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Basic Design ApproachesBasic Design Approaches

(Classic) IIR filter design:
1. Convert the digital filter specifications into an analog prototype lowpass filter 

specifications
2. Determine the analog lowpass filter transfer function |H(Ω)|
3. Transform |H(Ω)| into the desired digital transfer function H(z)

• Analog approximation techniques are highly advanced
• They usually yield closed-form solutions
• Extensive tables are available for analog filter design
• Many applications require digital simulation of analog systems

FIR filter design is based on a direct approximation of the specified 
magnitude response, with the often added requirement that the phase 
be linear (or sometimes, even minimum)

The design of an FIR filter of order M may be accomplished by finding either the 
length-(M+1) impulse response samples of h[n] or the (N+1) samples of its 
frequency response H(ω) (Chapter 10)

(Chapter 9)
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FIR Filter DesignFIR Filter Design

Let’s start with the ideal lowpass filter
We know that there are two problems with this filter: infinitely long, and it is non-causal
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How can we overcome 
these two problems?
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FIR Filter DesignFIR Filter Design
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FIR Filter DesignFIR Filter Design

This is the basic, straightforward approach to FIR filter design:
Start with an ideal filter that meets the design criteria, say a filter H(ω)
Take the inverse DTFT of this H(ω) to obtain h[n].

• This h[n] will be double infinitely long, and non-causal unrealizable

Truncate using a window, say a rectangle, so that M+1 coefficients of h[n] are 
retained, and all the others are discarded.

• We now have a finite length (order M) filter, ht[n], however, it is still non-causal

Shift the truncated h[n] to the right (i.e., delay) by M/2 samples, so that the first 
sample now occurs at n=0.

• The resulting impulse response, ht[n-M/2] is a causal, stable, FIR filter, which has an 
almost identical magnitude response and a phase factor or e-jM/2 compared to the 
original filter, due to delay introduced.



WINDOWING: zero 
coefficients outside 
–M/2 ≤ n ≤ M/2 and 
a shift to the right 
yields finite series 
with length M+1
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FIR BPF/BSF DesignFIR BPF/BSF Design

π− π
  ω

11–

  –ωc1   ωc1  –ωc2   ωc2

HBP (e jω)

π

1

  ω
0  ωc –ωc

HLP(e jω)

− π π

1

  ω
0  ωc –ωc

HLP(e jω)

− π

= -
ωc = ωc2

ωc = ωc1

12
)()()(

cccc LPLPBP HHH ωωωω ωωω == −=
12

][][][
cccc

nhnhnh LPLPBP ωωωω == −=

Similarly, 

)(1)( ωω BPBS HH −= ][][][ nhnnh BPBS −= δ

( )( )
( )

( )( )
( )

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=−

≠<<
−

−
−

−

−

=

2
,

2
,0,

2/
2/sin

2/
2/sin

12

12

][
Mn

MnMn
Mn

Mn
Mn

Mn

h
cc

cc

nBP

π
ω

π
ω

π
ω

π
ω



Digital Signal Processing, Digital Signal Processing, ©© 2007 Robi Polikar, Rowan University2007 Robi Polikar, Rowan University

HoweverHowever……

?

What 
happened…?
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Gibbs PhenomenonGibbs Phenomenon

Truncating the impulse response of an ideal filter to obtain a realizable 
filter, creates oscillatory behavior in the frequency domain.

The Gibbs Phenomenon
We observe the following:

As M↑, the number of ripples ↑
however, ripple widths ↓
The height of the largest ripples
remain constant, regardless of the
filter length
As M↑, the height of all other 
ripples ↓
The main lobe gets narrower as 
M↑, that is, the drop-off becomes
sharper
Similar oscillatory behavior can be
seen in all types of truncated filters
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Gibbs PhenomenonGibbs Phenomenon

Why is this happening?
The Gibbs phenomenon is simply an artifact of the windowing 
operation.

Multiplying the ideal filter’s impulse response with a rectangular window function 
is equivalent to convolving the underlying frequency response with a sinc

However, we want Ht(ω) to be as close as possible to Hd(ω), which can only be 
possible if the W(ω)=δ(ω) w[n]=1, an infinite window.

• We have conflicting requirements: On one hand, we want a narrow window, so that we 
have a short filter; on the other hand, we want the truncated filter as closely match as 
possible ideal filter’s frequency response, which in turn requires an infinitely long 
window!

This convolution results in the oscillations, particularly dominant at the edges.
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Truncated filter 
impulse response

Desired filter 
impulse response

Windowing
function
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Gibbs PhenomenonGibbs Phenomenon

Hd: Ideal filter 
frequency response

Ψ: Rectangular window
frequency response

Ht: Truncated filter’s
frequency response
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Gibbs PhenomenonGibbs Phenomenon
DemoDemo

% FIR Lowpass filter

M=input('Enter the order of filter:');
wc=input('Enter the cutoff frequency in terms of radians:');

n=0:M;
h_LP=sin(wc*(n-M/2))./(pi*(n-M/2));
h_LP(ceil(M/2+1))=wc/pi;

subplot(211)
stem(n, h_LP)
axis([0 M min(h_LP) max(h_LP)])
title(['Impulse response of the ',num2str(M),…
'th order filter']);
subplot(212)
H_LP=fft(h_LP, 1024);
w=linspace(-pi, pi, 1024);
plot(w/pi, abs(fftshift(H_LP)))
title(['Frequency response of the windowed ', …
num2str(M), 'th order filter']); 
grid
axis([-1 1 0 max(abs(H_LP))])

Window_LPF.m
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Effect of Filter LengthEffect of Filter Length

Transition band / main lobe width

Stopband attenuation

In dB
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FIR Filter Design FIR Filter Design 
Using WindowsUsing Windows

Here’s what we want:
Quick drop off Narrow transition band

• Narrow main lobe
• Increased stopband attenuation

Reduce the height of the side-lobe which causes the ripples
Reduce Gibb’s phenomenon (ringing effects, all ripples)
Minimize the order of the filter.

Gibb’s phenomenon can be reduced (but not eliminated) by using a 
smoother window that gently tapers off to zero, rather than the brick 
wall behavior of the rectangular filter.

Several window functions are available, which usually trade-off main-lobe width 
and stopband attenuation.

• Rectangular window has the narrowest main-lobe width, but poor side-lobe 
attenuation. 

• Tapered window causes the height of the sidelobes to diminish, with a corresponding 
increase in the main lobe width resulting in a wider transition at the cutoff frequency.

Conflicting requirements
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Commonly Used WindowsCommonly Used Windows

0<n<M
(length M+1)
In your text:
-M<n<M 

(length 2M+1)
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Commonly Used WindowsCommonly Used Windows

Narrow 
main lobe

Poor side lobe
attenuation

Wide (poor) 
main lobe

Good side lobe
attenuation
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main lobe

Excellent side lobe
attenuation

Wide (poor) 
main lobe

Good side lobe
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Very wide (poor) 
main lobe

Very good side lobe
attenuation
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Comparing WindowsComparing Windows
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Fixed Window FunctionsFixed Window Functions

All windows shown so far are fixed window functions
Magnitude spectrum of each window characterized by a main lobe centered at 
ω = 0 followed by a series of sidelobes with decreasing amplitudes
Parameters predicting the performance of a window in filter design are:

• Main lobe width (ΔML) : the distance b/w nearest zero-crossings on both sides
or transition bandwidth (Δω=ωs – ωp)

• Relative sidelobe level (Asl): difference in dB between the amp. of the largest sidelobe and the main 
lobe (or  sidelobe attenuation (αs)  )

For a given window, both 
parameters all completely 
determined once the filter 
order M is set. 

Δω < ΔML

ΔML

Hdes(ω)
Htr(ω)

αs(dB)
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Fixed Window FunctionsFixed Window Functions

How to design:
Set 
Choose window type based on the specified sidelobe attenuation (Asl) or minimum 
stopband attenuation (αs)
Choose M according to the transition band width (Δω) and/or mainlobe width 
(ΔML ). Note that this is the only parameter that can be adjusted for fixed window 
functions. Once a window type and M is selected, so are Asl,αs , and ΔML

• Ripple amplitudes cannot be custom designed.

Adjustable windows have a parameter that can be varied to trade-off between 
main-lobe width and side-lobe attenuation.

2/)( spc ω+ω=ω

Min. stopband      Transition
Attenuation        Bandwidth Δω

20.9 0.92π/(M/2)
See book                   See book

43.9 3.11 π/(M/2) 
54.5 3.32 π/(M/2)
75.3 5.56 π/(M/2)
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Kaiser WindowKaiser Window

The most popular adjustable window 

where β is an adjustable parameter to trade-off between the main lobe 
width and sidelobe attenuation, and I0{x} is the modified zeroth-order 
Bessel function of the first kind:

In practice, this infinite series can be computed for a finite number of terms for a 
desired accuracy. In general, 20 terms is adequate.
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FIR Design Using FIR Design Using 
Kaiser WindowKaiser Window

Given the following:
ωp - passband edge frequency and ωs - stopband edge frequency
δp - peak ripple value in the passband and  δs - peak ripple value in the stopband

Calculate:
1. Minimum ripple in dB:
2. Normalized transition bandwidth:  

3. Window parameters:

4. Filter length, M+1:

5. Determine the corresponding Kaiser window
6. Obtain the filter by multipling

the ideal filter hI[n] with w[n]
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Design specs for Kaiser window in 
your book is different. This one, while 
may seem more complicated is 
actually easier to follow.
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ExampleExample

Design an FIR filter with the following characteristics:
ωp=0.3π ωs= 0.5π, δs= δp=0.01 α=40dB, Δω=0.2π
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Complete Cycle for FIR Filter Complete Cycle for FIR Filter 
Design using WindowsDesign using Windows

Depending on your specs, determine what kind of window you would
like to use. 

For all window types, except Kaiser, once you choose the window, the only other 
parameter to choose is filter length M.

• For Kaiser window, determine M and beta, based on the specs using the given 
expressions.

Compute the window coefficients w[n] for the chosen window.
Compute filter coefficients (taps)

Determine the ideal impulse response hI[n] from the given equations for the type 
of magnitude response you need (lowpass, highpass, etc.)
Multiply window and ideal filter coefficients to obtain the realizable filter 
coefficients (also called taps or weights): h[n]=hI[n].w[n]

Convolve your signal with the new filter coefficients y[n]=x[n]*h[n].

Demo: FIR_window.m
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In MatlabIn Matlab

The following functions create N-point windows for the 
corresponding functions:

rectwin(N)
hamming(N)
hanning(N)

Try this: h=hamming(40); [H w]=freqz(h,1, 1024); plot(w, abs(H))
Compare for various windows. Also plot gain in dB

The function window window design and analysis tool provides a 
GUI to custom design several window functions.
The function fdatool filter design and analysis tool provides a 
GUI to custom design several types of filters from the given specs.
The function sptool signal processing tool, provides a GUI to 
custom design, view and apply to custom created signals. It also
provides a GUI for spectral analysis.

bartlett(N)
kaiser(N, beta)
blackman(N)
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Window Design & Window Design & 
Analysis ToolAnalysis Tool

>> window
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Filter Design & Filter Design & 
Analysis ToolAnalysis Tool
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In Matlab:In Matlab: fir1fir1

fir1 FIR filter design using the window method.
b = fir1(N,Wn) designs an N'th order lowpass FIR digital filter and returns the filter coefficients in length N+1 
vector B.  The cut-off frequency Wn must be between 0 < Wn < 1.0, with 1.0 corresponding to half the sample 
rate.  The filter B is real and has linear phase.  The normalized gain of the filter at Wn is  -6 dB.

b = fir1(N,Wn,'high') designs an N'th order highpass filter. You can also use B = fir1(N,Wn,'low') to design a 
lowpass filter.

If Wn is a two-element vector, Wn = [W1 W2], FIR1 returns an order N bandpass filter with passband  W1 < W < 
W2. You can also specify b = fir1(N,Wn,'bandpass').  If Wn = [W1 W2],  b = fir1(N,Wn,'stop') will design a 
bandstop filter.
If Wn is a multi-element vector,  Wn = [W1 W2 W3 W4 W5 ... WN], FIR1 returns an order N multiband filter with 
bands  0 < W < W1, W1 < W < W2, ..., WN < W < 1.

b = fir1(N,Wn,'DC-1') makes the first band a passband.
b = fir1(N,Wn,'DC-0') makes the first band a stopband.

b = fir1(N,Wn,WIN) designs an N-th order FIR filter using the N+1 length vector WIN to window the impulse 
response. If empty or omitted, FIR1 uses a Hamming window of length N+1. For a complete list of available 
windows, see the help for the WINDOW function. If using a Kaiser window, use the following
b = fir1(N,Wn,kaiser(n+1,beta)) 
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