Digital Signal Processing:

Mathematical and algorithmic manipulation of discretized and
quantized or naturally digital signals in order to extract the most
relevant and pertinent information that is carried by the signal.

Signal to be ) , Processed
processed signal

« What is a signal?
« What is a system?
« What is processing?

Applied Signal Processing - Lecture 1



DISCRETE SIGNALS

< A length-N sequence is often referred to as an N-point sequence

< The length of a finite-length sequence can be increased by zero-padding, i.c., by
appending it with zeros

< A right-sided sequence x[n] has zero-valued samples for n<N, If N,>0, a right-
sided sequence is called a causal sequence
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T

< A left sequence x[n] has zero-valued samples for n>N, If N,<0, a left-sided
sequence is called an anti-causal sequence
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DISCRETE TIME SIGNALS

UNIT STEP (SEQUENCE)

1 n=0

u[n]:{ j = iﬁ[n—z’]

0, n<0 5

oln]=u[n]—u[n—-1]



‘ PERIODICITY

< Sinusoidal sequence Acos(w,n+¢) and complex exponential
sequence Be/%" are periodic sequences of period N, if
w,N = 2nr, where N and r are positive integers

< Smallest value of N satisfying o, N = 27mr| is the fundamental
period of the sequence

< Any sequence that does not satisfy this condition is aperiodic
< To verify the above fact, consider
xi[n] = cos(w, n+ ) xX5[n]=cos(w,(n+ N)+0)
x,[n] = cos(@,n+¢)cosw,N —sin(w,n +¢)sinw, N
=cos(®,n+¢)=x[n] iff sino,N=0 and cosw,N =1

2t N
% These two conditions are met if and only if COON =2Tr or ~ — ™
0



ENERGY & POWER
IN SIGNALS

& [Itis often useful to define the “size” or “strength” of a signal. That is, we would like to be able to use a
single number that represents the average strength of the signal. How would we do that?

& A reasonable answer would be to use the area under the curve. The larger the area, the
stronger the signal. 4

~/

/

% But if the signal has negative areas, than the total area is reduced by the negative parts. Yet, a
negative signal is not necessarily a weaker signal. In fact, -110 V will jolt you as much as
+110 V will. So, we need another approach. Calculating the area under the “square of the
absolute value of the signal” solves this problem

X(1)

o0
2
& This area is defined as the energy of the (continuous time) signal. E x Z (X [n ])
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CAUSALITY

< A system is said to be causal, if the output at time n, does not depend
on the inputs that come after n,,.

< In other words, in a causal system, the n,® output sample y[n,]
depends only on input samples x[#z] for n < n, and does not depend on
input samples for n>n,,.

< Here are some examples: Which systems are causal?

yin]=ox[n]+ arx[n—1]+ azx[n — 2]+ ayx[n— 3]
y[n]=bpx[n]+ bx[n—1]+byx[n—2]
+ayyln—1]+ayy[n—2]
y[n]= yn -1+ x{n] 1= x,[n]+ G, [n =11+ x,[n+2])

ynl=x,[n]+ ) (uln—1]+x,[n+1])

+2 (x5, [n =21+ x,[n+1])
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IMPULSE RESPONSE

|
< The response of a discrete system to a unit impulse sequence d[n] 1s

called the impulise response of the system, and 1t 1s typically denoted

by h[n]
x[n]=o6[n] yln|=h|n]

75
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h[n]=h[n]*o[n]= i h[m] . O[n—m]

nM=—00
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FINITE IMPULSE RESPONSE
SYSTEMS

L
< If the impulse response h[n] of a system 1s of finite length, that system
1s referred to as a finite impulse response (FIR) system

hin]=0 for n< N, and n>N,, Ny <N,

L The output of such a system can then be computed as a finite convolution sum

N>

vinl= > hlk]x[n—k]

k=N h[n)
% E.g., h[n]=[1 2 0 -1] is a FIR system (filter)

% FIR systems are also called nonrecursive systems (for reasons that will later

become obvious), where the output can be computed from the current and past

input values only — without requiring the values of previous outputs. m
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INFINITE IMPULSE RESPONSE
SYSTEMS
< If the impulse response 1s of infinite length, then the system is referred

to as an infinite impulse response (IIR) system. These systems cannot
be characterized by the convolution sum due to infinite sum.

% Instead, they are typically characterized by constant coefficient linear difference
equations (CCLDE:s), as we will see later.
% Recall accumulator and note that it can have an alternate — and more compact

representation that makes the current output a function of previous mnputs and
outputs

sinl= S0 =) nl=Hn-1+adn]

f=—0or

% The impulse response of this system (which is of infinite length), cannot be
represented with a finite convolution sum. Note that, since the current output
depends on the previous outputs, this is also called a recursive system
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CONSTANT COEFFICIENT
LINEAR DIFFERENCE EQUATIONS

L
< All discrete systems can also be represented using
constant coefficient, linear difference equations, of the form

vinl+apy[n—-1]+a,v[n—-2]+---ayyv[n — N]=byx[n]+bx[n—1]+---+ by x[n—M]

Qutputs y[n] Inpl<ts x[n]
Z

N M

2 ayln-k] =2 b.x[n—k]

~ Y

Constant coefficients

& Constant coefficients 4;and b; are called filter coefficients

% Integers M and N represent the maximum delay in the input and output,
respectively. The larger of the two numbers is known as the order of the filter.

% Any LTI system can be represented as two finite sum of products! m
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IMPORTANT THEOREMS

A

= There are several important theorems related to DTFT.

@ Theorem 1:

S If x[n] is input to an LTI system with an impulse response of h{n], then the DTFT
of the output is the product of X(w) and H(w)

x{r] —-q— yn]=x[n]*h[n]
I !

X(w) —-m—~ Y(0) = X(0) . H)



FREQUENCY RESPONSE

@ Theorem 2:

& If the input to an LTI system with an impulse response of h[n] is a complex
exponential &%7-then the output is the SAME complex exponential whose
magnitude and phase are given by | H(w) | and <H(w), evaluated at w = w,,

hin) , Y= 3 Ak

:( i H[k]e’™" ] e’
Q J

eon

y[n]= H(a)o)ej%"

If the system input is a complex exponential at a specific frequency W, then the system
output is the same exponential, at the same frequency W, but weighted by a complex
amplitude that is a function of the input frequency. This complex amplitude, H(w,), is
the DTFT of system impulse function h[n], evaluated at w,, and it is called the
frequency response of the system.



PERIODICITY OF DTFT

@ Theorem 3:

Y The DTFT of a discrete sequence is periodic with the period 2, that is
X(w)=X(w+2xk) forany integer k

< The periodicity of DTFT can be easily verified from the definition:

00 .
X(w)= ) x[nle” /™" . ) Why...
n=—o X (0 +27k) = Z x[n]e_j(”””k)" = Z x[n]e /" em 2

= niwx[n]e_jw” = X (a)) YV k




IMPLICATIONS OF THE
PERIODICITY PROPERTY

H(w)=H(o+27)

t: 3n 2n 5n ®

— NIlA

Q ()

Y Theorem 4 (You-will-flunk-if-you-do-not-understand-this-fact theorem):
The discrete frequency 2z rad. corresponds to the sampling frequency . used to
sample the original continuous signal x(t) to obtain x[n].

& Proof:  x(t)= Asin(£|2t -0) =x(nT,)= Asin(Qzln -6)

S w=QT PFor Q= Q_ we have 0=Q T =2nf T =2n



IMPORTANT DTFT PAIRS
THE SINUSOID AT W

> By far the most often used DTFT pair (it is less complicated then it looks):

x[n]=e

Jjoyh

; X(a))

i 27r5(a)—

k=—o0

w, +27k)

x(n) = cos wyn

W/

NV

o~

[ 3
xn]=e/M <27

3 5(@)—@0 i27zm)

m=—x
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The above expression can also be obtained
from the DTFT of the complex exponential
through the Euler’s formula.



OTHER IMPORTANT

.M»,‘r PROPERTIES OF DTFT

< We will study the following properties of the DTFT:
Y Linearity = DTFT is a linear operator
Y Time reversal = x[-n] €2 X(-0)
Y Time shift = x[n-n] €2 X(w)eior
& Frequency shift = x[n] e &> X(w- w))
Y Convolution in time =P x[n]*y[n] €2 X(w).Y(w)
Y Convolution in frequency
Y Differentiation in frequency = nx[n] €= j (dX(w)/dw)
O Parseval’s theorem = Conservation of energy in time and frequency domains
Y Symmetry properties

F

3 3

x[n]e X (w) yn]eY(w)




ALIASING

< Here is another example:

& The signals in the following plot shows two sinusoids: x,[n]=cos(0.4nn) and
X,[n]=cos(2.4nn). Note that these two signals are distinct, as the second one clearly
has a higher frequency.

Y However, when sampled at, say integer values of 7 , they have the same values, that
is x,[n]=x,[n] for all integer n. These two signals are aliases of each other. More
specifically, in the DSP jargon, we say that the frequencies w,= 0.4n and w,=2.4n
are aliases of each other.

Y This is why all signals and systems — when represented in frequency domain — are
normalized to a 2m interval

—

0 L,.: & . 'fb_ 1§ LI .;‘ £1-1 % 3

Amplitude

l
I
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ALIASING

< In general, 2n multiples added or subtracted to a sinusoid gives aliases

of the same signal.
Y The one at the lowest frequency is called the principal alias, whereas those at the

negative frequencies are called folded aliases.
Y In summary, the frequencies at ®, 127k and 2nk-m, for any integer £, are aliases of

each other.
Y We can further show that for folded aliases, the algebraic sign of the phase angle is

opposite that of the principal alias

Discrete-Time Spectrum of x[n] = cos(0.4mn)

24 .67 §—JT -4 0 4w T 1.6 24w

wcy (di)/‘
Alias frequencies
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EFFECT OF SAMPLING
IN THE FREQUENCcCY DOMAIN

spectrum of the continous signal X
/\
-y Qp £
spectrum of the sampled signal Xe(a)
(A
| /I\ | /\ | /1\ |
- - —Qp Qp, Qg 0 9.
2 2
Xs(m)
1
[
| /l\ | /\ | /|\ |
—21 -t =QnT5 Qpf; = 2n w=81,



NYQUIST RATE

< Note that the key requirement for the G,(€2) recovered from G (€2) is
that G(€2) should consist of non-overlapping replicas of G,(€2).

G,(jQ)
;l.;ll.(...:
: _Qﬂl Oﬁ 7 Q"l E - Q
P oGum :
11 §
s BN N Q
Q 2y o0 2,0\ Q 20 3Q

< Under what conditions would this be satisfied...?

?

If Q,>2Q, , g,(t) can be recovered exactly from g, (t) by passing it through an ideal
lowpass filter H.(Q) with a gain T, and a cutoff frequency Q. greater than Q_ and
less than Q_- Q_. For simplicity, a half-band ideal filter is typically used in exercises.



‘ DFT ANALYSIS

< Definition - The simplest relation between a length-N
sequence X[ n], defined for 0 <n<N-1, and its DTFT X(w)
1s obtained by uniformly sampling X(w) on the w-axis
0<o<2mato=2nkN 0<k<NI

< From the definition of the DTFT we thus have

X| k| :Jil x| n|e 2mkniN_ Nf x[n|e ™ DFT analysis equation
n=0

n=0




DFTANALYSIS

< Note the following:

& kreplaces w as the frequency variable in the discrete frequency domain

Y X[ 4] is also (usually) a length-N sequence in the frequency domain, just like the
signal x[n] is a length-IN sequence 1n the time domain.

% X[k] can be made to be longer than N points ( as we will later see)
Y The sequence X[4] is called the discrete Fourier transform (DFT) of the

sequence x| n|

—j2n/ N

< Using the notation Wy =€ the DFT 1s usually expressed as:

Zx WX 0<k<N-1

n=




-}

INVERSE DFT

(DFT SYNTHESIS)

< The inverse discrete Fourier transform, also known as the synthesis
equation, 1s given as

Xn|=

27rnk

N
Ng X[k]e

| NS /

= — Z X[k]WN , 0

k_

<

n

<

N-1

DFT synthesis equation

< To verify the above expression we multiply both sides of the above
. .27
equation by yn_ ' ™ and sum the result from n=0 to I=N-1



x(n)

|
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Original sequence

I

1

n

Linear shift

x(n-1)

x(n-2)

5 6n

Circular shift

x((n-1))g

W —

B f—

x((n-2))g

iy S

W —

B fe—

n

CIRCULAR SHIFT

x(—n) x((=n))s

W —
b e—l

—
e p—
I f—

n

| 4111

If the original sequence is defined in the time interval N,
to N,, then the circular shift can mathematically be
represented as follows:

%[n]=x(n- L)y
= x(n- L)mod N]
— (n- L+1N), suchthat N < n—L< N, ]

The circularly shifted sequence is obtained by finding an
integer r'such that n-L+rNremains in the same domain as
the original sequence.



‘ Circular Convolution

N-1
Linear convolution: ¥, [n]=)_ glmlh[n—m]
m=0

=

—1

Circular convolution:  yclnl= ) glmlhl<n—m>,]
0

3
I

consider the following functions for a 4 point circular convolution

1?2T ? - 2T T g ¢ "
3 2 3

O n
0 1 2




‘ Circular Convolution

=2

—1

Evaluating yc[n]l= ) glmlh[<n-m> ] g1ves:
0

Ycl0]= glO0]A[0]+ g[1]A[3]+ g[2]A 2]+ g[3]A[1]
velll= glO]a[1]+ g[1]A[0]+ g[2]A[ 3]+ g[3]A[ 2]
Yel2]= glO]n2]+ g[1]A[1]+ g[2]A[0] + g[3]A[ 3]
Yel31= gl0]A[3]+ gl1]A[2] + g[2]A[1]+ g[3]A[0]

3
I

so we see that the 4 terms involve multiplying g[n]
with reversed and circularly shifted versions of A[n]
on the interval n=0-3



CONVOLUTION MATRIX

< The circular convolution can also be easily computed using the
following N-point convolution matrix:

y|n|=x|n| @&, h[n|

0] | [ WOl hN-1 BN-21 - h1|| K0
y[1 h[1] ~ h[0] h[N-1] - h2]|| 1]

v{2] |=| W21 b1l  hl0] - hI3]|| X2

| y{N-1] [h[N-1] h[N-2] h[N-3] - h0]]| {N-1],



THE Z-TRANSFORM
(THE LAST ONE, REALLY!)

< A generalization of the DTFT leads to the z-transform that may exist
for many signals for which the DTFT does not.

U DTFT is in fact a special case of the z-transform
* ...just like the Fourier transform is a special case of (?)

< Furthermore, the use of the z-transform allows simple algebraic
expressions to be used which greatly simplifies frequency domain
analysis.

< Digital filters are designed, expressed, applied and represented in
terms of the z-transform

<@ For a given sequence x[n], its z-transform X(z) is defined as

X(z)= i x| n|lz "

n=-—ow

where z lies in the complex space, that 1s, z=a+;b=re™

Digital Signal Processing, © 2007 Robi Polikar, Rowan University



Z €22DTFT

< From the definition of the z-variable

o0 o0

X()= 3ol =3 alnlre) " =3 sl e

n=—00 n=—0o0 n=—0o0

® It follows that the DTFT is indeed a special case of the z-transform, specifically, z-
transform reduces to DTFT for the special case of r=1, that is, | z| =1, provided

o0

that the latter exists. X(w)= Z X[H] g jon

n=—w

© The contour |z|=1 is a circle in the z-plane of unit radius = the unit circle
© Hence, the DTFT is really the z-transform evaluated on the unit circle

Y Just like the DTFT, z-transtorm too has its own, albeit less restrictive,
a0
convergence requirements, specifically, the infinite series 3 x{n]z "must converge.

N=—x

< For a given sequence, the set R of values of z for which its z-
transtorm converges 1s called the region of convergence (ROC).

Digital Signal Processing, © 2007 Robi Polikar, Rowan University



CONVERGENCE OF
THE Z-TRANSFORM

& From our discussion with the DTFT, we know that the infinite series

X(z) = X(rel?) = ix[n] r g Jon

N=—0o0

converges 1f X[njris absolutely summable, that 1s, 1f

i‘ﬂmfﬂ<w

N=—00

< The area where this is satisfied defines the ROC, which in general is
an annular region of the z-plane (since “z” 1s a complex number,
constant z-values describe a circle in the z-plane)

R <|7<R" where0<R <R" <

Digital Signal Processing, © 2007 Robi Polikar, Rowan University



EXAMPLES

< Determine the z-transform and the corresponding ROC of the causal
sequence X[n]=o"u[n]

1 This power (geometric) series converges to

X(Z)=
(2) 1—xz*

= ROC is the annular region |z| > |a|

-1
for |o( z |< 1 x[nj=1.1" ufn]

wWwor—r—T— T T T T T T 7T

lini2l 12000

Note that this sequence
does not have a DTFT if 10000

|a|>1, however, it does have

a z-transform! o
al Re{z} 6000

This is a right-sided -

sequence, which has an

ROC that is outside of a 2000
circular area!

: : H : H . '.,.,.,..5,';'."#' P
Odesessersatenrearenrteraseaneatosooooeny) bR R T Tr e
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EXAMPLES

< The z-transform of the unit step sequence u[n] can be obtained from

X(z)=—

—, for ‘az_1‘<1
l-az

1

by setting a=1=>» U(z) = L _ 2 , for
-z z-1

z_l‘<1

ROC i1s the annular regions |z[>1. Note that this sequence also does
not have a DTFT!

Digital Signal Processing, © 2007 Robi Polikar, Rowan University



EXAMPLES

ROC is the annular region |Z| < L
* The z-transforms of the two sequences «"u[n] and

; 40
-u"u[-n-1] are identical even though the two parent
sequences are different

« Only way a unique sequence can be associated Re(z}

with a z-transform is by specifying its ROC
* This is a left-sided sequence, which has an ROC
that is inside of a circular area!

Digital Signal Processing, © 3007 Robi Polikar, Rowan University




EXAMPLE

< Consider x[n]=5"u[n]-8"u[-n-1] = X(z) = —2—+-2
% Cotresponding ROCs are |z|>5 and |z|<8 2=> z78
Y Therefore the ROC for this signal is the

annular region 5<|z| <8 /‘\
Y Note that if the signal was x[n]=8"u[n]-5"u[-n-1] 5 )8
the ROC would be empty! That 1s, the z-transform

of this sequence does not exist!

z-plane

U Now recall that DTFT was z-transform evaluated on the unit circle, that is
for z=e®. Therefore, DTFT of a sequence exists (that is the series
converges), if and only if the ROC includes the unit circle!

& The DTFT for the above example clearly does not exist, since the ROC does not
include the unit circle!

% Though, we must add that the existence of DTFT is not a guarantee for the

existence of the z-transform.
Digital Signal Processing, © 2007 Robi Polikar, Rowan University



RATIONAL Z-TRANSFORMS

< A rational z-transform can be alternately written in factored form as

278 Mla—gz‘l) ey B[ M1<z—@)
Dl 1,- 1(1 1% ) dOg (2= Dpr)

< Ataroot z=¢, of the numerator polynomial H({)=0, and as a result,
these values of z are known as the zeros of H(z)

< At aroot z=p, of the denominator polynomial H(p,)—> , and as a
result, these values of z are known as the poles of H(z)
& Note that H(z) has M finite zeros and N finite poles
G If N > M there are additional N-M zeros at z = 0 (the origin in the z-plane)
& If N < M there are additional M-N poles at z = 0
< Why is this important?
L[ As we will see later, a digital filter is designed by placing appropriate

* number of zeros at the frequencies (z-values) to be suppressed, and poles at
the frequencies to be amplified! *

Digital Signal Processing, © 2007 Robi Polikar, Rowan University
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SOME SENSE OF PHYSICAL
INTERPRETATION OF THIS MATH CRAP!

What does this look like???

I poles
1-247 ' +2.887° i
clear G(2) = 1 ) .
close all 1-0.8z2 " +0.64z
N=256; |

rez=linspace(-4, 4, N);
imz=linspace(-4,4,N);
%create a uniform z-plane
for n=1:N
z(n,:)=ones(1,N)*rez(n)+j*ones(1,N).*imz(1:N);

end
%Compute the H function on the z-plane
for n=1:N

for m=1:N

Hz(n,m)=H_fun(z(n,m));

end
end
%Logarithmic mesh plot of the H function
mesh(rez, imz, 20*log10(abs(Hz)))

function Hz=H_fun(z);
%Compute the transfer function
Hz=(1-2.4*z"(-1)+2.88*z*(-2))/(1-0.8*z*(-1)+0.64*z"(-2));

Digital Signal Processing, © 2007 Robi Polikar, Rowan University




STABILITY & ROC
IN TERMS OF ZEROS & POLES

< Recall that for a system to be causal, its impulse response must satisfy h[n]=0, n<0,
that is for a causal system, the impulse response is right sided. Based on this, and
our previous observations, we can make the following important conclusions:

Y The ROC of a causal system extends outside of the outermost pole circle

% The ROC of a noncausal system (whose h[n] two-sided) is bounded by two different
pole circles

Y Now, for an LTI system to be stable it must be absolutely summable, or in other
words, it must have a DTFT. But for a system to have a DTFT, its ROC must
include the unit circle. = An LTT system is stable, if and only if the ROC of its
transfer function H(z) includes the unit circle!

% Furthermore, a causal system’s ROC lies outside of a pole circle. If that system is
also stable, its ROC must include unit circle=® Then a causal system is stable, if and
only if, all poles are inside the unit circle! Similarly, an anticausal system is stable, if
and only if its poles lie outside the unit circle.

« An FIR filter is always stable, why?

Sgisi-
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A,

Partial Fractional Expansion

Example 1:

H(z)=

1

1

(=3z"+122)  (A—-1zHa-1z

this can be written as:

with:

SO:

H(z)=

Al AZ

_|_
(1-427) (1-3z7)

z|>1/2

1-1z7" 1-1z7"
4=——%" 1 =1y g=— 2" 1 =2
(I=gz )A=327)[, (I=yz )A=327)[_,
o 2 |
(Z)_(l—%z_l)+(l—%z_l) h[n] is causal —)

hn]=2(%)" wln]—(

1
4

)" uln]




‘ Partial Fractional Expansion

if M >N a polynomial must M-N Ny
be added of order M — N : H(z)= ) Bz "+) : dl —
k=0 i=0 1 —d;z2

values of B, are obtained by
long division of the numerator
of H(z) by the denominator.

in the case of multiple poles of order s at z = d; while all
other poles are simple another term 1s required:
. C

M-N . N A4
H(z)= Bz L
@) ; kZ +k=§¢i1_dkz_l " m=1 (l—diz_l )m




‘ PARTIAL FRACTION EXPANSION

< Re-express the rational z-transform as a partial fraction expansion of
simpler terms, whose inverse z-transforms are known.

& Slightly different procedure depending on whether the system has simple poles or
multiple poles

& A rational H(z) can be expressed as

v
Yo P _k+hz'+bhz o abyz™ D h7

H(z2) = = = i

G If M = N then H(z) can be re-expressed through long division

M-N
—¢ , R(2)
H(zy= > mz "+
D(z)
(=0
1
H(Z)_2+O.82_1+0.52_2+0.3Z_3 - H(z)= 3541527 4 S5+ 212
- 1+0.8271 +0.2272 1+0.8Zz 1 +0.2272

where the degtee of P;(z) is less than N. The rational fraction B(Zz)/ D(2Z) is then
called a proper fraction or proper polynomial .
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Partial Fractional Expansion

Example 2: [(H(z)=

As the numerator 1s the same
order as the denominator we
need to write H(z) as:

H(z)=B,+

2z +4z+2 142z +z7 (1427
222 -3z+1 1- 3704127 (1-1z7HA-z7Y
A1 A2 |Z | > ]

_|_
(1-3z7) (-z7)

we first need to determine B, and a residual expression with a lower
order numerator by dividing the denominator into the numerator

-1 )
B, =+ 1— 22_1 —I—Z_2
1-2z +3z7)

ﬁ



‘ Partial Fractional Expansion

_ 5z -1
the next step is to further solve the second term: 1 >
(1-2z"+3z7)

-1
and solve for4;and 4,. (4 =2+ 521 —1 1 (l—%z_l) =-9
(1-5z)1-z") .
-1
A =2+ 52_1 : — -z =48
(1-7z)A-z") Zzl
9 8

so: [H(z)=2-

_I_
(1-3z7) (1-z7)

n

h[n] is causal —==—> h[n]=20[n] —9(%) un]+8u[n]




FREQUENCY RESPONSE

< Recall that the output of an LTI system in the frequency domain is: |H(@) = Y(@)/ X (®)

% where H(w) is called the frequency response of the system, which relates the input and the
output of an LTT system in the frequency domain. The frequency response can also be

represented in terms of CCLDE coetficients:

M —]a)k

—jw —jw?2 - joM
. Btbe b Foth e

H(C()) — Zkzobke

k=0

N _jok —Jjo
Z ae”’ a,+ae’’ +ae

—jo2 —joN

+--+a,e

< A generalization of the freq. response is the transfer func., computed in the z-domain

% The function H(z), which is the z-transform of the impulse response h[n] of the L'TT system,

is called the transfer function or the system function
& Using the CCLDE coefficients

H(Z)zY(Z)/X(Z)

H(z)=

M —k M M-k M -1 M
Zk:obk? _(N-M) Zk:Oka _by 1Ly (I-cxz ) :b_OZ(N—M) Lo (=60

Zkzoak‘;\ Zk:OakZ 0 A_J_kzl(l_ k< 0

«

1 ‘_}ivzl(ff—f?k)

CCLDE Zeros & // Zero & pole/

coefficients poles factors
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FREQUENCY RESPONSE -
TRANSFER FUNCTION

< If the ROC of the transfer function H(z) includes the unit circle, then
the frequency response H(w) of the LTI digital filter can be obtained

simply as follows: |g(e/?) = H(w) = HE)|,_ o

< Assuming that the DTFT exists, starting with the factored z-transform,
we can write the frequency response of a typical LTI system as

i M jo
H(z)=20 /(N-M) 4_‘_5{;1(2—47,{) ‘ H(ef‘“):b_oejw(N—M)M.jcvzl(e. Sk)
. 1 -~k=1(Z_pk) “0 1 “k:1(ej60 — Pk)

From which we can obtain the magnitude and phase response:

M| jo arg H(e/®) = arg(by / ay)+ (N — M)
: b = Sk
|H(efa’)|: 0|2 k=l M . N .
ag | TTV |p/@ —pk‘ + arg(e!” - ¢p) - Y arg(e!” - py)
Lr=1 k=1 k=1

Digital Signal Processing, © 2007 Robi Polikar, Rowan University



AN EXAMPLE

= Consider the M-point moving-average FIR filter with an impulse response

h[n] = 1/M, 0<n<M-1
B 0. otherwise
y M
H( ) 1 JII-':I-—]. . 1 . :—JII-.I- Z _1
= = — = — ~ — M1
M = M(1-:z7")  M[z7 (z-1)]
= Observe the following
Ly The transfer function has M zeros on Lt ’ ‘?
the unit circle at* - = /2™/M << pr—1 o4 i g,
% There are M-1 poles at = 0 and a single = b
pole at =1 é | R ;: _________________ i
% The pole at 7 = 1 exactly cancels the 5 f- i
zero at 7 = 1 T 05) . | K
% The ROC is the entire plane except £ =0 o, i B
1} -
*To see this, try 1 05 0 05 1
Feal Part

zplane(roots([1,0,0...,0, -1]))
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ZERO PHASE FILTERS

< One way to avoid any phase distortion is to make sure the frequency
response of the filter does not delay any of the spectral components.
Such a transfer function is said to have a zero — phase characteristic.

< A zero — phase transfer function has no phase component, that is. the
spectrum 1s purely real (no imaginary component) and non-negative

< However. it is NOT possible to design a causal digital filter with a
zero phase.



LINEAR PHASE

< Note that a zero-phase filter cannot be implemented for real-time
applications. Why?

< For a causal transfer function with a nonzero phase response, the
phase distortion can be avoided by ensuring that the transfer function
has (preferably) a unity magnitude and a linear-phase characteristic in
the frequency band of interest

H@)=c/* Yy [H@|=1  ZH@)=00)=-ao

Y Note that this phase characteristic is linear for all ® in [0 2. 0(.)

& Recall that the phase delay at any given frequency ®, was Tp(@p)=——5"

Y If we have linear phase, that is, 8(®)=-0m, then the total delay at
any frequency o, is 7, = -0(®,)/ ®, = -00,/0, = o

% Note that this is identical to the group delay df(®)/d® dO(w)

evaluated at @, Ty(@y) = do

0=,

(0]
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LINEAR PHASE FILTERS

< It is typically impossible to design a linear phase IIR filter, however,
designing FIR filters with precise linear phase is very easy:

< Consider a causal FIR filter of length M+1 (order M)
H(z)=Y_  h[nlz™" = hO]+ A1z +h[2)z 72 + -+ H[M )z

Y This transfer function has linear phase, if its impulse response h[n] is either
symmettic

hnl=hM-n], 0<ns<M

or anti-symmetric

hnl=—-hM-n], 0<n<M

Digital Signal Processing, © 2007 Robi Polikar, Rowan University



‘ LINEAR PHASE FILTERS

This linear phase filter description can be generalised into a formalism
for four type of FIR filters:

Type 1: symmetric sequence of odd length
Type 2: symmetric sequence of even length
Type 3: anti-symmetric sequence of odd length

Type 4: anti-symmetric sequence of even length



LINEAR PHASE FILTER
ZERO LOCATIONS

Type 1 FIR filter: Either an even
number or no zeros at z =1 and ° o

Z=-1 - fa\
Type 2 FIR filter: Either an even AN Re ol o
numberornozerosatz=1,and _| Vit ©— 1
an odd number of zeros at z=-1 o S

) o

Unit circle Unit circle
jImz jlmz
Type 4 FIR filter: An odd number of . Type 3 Type 4
zeros at z = 1, and either an even
number or no zeros at z=-1 /

\ Rez

1 1 —1 1
The presence of zeros at z=*1 o
leads to some limitations on the use of

these linear-phase transfer functions
for designing frequency-selective filters Unit circle

-
N

Unit circle

o]
’\
J

o]

*
Digital Signal Processing, © 2010 Robi Polikar, Rowan University "ﬁl_’
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University

A Type 2 FIR filter cannot be used
to design a highpass filter since it
always has a zero at z=-1

A Type 4 FIR filter is not
appropriate to design a lowpass
filter due to the presence of a zero
atz=1

Type 1 FIR filter has no such
restrictions and can be used to
design almost any type of filter

Digital Signal Processing, © 2010 Robi Polikar, Rowan University
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/IR LPF FILTERS

< A first-order causal lowpass IIR digital filter has a transfer function

given by

l+z

1

Hip(2)= 1_2a£

x

l-az

J

_l—a Z+1
2 Z—

where |a| <1 for stability

N

Normalization term that ensures that

the gain at w =0 is 0 dB (magnitude of 1)

& The above transfer function has a zero at z=-1 i.e., at ® = © which is in the

stopband

% H,p(2) has a real pole at z = «

U As w increases from 0 to 7, the magnitude of the zero vector decreases from a
value of 1 to 0, whereas, for a positive value of «, the magnitude of the pole vector
increases from a value of 1-a to 1+«

% The maximum value of the magnitude function is 1 at ® = 0, and the minimum

valueisDatw =7

Hipe®)|=1, |[Hipe™)|=0

Digital Signal Processing, © 2007 Robi Polikar, Rowan University
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HIGHER ORDER IIR FILTERS

< Again, note that any of these filters can be designed to be of higher
order, which typically provides sharper and narrower transition bands

< Simply cascade a basic filter structure as many times necessary to
achieve the higher order filter.

< For example, to cascade K-first order LPFs

l—af 1+2Z°} l—a 1+7! K
Hip(2) = 5 [l—azlj ‘GLP(Z):( za'ljazzlj

& It can be shown that

—_ [ 1 2
oc=1+(1 C)cosm,—sinoV2C-C ¢ H(K-D/K

1-C+cosm,

. . . L . . Canyiled in part fromDSP, 3/e
Digital Signal Processing, © 2007 Robi Polikar, Rowan University S. K Mitra, Copyright © 2006



COMB FILTERS

< Starting from a lowpass transfer function:

H{z}:%mz“}:} Hoonb(2) = H(ZD) :%[1 gy

Comb filter from lowpass prototype
1 7 7 T, &) 7
\ J / "'.I ,I'Ir \'I .f | /
'. [ '. \ |
0817 ) |’
o IIl f \ II I|| |I I'l f I1| |I
: o YR |"|I | | H'| |
= IR | L]
=04 Il |I I| || I| |I I|| |I Il 'I
| |I .I |I [ 'I II | I| I|
I I I I I
D I| ” II| ||| Itl
0 0.5 1 1.5 2
/T
(L=5) L notches are at w=(2k+1)m/L and L peaks are at w=2mk/L
0<w<2m

{:l.lq.ih]il jend fromn EXSEY, e
Digital Signal Processaing, & 2007 Robi Poilkar, Rowan University 5 K il Copright & 206



/IR FILTER STRUCTURES

< The causal IIR digital filters are characterized by a real rational
transfer function of z'!, or equivalently, by a constant coefficient
difference equation.

< From the difference equation representation, it can be seen that the
realization of the causal IIR digital filters requires some form of

feedback. Furthermore,

& An Nt order TIR digital transfer function is characterized by 2N+1 unique (a and
b) coetticients, and in general, requires 2N+1 multipliers and 2N two-input adders

for implementation
N-1

3 a,y[n- k| = Tz:b)x[n-l]

k=0

y[n]=hx[n]+hx[n-1]+---+b, x[n-M+1]-ay[n-1]----—ay, y[n—- N+1]

< Given the filter CCLDE, we can implement it directly using the
multiplier coefficients. This is called Direct FoomlI implementation.

Digital Signal Processing, © 2007 Robi Polikar, Rowan University



/IR FILTER STRUCTURES

< Consider a 3" order example:

H(z) = P(z) _ D+t plz‘1 + pzz‘2 + p3z‘3
D(20 1+dzl+dz?+z>

Y Which can be split into two systems of H, (numerator) and H, (denominator):

W
X(2)—| Bz 2 H2) Y

Hl(z)zv)\(g =P2)=m+PZ +DPZ +DRZ"

Y(z): I 1
Wz D(2) 1+dz'+dz%+dz>

H,(2) =

Digital Signal Processing, © 2007 Robi Polikar, Rowan University



IlIR FILTER STRUCTURES:
DIRECT FORM |

< A cascade of the two then gives us the overall H(z), whose
implementation is known as Direct FomI implementation

» y[n]

x[n]

g p —dy <
4 |

Y Note that this structure is noncanonic since it employs 6 delays to realize a 3rd-

order transfer function

Digital Signal Processing, © 2007 Robi Polikar, Rowan University



OTHER NON-CANONIC
IMPLEMENTATIONS

< Notice that we can also implement these structures as follows:

x[n] y[n]

Move the delay lines
after the summation!

Py —-d 3
Digital Signal Processin



AN EXAMPLE

H( Z) 044740362727 +0.02Z° [ 0.44+0.362Z ' +0.02Z z!
14+0.4Z ' +0.1822-0.2Z" 1+0.82 ' +0.52*

Cascade form

Directform/l

Digital Signal Processing, © 2007 Robi Polikar, Rowan University



FIR OR lIR?2??

< Several advantages to both FIR and IIR type filters.

< Advantages of FIR filters (disadvantages of IIR filters):
& Can be designed with exact linear phase,
& Filter structure always stable with quantized coefficients

Y The filter startup transients have finite duration

< Disadvantages of FIR filters (advantage of IIR filters)

% Order of an FIR filter is usually much higher than the order of an equivalent IIR filter
meeting the same specifications =® higher computational complexity

Y In fact, the ratio of orders of a typical IIR filter to that of an FIR filter is in the order of tens.

< The nonlinear phase of an IIR filter can be minimized using an appropriate allpass
filter, however, by that time the computational advantage of IIR is lost.

< However, in most applications that does not require real-time operation, phase is not
an issue. Why...?

Digital Signal Processing, © 2007 Robi Polikar, Rowan University



FIR (LOWPASS)

i FILTER DESIGN
1_ Unrealizable!
Hip(e’®) .
i sin(,qn)
'I?_I.P[?;I]: . — 0O <90
1 7

" 4 o)
-7 -oc 0 @c

"~~~ Realizable!

WINDOWING: zero

coefficients outside [sin(w, (n—M /2)) M
c <n< -

~M/2 <n <M/2 and rn-M/12) DSRS0 2

a shift to the right hipln] = o "

yields finite series — n=—

with length M+ 1 ‘ 4

Digital Signal Processing, © 2007 Robi Polikar, Rowan Uiniversity



B ﬁ FIR HIGHPASS DESIGN

Hip(e’®)

t : ']
-7 -oc 0 @oc T

Hyp(o)=1-H;p(o) ()

Hap(e’®)

l ——

—X G

—
0 e |

hgpln]=dln]—hzp|n]

h,p[n]=:

sin(w.n)

wn

, ‘n‘>0
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FIR BPF/BSF DESIGN

Hyp(e/®) Hyp(e’”)

1

1 — 1 -

wc - wc2 wc = wc1
® ’ ® ' '

. ) } Q)
—T —mc2 ~Ocl ocl wc2 T - —oc 0  wc T -7 —oc 0  woc T

Hpp(w) =HLP(50)‘0)C:0)02 —II’LP(CO)\@C:@C1 ” hppln]= hLP[”]‘wC:a,c2 —hLP[n]‘a,c:a,c1

fsin(a)cz(n_Mu))_ sin(a)cl(n—M/2)) O<n<M n;«t%
ﬂ(n—M/2) ﬂ(n_M/z) , , 2
hgpin] =1
Geyg P M
7 oz 2
Similarly,

Hps(@)=1-Hgp(w) 4@y hpsln]=on]-hgpln]
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FHOWEVER...

0.28--omom-me- Feemoeenees Fenmeenes Femooeeees Fememenes R beenoeenees beaneennees B

=

Frequency response of the windowed filter

. 1 1 2| ® 1 1
-200 -150 -100 -50 0 50 100 150 200

ﬁ 02

What
happened...? -
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GIBBS PHENOMENON

H (el . —
e : Fre 10—y
Yie 0Dy Ur<M<T
=17
®
t f
- —l e T - —h U T
Hgy: Ideal filter
frequency response
W: Rectangular window
frequency response
H;: Truncated filter’s
frequency response (a)
Hrlffu'imf'
I q
| I
- Lo O T
(b
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