
Applied Signal Processing - Lecture 1

Digital Signal Processing:

Mathematical and algorithmic manipulation of discretized and 
quantized or naturally digital signals in order to extract the most
relevant and pertinent information that is carried by the signal.

z What is a signal?
z What is a system?
z What is processing?
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spectrum of the continous signal 

spectrum of the sampled signal 
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Circular Convolution   
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Linear convolution:

Circular convolution:

consider the following functions for a 4 point circular convolution



Circular Convolution   
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so we see that the 4 terms involve multiplying g[n] 
with reversed and circularly shifted versions of h[n] 
on the interval  n = 0 – 3 
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Stability & ROC 
In terms of Zeros & Poles

 Recall that for a system to be causal, its impulse response must satisfy h[n]=0, n<0, 
that is for a causal system, the impulse response is right sided. Based on this, and 
our previous observations, we can make the following important conclusions:
 The ROC of a causal system extends outside of the outermost pole circle
 The ROC of an anticausal system (whose h[n] is purely left-sided) lies inside of the 

innermost pole circle
 The ROC of a noncausal system (whose h[n] two-sided) is bounded by two different 

pole circles
 Now, for an LTI system to be stable it must be absolutely summable, or in other 

words, it must have a DTFT. But for a system to have a DTFT, its ROC must 
include the unit circle.  An LTI system is stable, if and only if the ROC of its 
transfer function H(z) includes the unit circle! 

 Furthermore, a causal system’s ROC lies outside of a pole circle. If that system is 
also stable, its ROC must include unit circle Then a causal system is stable, if and 
only if, all poles are inside the unit circle! Similarly, an anticausal system is stable, if 
and only if its poles lie outside the unit circle.

• An FIR filter is always stable, why?



Partial Fractional Expansion
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Partial Fractional Expansion

if M � N a polynomial must 
be added of order M – N :

values of Bk are obtained by 
long division of the numerator 
of H(z) by the denominator.
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in the case of multiple poles of order s at z = di while all 
other poles are simple another term is required:



  



Partial Fractional Expansion
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As the numerator is the same 
order as the denominator we 
need to write H(z) as:

Example 2:

we first need to determine Bo and a residual expression with a lower 
order numerator by dividing the denominator into the numerator
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Partial Fractional Expansion

the next step is to further solve the second term:

and solve for A1 and A2:
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Linear PhaseLinear Phase

Â Note that a zero-phase filter cannot be implemented for real-time 
applications. Why?

Â For a causal transfer function with a nonzero phase response, the 
phase distortion can be avoided by ensuring that the transfer function 
has (preferably) a unity magnitude and a linear-phase characteristic in 
the frequency band of interest

ª Note that this phase characteristic is linear for all Ȧ in [0 2ʌ].
ª Recall that the phase delay at any given frequency  Ȧ0 was 
ª If we have linear phase, that is, ș(Ȧ)=-ĮȦ, then the total delay at 

any frequency Ȧ0 is Ĳ0 = -ș(Ȧ0)/ Ȧ0 = -ĮȦ0/Ȧ0 = Į
ª Note that this is identical to the group delay dș(Ȧ)/dȦ

evaluated at Ȧ0

Real time means causal operation. No time to reverse and refilter.
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Linear Phase FiltersLinear Phase Filters

Â It is typically impossible to design a linear phase IIR filter, however, 
designing FIR filters with precise linear phase is very  easy:

Â Consider a causal FIR filter of length M+1 (order M)

ª This transfer function has linear phase, if its impulse response h[n] is either 
symmetric

or anti-symmetric
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LINEAR PHASE FILTERS  

This linear phase filter description can be generalised into a formalism 
for four type of FIR filters:

Type 1:  symmetric sequence of odd length

Type 2:  symmetric sequence of even length

Type 3:  anti-symmetric sequence of odd length

Type 4:  anti-symmetric sequence of even length
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Linear Phase Filter 
Zero Locations

1 1

Type 2Type 1

1 1

1 1

Type 4Type 3

1 1

Type 1 FIR filter: Either an even 
number or no zeros at z = 1 and 
z=-1
Type 2 FIR filter: Either an even 
number or no zeros at z = 1, and 
an odd number of zeros at z=-1
Type 3 FIR filter: An odd number of 
zeros at z = 1 and  and z=-1
Type 4 FIR filter: An odd number of 
zeros at z = 1, and either an even 
number or no zeros at z=-1

The presence of zeros at  z=±1
leads to some limitations on the use of 
these linear-phase transfer functions 
for designing frequency-selective filters 
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A Type 2 FIR filter cannot be used 
to design a highpass filter since it 
always has a zero at z=-1
A Type 3 FIR filter has zeros at 
both z = 1 and z=-1, and hence 
cannot be used to design either a 
lowpass or a highpass or a 
bandstop filter
A Type 4 FIR filter is not 
appropriate to design a lowpass
filter due to the presence of a zero 
at z = 1
Type 1 FIR filter has no such 
restrictions and can be used to 
design almost any type of filter
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FIR or IIR???FIR or IIR???

Â Several advantages to both FIR and IIR type filters.

Â Advantages of FIR filters (disadvantages of IIR filters):

ª Can be designed with exact linear phase,
ª Filter structure always stable with quantized coefficients
ª The filter startup transients have finite duration

Â Disadvantages of FIR filters (advantage of IIR filters)

ª Order of an FIR filter is usually much higher than the order of an equivalent IIR filter 
meeting the same specifications Î higher computational complexity

ª In fact, the ratio of orders of a typical IIR filter to that of an FIR filter is in the order of tens.

Â The nonlinear phase of an IIR filter can be minimized using an appropriate allpass

filter, however, by that time the computational advantage of IIR is lost.

Â However, in most applications that does not require real-time operation, phase is not 

an issue. Why…?

_____________________________________________________________________A zero phase filter can be easily obtain through double-reverse processing (filtfilt)



WINDOWING: zero 
coefficients outside 
–M/2 � n � M/2 and 
a shift to the right 
yields finite series 
with length M+1
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FIR BPF/BSF DesignFIR BPF/BSF Design
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HoweverHowever……

?

What 
happened…?
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Gibbs PhenomenonGibbs Phenomenon

Hd: Ideal filter 
frequency response

Ȍ: Rectangular window
frequency response

Ht: Truncated filter’s
frequency response


