike
source lies between two grid points, then the observed
visibility can be approximately fitted by two sine functions
with slightly different periodicities corresponding to the
two adjacent grid points. The smaller the grid interval,
the better the fit. The deconvolution step will select (using
a small loop gain) the two closest gridpoints; these two
components will have the largest amplitudes.

We can now interpret the characteristic CLEAN
procedure of searching the maximum in the dirty (or
residual) map in a different way: if we want to fit a
sine-wave to the observed visibility Vo(u), we must know
its period. In order to get the period one can perform a
Fourier transform to obtain the spectrum and look for
its maximum; this is just the maximum of the “dirty”
map. Therefore, CLEAN can be interpreted as an
iterative harmonic analysis.

8. Error Estimates

8.1. Error Analysis

If the method CLEAN is applied to data which are
affected by noise, then the components t will also be
affected by noise. If the experiment were to be repeated
with different noise, then CLEAN would possibly find a
different set of points. Under such circumstances it would
be hard to make error estimates of the components. What
we can do, however, is to make error estimates for a
given set of points. In other words the sub-system of
equations (Eq. (4.2)) would be solved for observations

-with different noise. The error estimates can be used in

the standard tests of significance.

We assume Gaussian noise in the observed complex
quantity V, being independent in the real and imaginary
part, and also being independent from point to point. But
the noise enters the ‘“dirty”” map through the Fourier
transform and therefore the noise is not independent
from point to point. The correlation of the noise can be
described by a matrix E; this matrix can be constructed
from a vector e in a similar way as B from the “dirty”
beam b. e is defined by

DFT -
e<——> WoXp?,

(8.1)

where w, are the natural weights, i.e. the noise in the
observations is owg'? and p is a taper function.
Especially, if p = 1 then

W=WQ>’2P=W°, (8.2)
and we have
e=Dh, E=B and Ey =By. 8.3)

In order to calculate the errors of the components, t or
linear combinations of those, etc., we can use the standard
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theory on the propagation of errors (cf. W. E. Eming,

Statistical Adjustment of Data, 1964). Below we will

use p = 1 throughout.
Writing

tW = BV-VldW ’

(8.4)

the estimated error p%(ty); of the jth component becomes
then

¥(ty), = 0 > Ey, ByiByl = o* > By, BylBil
k,l R

= o’By, . 8.5)
The error of the total intensity, Fy = >, t;, is
W(Fo) = o* > Ba'. (8.6)
I,k

The error of the average position (the first moment) and
higher moments will be discussed elsewhere.

Another application of the theory is to estimate the
error of the fitted visibility function at any point. For
this purpose we define the quantity

U=V, + Vs, 8.7

where V, and V; are the real and imaginary parts, respec-
tively, of the visibility. One can show that the error in
U becomes, at a given point §:

W), = o > cos|2n(m, — m)BIN|Bii, (8:8)
where m, is the position of the component t, in the map
(i.e. the component number in the vector t). This formula
allows one to estimate the error in “holes” or of the
extrapolation of the visibility. A simple example is to
calculate the error for 8 = 0, which gives the error of the
fitted visibility at the ““zero”’-spacing; this gives the same
result as Equation 8.6, which is correct because the
‘““zero’’-spacing gives the total itensity.

The noise o of the observations can be determined from
the norm Qy. If one has fitted W < R components and
the residuals outside the ‘“window” are only random
(i.e. the deviations from the measured visibilities V,, are
random) then statistical theory predicts (cf. van der
Waerden, 1959)

o = Qw/(R — W). (8.9)

Practical applications of the error analysis to 2-
dimensional real observations will be discussed elsewhere.

8.2. Numerical Examples

The examples given here are simple artificial noise-free
cases, which illustrate the relation between the visibility
and the set of components t. Also the error estimates of
the various quantities are shown.

Two sources have intensities 2 and 1 respectively and
are shown as arrows in Figure 1. The true visibility
(N = 34) is represented in Figure 3 as heavy lines. Three
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—1I0 0 +1b X

Fig. 1. Example of the brightness distribution of two close sources

(arrows) and the convolution with 3 different “dirty”’ beams. The
“dirty”™ beams are based on the weights shown in Figure 3c

different “dirty’” beams are used, which are based on
R = 5 observations, distributed regularly on baselines
Un = 2, 4 and 8 times Au, respectively, as shown at the
bottom of Figure 3. The resulting “dirty”” maps are
plotted in Figure 1. The results of the deconvolution
step with W = 4 components are given in Figure 2. In
order to make comparison easier, the solution has been
forced into four adjacent points. The estimated visibilities
(i.e. the discrete FT of the components) can be seen in
Figure 3. For this particularly simple source structure

- ——— ——-
]
]

-

(3) (2) (1)

.
0 0 0 x

Fig. 2. Results of the deconvolution step based on the “dirty”

maps of Figure 1. The errors bars indicate the errors based on

noise of 0.01. Note the very large errors for case 1
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16u
Figs. 3a and b. The complex Fourier transform of the com-
ponents shown in Figure 2. One sees how far unknown informa-

tion could be extrapolated, assuming a simple source structure.
c: The weights, i.e. the sampling function

&
I
104 T L
2.51 A
1
0.254
014
0.0254
RN | | | | |
T T T T —T T T
-16 -8 0 8 u 16

Fig. 4. The errors in the visibility (more correctly in U =
V. + Vs, see text) as function of the spacing u for the 3 cases. Note
the very steep increase in errors for the extrapolated visibilities

U. J. Schwarz: CLEAN

even the case with the smallest baseline u,, = 2. Au gives
a rather good fit, which can be extrapolated to at least
twice the used baseline. The error estimates of the com-
ponents are given as error bars in Figure 2; the errors of
the visibilities are plotted separately in Figure 4. The errors
of the sum of the components are 1.6, 1.6, 1.7 times o for
u, = 2,4 and 8 respectively. All error estimates are based
on a value ¢ = 0.01.

The errors show clearly the well known fact, that one
needs an extremely high signal-to-noise ratio in order
to extrapolate the visibility (i.e. to increase the resolution)
even moderately.

In a second example, the two point sources are on the
grating responses of each other. Their amplitudes are
again 1 and 2, respectively. The grating response has an
amplitude of 349, see Figure 5b. As in the previous
example the deconvolution components and the associated
errors are displayed. The average amplitudes, positions
and errors of the two groups of components are shown in
Figure 5d. The errors of the fluxes of the individual
sources and the total flux are 1.45, 1.55, and 2.20 times o
respectively. One sees that the error in flux (2.200) is
only slightly higher than the combined error of the two
sources (1.45%2 + 1.55%)Y2¢ = 2.120, in spite of the strong

2 a
1-
(R NIVAN N~/ A [_
IVERVARG S SN A
b
1_
0 A vy /\ ~
21 l
¢ |
1 ] |
1 71
7 i
——
d i
. | ;
| |
. : |
140 l0 110 X

Fig. 5. a True brightness (arrows) and dirty map. b Dirty beam.
¢ Components found in the deconvolution step with error bars,
the errors being based on noise of amplitude as indicated by the
bar in Fig. 5a. The noise is however not included in the dirty map
d Combined errors for each source
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pr _
NV
0

L]

16 u
Fig. 6. a Error of the visibility (more correctly of U = V, + V5,
see text). b Weights (sampling function)

grating response interfering directly. The same result is
also obtained if the amplitudes of the sources are equal.
The small additional uncertainty due to the fact that the
two sources are on a grating response of each other
manifests itself in the “ripple” of the error in the
visibility (Fig. 6); a similar “ripple”’ is not seen in the
previous example (Fig. 4).

This “clean” solution of W = 6 and R = 13 does not
fall under the general classes, for which the positive
definiteness can be proved; this particular example has
also a positive definite matrix By,.

9. The “CLEAN*’ Map

9.1. Convolving the Components with a “‘ clean” Beam

As mentioned in Section 2, a “clean’’ map is constructed
by convolving the components found in the deconvolution
step, ty, with a hypothetical beam, the ‘“clean’’ beam, h.
The effect of this is to weight down the high frequency
terms of the estimated visibility, which are the most
uncertain ones (cf. Sect. 8).

The “clean’ beam h is here defined as the Fourier
transform of a normalized set of weights w,

Zw,,‘ =1. ©.1

The normalization ensures that the “clean’ beam A4 has
the same maximum amplitude of unity as the “dirty”
beam b which it replaces. The “clean’” map is produced
by convolving the components with the “clean” beam
(H in matrix notation). For simplicity we shall in this
section drop the “window” sub- and superscripts W
and write:

DFT
h<——w,,

¢ = Ht, ©9.2)
e, w,RV. 9.3)

With a window of W = R positions, the norm Q can be
brought to zero. Then ¢ will be in agreement with the
(weighted) true transform V), at the positions u where this
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has been measured. In between these positions the
extrapolated values are used.

How does one choose a suitable “clean’ beam? It
should obviously have a satisfactory main lobe and as
small sidelobes as possible. Its Fourier transform w, must
not stretch far outside the largest measured value up,,
since this would lead to unacceptably large errors in the
extrapolated visibilities (Sect. 8). The “clean” beam is
often chosen as the Fourier transform of a Gaussian
which is truncated just outside #,,,. Such a beam satisfies
the above criteria. Truncated versions of the “dirty”
beam however, are unsuitable, as their transforms will
normally stretch far outside uyay.

In certain circumstances it may be useful to define a
‘“clean’” beam in analogy with a Wiener filter by weight-
ing the extrapolated visibilities according to their un-
certainty (cf. Eq. (8.8))

Wy if we#0
1p®(Uy) ifw,=0

The above discussion shows that one cannot in practice
improve the resolution significantly by choosing a very
narrow ‘““clean” beam. Such a beam would have a
transform stretching far outside the measured range of u.
A significant increase in the resolution can be achieved
in theory, but only under very special circumstances and
with noise-free data.

h2, { (9.4)

9.2. Adding the Residuals

For practical reasons the deconvolution process is usually
stopped before all residuals have disappeared. It is then
common practice to add the residuals r’ to the map
obtained by convolving the components t’ extracted so
far with the “clean” beam h. The purpose is to keep
significant features that may still be leftinr’. The “clean”
map ¢’ is then given by:
¢ =Ht'"+r’

=Ht' + Bt — t’)

=Ht+ B - H)t-t), 9.5)
which shows that, as expected, ¢’ differs from the zero
residual “clean” map ¢ (Eq. (9.2)) by the sidelobes of
those components which were missed because the itera-

tions were interrupted. Taking the Fourier transform of
the right-hand side we get:

¢ < W, kV + (W — W)XV — V). 9.6)
At the positions u; of the measured Fourier components
we have w; # 0 and V; = V5. In general, since there are

finite residuals (t — t"), we also have
Vi=V)=Wo—V)#0, (CN)]

and the second term in Equation (9.5) disappears for the
measured components only if wy,, = w;. In practice one
can arrange the weights so that w,, = gw;, but the
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constant g will be determined by the normalizing
Equations (6.2) and (9.1). We see that ¢ « 1 if, as is often
the case, a limited number of measurements are distri-
buted over a fine grid in u: there are then many more
non-zero positions in w, than there are in w. Since g will
normally be # 1, one should not expect the “clean’’ map
¢’ to agree exactly with the measured (and weighted)
Fourier components.

The map can be brought to exact agreement with the
weighted measurements if the residuals are not added
directly but in the form gr’, i.e. scaled by the factor g.
This, however, means that one changes the amplitude
scale of the residuals, and the original purpose of the
addition is lost.
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Appendix

If the 2-dimensional field is a square regular grid of P?
grid points, then the 2-dimensional “dirty”’ beam is a
P?% by P2-matrix

d., dy dy d,

C_1 €y C; Cg

d_,
C_2
(A.1)
b,

a_g

b_1 1 b1 b2

a_, a, a, a,

/

which can be put in a vector of length P*
(A.2)
In our application in synthesis observations the beam is

derived from a 2-dimensional Fourier transform, resulting
in the symmetries:

e .C_9C_1CpC1Cy. . .b_zb_llblbz. LA_od_q...

b—k = bk; a_, = ck’ etc. (A.3)
Therefore the vector will be symmetric
e C_gC_1Cg C1 Co. . .b_gb_1 1by by...c51€0C_1C—3. .-

: A4

As in the 1-dimensional case, the convolution can be
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expressed in a system of P* equations. This system can
be written in a symbolic form as follows:

B © @D @) )
CcH B (© (D) (D)
Bt =<(D7) (C7) B (C) (D) t=d,
(D) (D7) (€) B) (O
© @@ (@) (€) B
(A.5)

where the submatrices (B), (C) have (P)> elements,
defined as in the 1-dimensional case, Equation (2.2). The
submatrices (C~), (D~) are matrices constructed analo-
gously, but with the “mirror” images of the vectors
instead, ¢/, d’. . ., namely

(A.6)

One sees easily that the matrix {B} is symmetric. In order
that the method CLEAN works, {B,} has to be a sym-
metric, positive semi-definite matrix. As we have seen
the first condition is fulfilled, the second has to be proven.
Note that the matrix {B,} is not circulant any more, but
has some higher order structure. To prove the non-
negative definiteness of the matrix we use the norm Q
(Eq. (3.1)), which also in the 2-dimensional case can be
interpreted in terms of the visibility,

¢ = (...C01€0C-1C—2...) .

P,P
Q= w,AVZ with > wy=1. (A
17
If all weights w;; = 0, then Q = 0, hence {B,} is positive
semi-definite. Completely analogously to the 1-dimen-
sional case, to each of the weights w;, = O there belong
eigenvalues A; = 0 and eigenvectors which are 2-
dimensional sine-waves. Also the error analysis is
extendable; the sub-matrix {B,,} must be inverted to
derive the errors.
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