Applications of Digital Processing in LOFAR

André W. Gunst

Introduction ASTRON
 LOFAR System Overview
 LOFAR Station Processing
 LOFAR Data Transport
 LOFAR Central Processing
 Beyond LOFAR

Status and Conclusions

AST(RON

ASTRON Institute

- Radiosterrenwacht
- Technisch laboratorium
- Internationale samenwerking
 Joint Institute for VLBI in Europe

Enabling discovery in astronomy through innovative instrumentation and facilities management.

> Astronomers like:

AST(RON

- Setter angular resolution
- Larger field of view
- Some sensitivity
- Larger instantanous bandwidth
- Observe at multiple frequencies
- > So, better telescopes ...

AST(RON Westerbork Synthesis Radio Telescope

AST(RON*Joint Institute for VLBI in Europe (JIVE)*

Telescopes in Europe and China Synchronous observations stored on tapes Send to supercomputer in Dwingeloo "Telescope" as large as Europe!

ive

Breakthrough...

> No big dishes anymore:

- Solution Many small antennas
 - No maintenance, mass production
- Electronically pointing
 - Multiple instantanous beams
 - Possibility to suppress RFI
- \succ Now is the time:
 - Computers cheap
 - Broadband data networks available

AST(RON *Radio Receiving System Overview*

> Trend:

Digital hardware moves to more to the antenna

- Epoch of Reionization
- Extragalactic Surveys
- Transients and Pulsars
- Cosmic Rays
- ➤ And new discoveries ...

Multi Beaming

Tied-array mode

Top Level Architecture

System Data Flow

Station Beams Station Beams	Delay Tracking Delay Tracking		Post
•		Correlator	Processing
Station Beams	Delay Tracking		

AST(RON

Station Architecture

AST(RON Low Band Antenna (30-80 MHz)

Delay Line

> Delay necessary for 1.25m and regular tile: $3 \ge 1.25 \ge \text{sqrt}(2) = 5.3 \text{ m} \rightarrow 17.6 \text{ ns}$

≥ 85% of that is 15.03 ns

bit	delay (ns)
0	0.47
1	0.94
2	1.88
3	3.76
4	7.51
Total	15.03

Efficiency for a time delay of 85% the maximal length for 5 bit @ 240 MHz

Efficiency for a time delay of 85% the maximal length for 5 bit @ 120 MHz

Receiver

RCU REV. 2.0 juni. 200

AST(RON

> Number of bits: 12

Sampling frequency: 200 MHz / 160 MHz

Processing functions

Sample rate max. 200 MHz

➢ Number of taps: 4096

➢ Number of subbands: 512

Stopband attenuation: 80 dB

≻ Ripple: 0.45 dB

Transition region: 0.2 subband

Measured Frequency Characteristic

subband filter characteristic

AST(RON

input frequency (subband number)

subband filter characteristic

AST(RON

Straightforward Filter bank

AST(RON

Example for Four Subbands

AST(RON

Why multiplying signals, which are thrown away
 Number of required resources much smaller

AST(RON Limited Amount of Bits $y(iT_s) = Q_e \left\{ \sum_{i=0}^{N} Q_b \left[Q_s \left(x((i-j)T_s) \right) Q_c \left(c_j \right) \right] \right\}$ 20 0 -20 (dB) (H(f) (dB) -40 -60 -80 -100-120 -0.5 -0.3-0.10.1 0.3 0.5 f/fs

AST(RON *Digital Complexity for Stations*

Small amount of operations on a large amount of data
Not much chips required (<10 k chips)

Therefore FPGA's are used to implement the digital functionality

Current trend in FPGA land is to embedd:

- > Multipliers
- > Memory
- > On chip microprocessor cores

instead of logical elements only

Digital Beamforming

Output data stream: 3-6 Gbps

Memory: 48 GByte

Processing capacity: 750 Gmul/s

20 kilometer coax cable

AST(RON *Transient Buffering*

Cosmic Ray Detection

Detection only possible on the stored signals

Properties Infinite Impulse Response Filters: Advantage: cheap Disadvantage: non-linear phase

Example of a 3th order IRR filter:
 centre frequency: 63.5 MHz
 bandwidth: 2 MHz
 4 multipliers required

AST(RON

Station Subrack

AST(RON

AST(RON *Centrale processing*

Pipeline Overview

Station Data Receipt

Circular Buffer

Delay Compensation

AST(RON

I/O Node \rightarrow *Compute Node*

Transpose

Poly-Phase Filter Bank

Bandpass Correction

SuperStation Beam Forming

Pipeline diversion

Correlation Pipeline

Correlation

AST(RON

Compute Node \rightarrow *I/O Node*

Further Integration

Best-Effort Queue

AST(RON

I/O Node 🛛 Storage Node

Write to Disk

Beam Forming Pipelines

Incoherent Beam Forming

Coherent Beam Forming

Integration

2nd Transpose

Beam Formed Data

AST(RON *Ultra-High Energy Particles Mode*

Inverse PPF

Trigger Algorithm

Required: high bandwidth, performance and real-time
Assembly used 96% of FPU peak)

- Setwork protocol optimized
- ☞ OS modified

AST(RON

Combined compute and storage cluster
 102 compute nodes of which 100 storage nodes
 2 CPUs with 12 cores (2.1 GHz klok freq.)
 20 TByte per storage node

> Total capacity: 20 TFlop and 2 PByte

Status

AST(RON LOFAR Opening 12 June 2010

LBA fields: 40
HBA fields: 40
Fiber conn.: 36

► In operation: 34

	Station/Item	Cabinet	LBA	HBA	Fibre	CEP connection	Validated
	CS302						
	RS307						
	RS503						
	RS106						
	RS208						
	CS030						
	CS401						
	CS021						
	CS032						
	RS306						
	CS301						
	CS501						
	RS509						
	CS103						
	CS001						
	CS002						
	CS003						
	CS004						
	CS005						
	CS006						
	CS007						
	CS024						
	CS201						
	CS101						
	CS026						
	RS205						
	CS017						
	CS011						
	CS013						
	CS013						
	CS020						
	DS031						
	RS303 (RS104)					
	R5210						
	R5310 D6404						
	R5404						
	R5400						
	RS407						
	RS409						
	RS410						
	RS508						
	Effelsberg						
	Tautenburg						
	Garching						
	Potsdam						
	Juelich						
© ASTRON	Nancay						
	Onsala						
	Chilbolton						
	Totals	40	40	40	36	35	34

AST(RON LOFAR Results (M51)

. **3C 61.1** LOFAR 173 MHz VLSS 74 MHz VLA 1.5 GHz WENSS 325 MHz

Possible telescope configuration

1500 dishes (15m diameter) in central ~5 k Sparse aperture arrays

+1500 from 5 km to 3000+ km

ON

UniBoard

LOFAR full of digital signal processing functionality

> Multiple technologies used in one system

> Digital systems tend to move to the antennas

