
   



   



Orthogonal Transforms
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with basis sequences: [ , ]k nψ

which are orthogonal if
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Circular Convolution   

1

0
[ ] [ ] [ ]

N

L
m
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−

=

= −∑

1

0
[ ] [ ] [ ]

N

C N
m

y n g m h n m
−

=

= < − >∑

Linear convolution:

Circular convolution:

consider the following functions for a 4 point circular convolution



Circular Convolution   

Evaluating gives:
1

0
[ ] [ ] [ ]

N

C N
m

y n g m h n m
−

=

= < − >∑

[0] [0] [0] [1] [3] [2] [2] [3] [1]
[1] [0] [1] [1] [0] [2] [3] [3] [2]
[2] [0] [2] [1] [1] [2] [0] [3] [3]
[3] [0] [3] [1] [2] [2] [1] [3] [0]

C

C

C

C

y g h g h g h g h
y g h g h g h g h
y g h g h g h g h
y g h g h g h g h

= + + +
= + + +

= + + +
= + + +

so we see that the 4 terms involve multiplying g[n] 
with reversed and circularly shifted versions of h[n] 
on the interval  n = 0 – 3 



Circular Convolution   

The reversed and circularly shifted versions of h[n] are:

leading to the following 
circular convolution

and linear circular 
convolution results



Circular Convolution   

A graphical representation of the circular convolution is:

y[0]

y[3]

y[1]

y[2]

outer ring moves 
counter clock wise



   



   



   



   



[ ] [ ] [ ] { [ ]. [ ]}y n x n h n IDFT X k H k= ⊗ =

Note, however, the IDFT gives the circular convolution. To ensure 
that one gets linear convolution, both sequences in the time 
domain must be zero padded to appropriate length
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The Fast Fourier Transform (FFT) 

Chapter 11 Mitra

 By far one of the most influential algorithms ever developed in signal 

processing, revolutionalizing the field

 FFT: Computationally efficient calculation of the frequency spectrum

Made many advances in signal processing possible

 Drastically reduces the number of additions and multiplications necessary to 

compute the DFT

Many competing algorithms

 Decimation in time FFT

 Decimation in frequency FFT

Makes strategic use of the two simple complex identities:
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Computational 

Complexity of DFT

 Q: How many multiplications and additions are needed to compute DFT?

 Note that for each “k” we need N complex multiplications, and N-1 complex 

additions (WN
kn) does not depend on x[n], and hence can be precomputed and saved in table

 Each complex multiplication is four real multiplications and two real additions

 A complex addition requires two real additions

 So for N values of “k”, we need N*N complex multiplications and N*(N-1) complex 

additions

• This amounts to N2 complex multiplications and N*(N-1)~N2 (for large N) complex additions

• N2 complex multiplications: 4N2 real multiplications and ~2N2 real additions

• N2 complex additions: 2N2 real additions

 A grand total of 4N2 real multiplications and 4N2 real additions:

• The computational complexity grows with the square of the signal size.

• This computational complexity is referred to as O(N2), also called, order of N2

• For , say 1000 point signal: 4,000,000 multiplications and 4,000,000 additions: OUCH!

10,][][
1

0

 




NkWnxkX
N

n

kn
N
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FFT: Decimation in Time 

 Assume that the signal is of length N=2p, a power of two. If it is not, 

zero-pad the signal with enough number of zeros to ensure power-of-

two length.

 N-point DFT can be computed as two N/2 point DFTs, both of which 

can then be computed as two N/4 point DFTs

 Therefore an N-point DFT can be computed as four N/4 point DFTs.

 Similarly, an N/4 point DFT can be computed as two N/8 point DFTs  the 

entire N-point DFT can then be computed as eight N/8 point DFTs

 Continuing in this fashion, an N-point DFT can be computed as N/2  2-point 

DFTs

• A two point DFT requires no multiplications (!) and just two additions.

• We will see that we will need additional multiplications and additions to combine the 2-

point DFTs, however, overall, the total number of operations will be much fewer than 

that would be required by the regular computation of DFT.
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Two-point DFT

 How many operations do we need for 2-point DFT?

 X[0]=x[0]+x[1]

 X[1]=x[0]*1+x[1]*e-jπ=x[0]-x[1]
10,][][

1

0

 


kWnxkX
n

kn
N

2-point DFT requires no multiplication, just two additions 
(sign change is very inexpensive – reversal of one or more bits –

and hence does not even go into complexity computations)

Nj
N eW /2
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Decimation in Time

 For the first stage, we first “decimate” the time-domain signal into two half: even 
indexed samples and odd indexed samples.

 Using the first property of complex exponentials:

 However, we need all values of P[k] and S[k] for k=[0~N-1]

 Since DFT for real sequences is even, P[k] and S[k] are identical in both [0 (N/2)-1] and 
[(N/2) N-1] intervals  P[k]=P[k+N/2], and similarly, S[k]=S[k+N/2]

 

   

 

2 1 2 1

2 2
0 0

[ ] [2 ] [2 1]

[ ] [ ], 0 1
2

N N

kn k kn

NN N
n n

k

N

X k x n W W x n W

N
P k W S k k

 

 

  

    

 

N/2 point DFT 

of even samples

N/2 point DFT 

of odd samples –

defined on k=[0, 1, …, (N/2)-1]
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2 2
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Decimation in Time

Stage 1

 Then:
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The Butterfly Process

 The basic building block in 
this implementation can be 
represented by the butterfly 
process.

 Two multiplications & two 
additions

 But we can do even better, 
just by moving the multiplier 
before the node S[k]

 Reduced butterfly

 1 multiplication and two 
additions !

 We need N/2 reduced 
butterflies in stage 1 to 
connect the even and odd 
N/2 point DFTs

 A total of (N/2) 
multiplications and 
2*(N/2)=N additions

P[k]: Even indexed samples

S[k]: Odd indexed 

samples
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



Stage 1 FFT

k
NW

2

2

z-1

(N/2)-point

DFT

(N/2)-point

DFT
][nx ][kX

][nxeven

][nxodd

][kP

k
NW

][kS

k
NW

1

]
2

[
N

kX 

(N/2)2 multiplications+

(N/2)2 additions

(N/2)2 multiplications+

(N/2)2 additions

The butterfly

(N/2) mult. & N additions

Grand total: (N/2+N2/2) mult. & (N+N2/2) additions

Regular DFT: ~N2 mult. and N2 additions

For N<3, the decimation uses fewer calculations

Whoop-de-doo!!!?
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Stage 2…& 3…&4…

 But wait…!

 We can continue the same process as long as we have samples to split in half:

 Each N/2-point DFT can be computed as two N/4-point DFT + a reduced butterfly

 Each N/4-point DFT can be computed as two N/8-point DFT + a reduced butterfly.

 …

 …

 …

 2 2-point DFT (which requires no multiplications)+ a reduced butterfly

p
-1

 s
ta

g
e

s
,

p
=

lo
g

2
N
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8-point FFT – Stage 1
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8-Point FFT – Stage 2

X[0]

X[2]

X[4]

X[6]

X[1]

X[3]

X[5]

X[7]

X[0]

X[2]

X[4]

X[6]

X[1]

X[3]

X[5]

X[7]

X[0]

X[4]

X[2]

X[6]

X[1]

X[5]

X[3]

X[7]

4-point DFT

4-point DFT

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]
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8-Point FFT – Stage 3

x(0)

Note that further reductions can be obtained by avoiding the following multiplications

10 NW12/ N
NW jW N

N 4/ jW N
N 4/3

2-point DFTs
4-point DFT

4-point DFT 8-point DFT
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So How did we do?

In log2N stages, total # of calculations: 

(N/2)*(log2N-1)~(N/2)*log2N multiplications

Nlog2N additions

As opposed to N2 multiplications and N2 additions

For N=1024  DFT: 1,048,576 multiplications and additions

 FFT: 5,120 multiplications and 10,240 additions 

For N=4096 DFT:16,777,216 multiplications and additions

FFT: 49,152 multiplications and 98,304 additions

Is that good…?
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Decimation in Frequency

 Just like we started with time-domain samples and decimated them in 

half, we can do the same thing with frequency samples:

 Compute the even indexed spectral samples k=0, 2, 4,…, 2N-1 and odd indexed 

spectral components k=1, 3, 5, …, 2N-2 separately. 

 Then further divide each by half to compute X[k] for 0, 4, 8,… and 2, 6, 10, … as 

well as 1, 5, 9, … and 3, 7, 11 …separately

 Continuing in this manner, we can reduce the entire process to a series of 2-point 

DFTs.
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8-point DFT with 

Decimation in Frequency
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Filtering Streaming Data

 In most real-world applications, the filter length is actually rather 

small (typically, N<100); however, the input signal is obtained as a 

streaming data, and therefore can be very long.

 To calculate the output of the filter, we can 

a) Wait until we receive all the data, and then do a full linear convolution of length 

N filter and length M x[n], where M>>>>N  y[n]=x[n]*h[n]

b) We can use the DFT based method  y[n]=IDFT(X[k].H[k]), but we still 

need to wait for the entire data to arrive to calculate X[k]

 In either case, the calculation is very long, expensive, and need to 

wait for the entire data to arrive.

 Can we just process the data in batches, say 1000 samples at a time, 

and then concatenate the results…?
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What Happened…?

 An example: 

 h[n]=[1 2 3 2 1]; (a short filter)

 x[n]=[1 2 3 4 5 -1 -2 4 5 6 4 -2 -3 4 3 2 5 6 4 -1 -4 2 4 5 -1 2 3 4 -2 2 3 4 5 6 -2 1 2 3 1 -1 ] 

1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4
Short, length 5 filter h[n]

0 5 10 15 20 25 30 35 40
-10

0

10
Long, length 40 signal

0 5 10 15 20 25 30 35 40 45
-50

0

50
Filtered signal obtained in one convolution, length=40+5-1=44

0 10 20 30 40 50 60 70
-50

0

50
Filtered signal obtained as concatenation of individual segments, length=...?

h=[1 2 3 2 1]; % Some short filter N=5;

x=[1 2 3 4 5 -1 -2 4 5 6 4 -2 -3 4 3 2 5 6 4 -1 -4 ...

2 4 5 -1 2 3 4 -2 2 3 4 5 6 -2 1 2 3 1 -1]; % M=40

y=conv(x, h); % regular convolution Length N+M-1

%Let's divide the long x[n] into smaller segments and 

calculate the convolution of each segment

x1=x(1:5);    y1=conv(x1, h); 

x2=x(6:10);   y2=conv(x2, h);

x3=x(11:15);  y3=conv(x3, h);

x4=x(20:25);  y4=conv(x4, h);

x5=x(21:30);  y5=conv(x5, h);

x6=x(31:35);  y6=conv(x6, h);

x7=x(36:40);  y7=conv(x7, h);

% Now add those segments together

y_batch=[y1 y2 y3 y4 y5 y6 y7];

%and compare to the original convolution

subplot(411); stem(h, 'filled'); grid

title('Short, length 5 filter h[n]')

subplot(412); stem(x, 'filled'); grid

title('Long, length 40 signal')

subplot(413); stem(y, 'filled'); grid

title(‘Single convolution, length=40+5-1=44')

subplot(414); stem(y_batch, 'filled'); grid

title(‘Concatenation of individual segments, length=...?')
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y

Overlap Add

 The border effect! Processing individual segments separately and then combining 

them is possible, however, the border distortion needs to be addressed

 Overlapp add is a method that allows us to compute the individual segments and then 

concatenate them in such a way that the concatenated signal is the same as the one that 

would be obtained if we processed the entire data at once. 

x1 x2 x3 x4 x5 x6 x7

y2

y3

y4

y5

y6

y7

* =

* =

x M h
N

y
M+N-1

x1M1

h
N

y1 K

y1 K

K=M1+N-1K

K

K

K

K

K

M1 2M1 3M1 5M1 6M1 6M1+K

M = 7M1

6M1+K=

=6M1+M1+N-1

=7M1+N-1

=M+N-1
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Example (Cont.)

 So, here are the

individual segments

ordered in an 

overlap-add format

0 5 10 15 20 25 30 35 40 45
0

20

40

0 5 10 15 20 25 30 35 40 45
-50

0

50

0 5 10 15 20 25 30 35 40 45
0

10

20

0 5 10 15 20 25 30 35 40 45
-50

0

50

0 5 10 15 20 25 30 35 40 45
-50

0

50

0 5 10 15 20 25 30 35 40 45
0

10

20

0 5 10 15 20 25 30 35 40 45
-50

0

50

0 5 10 15 20 25 30 35 40 45
-20

0

20

OVERLAPP ADD

M=length(x); %Length of the original signal

M1=length(x1); % Length of each batch

N=length(h);  %Length of the filter

K=length(y1); %Length of each filtered batch

L=M+N-1;  %Length of the desired convolution

O=K-M1; % Amount of overlap

Y1=[zeros(1, 0*M1) y1 zeros(1, L-(1*M1)-O)]; 

Y2=[zeros(1, 1*M1) y2 zeros(1, L-(2*M1)-O)]; 

Y3=[zeros(1, 2*M1) y3 zeros(1, L-(3*M1)-O)];

Y4=[zeros(1, 3*M1) y4 zeros(1, L-(4*M1)-O)];

Y5=[zeros(1, 4*M1) y5 zeros(1, L-(5*M1)-O)];

Y6=[zeros(1, 5*M1) y6 zeros(1, L-(6*M1)-O)];

Y7=[zeros(1, 6*M1) y7 zeros(1, L-(7*M1)-O)];

Y8=[zeros(1, 7*M1) y8 zeros(1, L-(8*M1)-O)];

Y=Y1+Y2+Y3+Y4+Y5+Y6+Y7+Y8;
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Example (Cont.)

0 10 20 30 40 50 60 70 80
-50

0

50
Individual filtering - Incorrect convolution

0 5 10 15 20 25 30 35 40 45
-50

0

50
Original correct filtering

0 5 10 15 20 25 30 35 40 45
-50

0

50
Filtering obtained by overlap add
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Classification of sequences

Classification of finite length sequences:  

conjugate symmetry relations  

1[ ] ( [ ] [ ]),
2
1[ ] ( [ ] [ ]),
2
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x n x n x n

x n x n x n

∗
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= + < − >

= − < − >

0 1n N≤ ≤ −
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2
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2

cs N

ca N

X k X k X k

X k X k X k
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0 1k N≤ ≤ −

0 1k N≤ ≤ −

1[ ] ( [ ] [ ])
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1[ ] ( [ ] [ ])
2 cs caX k X k X k= +



Classification of sequences

other symmetry relations  
[ ] [ 1 ]
[ ] [ 1 ]

x n x N n
x n x N n

= − −
= − − −

symmetric
antisymmetric

four types (see Mitra section 5.5.2):

- type 1:   symmetric with even length
- type 2:   symmetric with odd length
- type 3:   asymmetric with even length
- type 4:   asymmetric with odd length



Classification of sequences

Examples of sequences 
with the four types of 
geometric symmetry: 



Classification of sequences
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∑

the DFT of a real (anti)symmetric sequence is the product of 
a phase term and an amplitude function (Mitra 5.5.2): 

Type 1

Type 4

Type 3

Type 2



Cosine transform      

[ ]

[ ]

1

0

1

0

(2 1)[ ] 2 cos , 0 1
2

1 (2 1)[ ] [ ]cos , 0 1
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DCT
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For type 2:

where: [ ] 1/ 2, 0
1, 1 1

k
k

k N
α

=⎧
= ⎨ ≤ ≤ −⎩

In the DFT of the different types the phase factor describes the length
of the sequence, the amplitude function describes the time domain 
characteristics.  Extract the information via discrete cosine transforms.

The even symmetrical DCT is used for data compression, in particular 
for images and video: JPEG, MPEG, H.261
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