

Orthogonal Transforms

1

0
[] [] [,],

N

n
X k x n k nψ

−
∗

=

=∑
1

0

1[] [] [,],
N

k
x n X n k n

N
ψ

−

=

= ∑

1

0

11 [,] [,]
0

N

n

l k
k n l n

l kN
ψ ψ

−
∗

=

=⎧
⎨ ≠⎩

∑

0 1k N≤ ≤ −

0 1n N≤ ≤ −

with basis sequences: [,]k nψ

which are orthogonal if

X [k]=∑
n=0

N−1

x [n]e−2kn i/N=∑
n=0

N−1

x [n]e−kni

X [k]=∑
n=0

N−1

x [n]WN
kn 0kN−1

Circular Convolution

1

0
[] [] []

N

L
m

y n g m h n m
−

=

= −∑

1

0
[] [] []

N

C N
m

y n g m h n m
−

=

= < − >∑

Linear convolution:

Circular convolution:

consider the following functions for a 4 point circular convolution

Circular Convolution

Evaluating gives:
1

0
[] [] []

N

C N
m

y n g m h n m
−

=

= < − >∑

[0] [0] [0] [1] [3] [2] [2] [3] [1]
[1] [0] [1] [1] [0] [2] [3] [3] [2]
[2] [0] [2] [1] [1] [2] [0] [3] [3]
[3] [0] [3] [1] [2] [2] [1] [3] [0]

C

C

C

C

y g h g h g h g h
y g h g h g h g h
y g h g h g h g h
y g h g h g h g h

= + + +
= + + +

= + + +
= + + +

so we see that the 4 terms involve multiplying g[n]
with reversed and circularly shifted versions of h[n]
on the interval n = 0 – 3

Circular Convolution

The reversed and circularly shifted versions of h[n] are:

leading to the following
circular convolution

and linear circular
convolution results

Circular Convolution

A graphical representation of the circular convolution is:

y[0]

y[3]

y[1]

y[2]

outer ring moves
counter clock wise

[] [] [] { []. []}y n x n h n IDFT X k H k= ⊗ =

Note, however, the IDFT gives the circular convolution. To ensure
that one gets linear convolution, both sequences in the time
domain must be zero padded to appropriate length

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

The Fast Fourier Transform (FFT)

Chapter 11 Mitra

 By far one of the most influential algorithms ever developed in signal

processing, revolutionalizing the field

 FFT: Computationally efficient calculation of the frequency spectrum

Made many advances in signal processing possible

 Drastically reduces the number of additions and multiplications necessary to

compute the DFT

Many competing algorithms

 Decimation in time FFT

 Decimation in frequency FFT

Makes strategic use of the two simple complex identities:

k
N

k
N

j
j

k
N

j
N

N
jk

N
j

N
k

N

N
N

j
N

j

N

WeeeeeW

WeeW

22

2

22

2

2
2

2
2

2

2

10 NW

12/ N
NW

jW N
N 4/

jW N
N 4/3

Nj
N eW /2Recall:

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

Computational

Complexity of DFT

 Q: How many multiplications and additions are needed to compute DFT?

 Note that for each “k” we need N complex multiplications, and N-1 complex

additions (WN
kn) does not depend on x[n], and hence can be precomputed and saved in table

 Each complex multiplication is four real multiplications and two real additions

 A complex addition requires two real additions

 So for N values of “k”, we need N*N complex multiplications and N*(N-1) complex

additions

• This amounts to N2 complex multiplications and N*(N-1)~N2 (for large N) complex additions

• N2 complex multiplications: 4N2 real multiplications and ~2N2 real additions

• N2 complex additions: 2N2 real additions

 A grand total of 4N2 real multiplications and 4N2 real additions:

• The computational complexity grows with the square of the signal size.

• This computational complexity is referred to as O(N2), also called, order of N2

• For , say 1000 point signal: 4,000,000 multiplications and 4,000,000 additions: OUCH!

10,][][
1

0

NkWnxkX
N

n

kn
N

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

FFT: Decimation in Time

 Assume that the signal is of length N=2p, a power of two. If it is not,

zero-pad the signal with enough number of zeros to ensure power-of-

two length.

 N-point DFT can be computed as two N/2 point DFTs, both of which

can then be computed as two N/4 point DFTs

 Therefore an N-point DFT can be computed as four N/4 point DFTs.

 Similarly, an N/4 point DFT can be computed as two N/8 point DFTs the

entire N-point DFT can then be computed as eight N/8 point DFTs

 Continuing in this fashion, an N-point DFT can be computed as N/2 2-point

DFTs

• A two point DFT requires no multiplications (!) and just two additions.

• We will see that we will need additional multiplications and additions to combine the 2-

point DFTs, however, overall, the total number of operations will be much fewer than

that would be required by the regular computation of DFT.

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

Two-point DFT

 How many operations do we need for 2-point DFT?

 X[0]=x[0]+x[1]

 X[1]=x[0]*1+x[1]*e-jπ=x[0]-x[1]
10,][][

1

0

kWnxkX
n

kn
N

2-point DFT requires no multiplication, just two additions
(sign change is very inexpensive – reversal of one or more bits –

and hence does not even go into complexity computations)

Nj
N eW /2

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

Decimation in Time

 For the first stage, we first “decimate” the time-domain signal into two half: even
indexed samples and odd indexed samples.

 Using the first property of complex exponentials:

 However, we need all values of P[k] and S[k] for k=[0~N-1]

 Since DFT for real sequences is even, P[k] and S[k] are identical in both [0 (N/2)-1] and
[(N/2) N-1] intervals P[k]=P[k+N/2], and similarly, S[k]=S[k+N/2]

2 1 2 1

2 2
0 0

[] [2] [2 1]

[] [], 0 1
2

N N

kn k kn

NN N
n n

k

N

X k x n W W x n W

N
P k W S k k

N/2 point DFT

of even samples

N/2 point DFT

of odd samples –

defined on k=[0, 1, …, (N/2)-1]

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

2 2

[] [] [] 0 1
2

[] [] [] [] [] [] 0 1
2 2 2 2 2

k

N

k N k N

N N

N
X k P k W S k k

N N N N N
X k P k W S k X k P k W S k k

Decimation in Time

Stage 1

 Then:

k
=

0
~

(N
/2

)-
1

k
=

(N
/2

)~
N

-1

E
v

e
n

 i
n

d
e
x
e
d

in
p

u
ts

O
d

d
 i
n

d
e
x
e
d

in
p

u
ts

2 2k N k N k

N N N NW W W W

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

The Butterfly Process

 The basic building block in
this implementation can be
represented by the butterfly
process.

 Two multiplications & two
additions

 But we can do even better,
just by moving the multiplier
before the node S[k]

 Reduced butterfly

 1 multiplication and two
additions !

 We need N/2 reduced
butterflies in stage 1 to
connect the even and odd
N/2 point DFTs

 A total of (N/2)
multiplications and
2*(N/2)=N additions

P[k]: Even indexed samples

S[k]: Odd indexed

samples

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

Stage 1 FFT

k
NW

2

2

z-1

(N/2)-point

DFT

(N/2)-point

DFT
][nx][kX

][nxeven

][nxodd

][kP

k
NW

][kS

k
NW

1

]
2

[
N

kX

(N/2)2 multiplications+

(N/2)2 additions

(N/2)2 multiplications+

(N/2)2 additions

The butterfly

(N/2) mult. & N additions

Grand total: (N/2+N2/2) mult. & (N+N2/2) additions

Regular DFT: ~N2 mult. and N2 additions

For N<3, the decimation uses fewer calculations

Whoop-de-doo!!!?

RP

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

Stage 2…& 3…&4…

 But wait…!

 We can continue the same process as long as we have samples to split in half:

 Each N/2-point DFT can be computed as two N/4-point DFT + a reduced butterfly

 Each N/4-point DFT can be computed as two N/8-point DFT + a reduced butterfly.

 …

 …

 …

 2 2-point DFT (which requires no multiplications)+ a reduced butterfly

p
-1

 s
ta

g
e

s
,

p
=

lo
g

2
N

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

8-point FFT – Stage 1

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

8-Point FFT – Stage 2

X[0]

X[2]

X[4]

X[6]

X[1]

X[3]

X[5]

X[7]

X[0]

X[2]

X[4]

X[6]

X[1]

X[3]

X[5]

X[7]

X[0]

X[4]

X[2]

X[6]

X[1]

X[5]

X[3]

X[7]

4-point DFT

4-point DFT

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

8-Point FFT – Stage 3

x(0)

Note that further reductions can be obtained by avoiding the following multiplications

10 NW12/ N
NW jW N

N 4/ jW N
N 4/3

2-point DFTs
4-point DFT

4-point DFT 8-point DFT

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

So How did we do?

In log2N stages, total # of calculations:

(N/2)*(log2N-1)~(N/2)*log2N multiplications

Nlog2N additions

As opposed to N2 multiplications and N2 additions

For N=1024 DFT: 1,048,576 multiplications and additions

 FFT: 5,120 multiplications and 10,240 additions

For N=4096 DFT:16,777,216 multiplications and additions

FFT: 49,152 multiplications and 98,304 additions

Is that good…?

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

Decimation in Frequency

 Just like we started with time-domain samples and decimated them in

half, we can do the same thing with frequency samples:

 Compute the even indexed spectral samples k=0, 2, 4,…, 2N-1 and odd indexed

spectral components k=1, 3, 5, …, 2N-2 separately.

 Then further divide each by half to compute X[k] for 0, 4, 8,… and 2, 6, 10, … as

well as 1, 5, 9, … and 3, 7, 11 …separately

 Continuing in this manner, we can reduce the entire process to a series of 2-point

DFTs.

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

8-point DFT with

Decimation in Frequency

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

Filtering Streaming Data

 In most real-world applications, the filter length is actually rather

small (typically, N<100); however, the input signal is obtained as a

streaming data, and therefore can be very long.

 To calculate the output of the filter, we can

a) Wait until we receive all the data, and then do a full linear convolution of length

N filter and length M x[n], where M>>>>N y[n]=x[n]*h[n]

b) We can use the DFT based method y[n]=IDFT(X[k].H[k]), but we still

need to wait for the entire data to arrive to calculate X[k]

 In either case, the calculation is very long, expensive, and need to

wait for the entire data to arrive.

 Can we just process the data in batches, say 1000 samples at a time,

and then concatenate the results…?

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

What Happened…?

 An example:

 h[n]=[1 2 3 2 1]; (a short filter)

 x[n]=[1 2 3 4 5 -1 -2 4 5 6 4 -2 -3 4 3 2 5 6 4 -1 -4 2 4 5 -1 2 3 4 -2 2 3 4 5 6 -2 1 2 3 1 -1]

1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4
Short, length 5 filter h[n]

0 5 10 15 20 25 30 35 40
-10

0

10
Long, length 40 signal

0 5 10 15 20 25 30 35 40 45
-50

0

50
Filtered signal obtained in one convolution, length=40+5-1=44

0 10 20 30 40 50 60 70
-50

0

50
Filtered signal obtained as concatenation of individual segments, length=...?

h=[1 2 3 2 1]; % Some short filter N=5;

x=[1 2 3 4 5 -1 -2 4 5 6 4 -2 -3 4 3 2 5 6 4 -1 -4 ...

2 4 5 -1 2 3 4 -2 2 3 4 5 6 -2 1 2 3 1 -1]; % M=40

y=conv(x, h); % regular convolution Length N+M-1

%Let's divide the long x[n] into smaller segments and

calculate the convolution of each segment

x1=x(1:5); y1=conv(x1, h);

x2=x(6:10); y2=conv(x2, h);

x3=x(11:15); y3=conv(x3, h);

x4=x(20:25); y4=conv(x4, h);

x5=x(21:30); y5=conv(x5, h);

x6=x(31:35); y6=conv(x6, h);

x7=x(36:40); y7=conv(x7, h);

% Now add those segments together

y_batch=[y1 y2 y3 y4 y5 y6 y7];

%and compare to the original convolution

subplot(411); stem(h, 'filled'); grid

title('Short, length 5 filter h[n]')

subplot(412); stem(x, 'filled'); grid

title('Long, length 40 signal')

subplot(413); stem(y, 'filled'); grid

title(‘Single convolution, length=40+5-1=44')

subplot(414); stem(y_batch, 'filled'); grid

title(‘Concatenation of individual segments, length=...?')

RP

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

y

Overlap Add

 The border effect! Processing individual segments separately and then combining

them is possible, however, the border distortion needs to be addressed

 Overlapp add is a method that allows us to compute the individual segments and then

concatenate them in such a way that the concatenated signal is the same as the one that

would be obtained if we processed the entire data at once.

x1 x2 x3 x4 x5 x6 x7

y2

y3

y4

y5

y6

y7

* =

* =

x M h
N

y
M+N-1

x1M1

h
N

y1 K

y1 K

K=M1+N-1K

K

K

K

K

K

M1 2M1 3M1 5M1 6M1 6M1+K

M = 7M1

6M1+K=

=6M1+M1+N-1

=7M1+N-1

=M+N-1

RP

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

Example (Cont.)

 So, here are the

individual segments

ordered in an

overlap-add format

0 5 10 15 20 25 30 35 40 45
0

20

40

0 5 10 15 20 25 30 35 40 45
-50

0

50

0 5 10 15 20 25 30 35 40 45
0

10

20

0 5 10 15 20 25 30 35 40 45
-50

0

50

0 5 10 15 20 25 30 35 40 45
-50

0

50

0 5 10 15 20 25 30 35 40 45
0

10

20

0 5 10 15 20 25 30 35 40 45
-50

0

50

0 5 10 15 20 25 30 35 40 45
-20

0

20

OVERLAPP ADD

M=length(x); %Length of the original signal

M1=length(x1); % Length of each batch

N=length(h); %Length of the filter

K=length(y1); %Length of each filtered batch

L=M+N-1; %Length of the desired convolution

O=K-M1; % Amount of overlap

Y1=[zeros(1, 0*M1) y1 zeros(1, L-(1*M1)-O)];

Y2=[zeros(1, 1*M1) y2 zeros(1, L-(2*M1)-O)];

Y3=[zeros(1, 2*M1) y3 zeros(1, L-(3*M1)-O)];

Y4=[zeros(1, 3*M1) y4 zeros(1, L-(4*M1)-O)];

Y5=[zeros(1, 4*M1) y5 zeros(1, L-(5*M1)-O)];

Y6=[zeros(1, 5*M1) y6 zeros(1, L-(6*M1)-O)];

Y7=[zeros(1, 6*M1) y7 zeros(1, L-(7*M1)-O)];

Y8=[zeros(1, 7*M1) y8 zeros(1, L-(8*M1)-O)];

Y=Y1+Y2+Y3+Y4+Y5+Y6+Y7+Y8;

RP

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

Example (Cont.)

0 10 20 30 40 50 60 70 80
-50

0

50
Individual filtering - Incorrect convolution

0 5 10 15 20 25 30 35 40 45
-50

0

50
Original correct filtering

0 5 10 15 20 25 30 35 40 45
-50

0

50
Filtering obtained by overlap add

RP

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Classification of sequences

Classification of finite length sequences:

conjugate symmetry relations

1[] ([] []),
2
1[] ([] []),
2

cs N

ca N

x n x n x n

x n x n x n

∗

∗

= + < − >

= − < − >

0 1n N≤ ≤ −

0 1n N≤ ≤ −

1[] ([] []),
2
1[] ([] []),
2

cs N

ca N

X k X k X k

X k X k X k

∗

∗

= + < − >

= − < − >

0 1k N≤ ≤ −

0 1k N≤ ≤ −

1[] ([] [])
2 cs cax n x n x n= +

1[] ([] [])
2 cs caX k X k X k= +

Classification of sequences

other symmetry relations
[] [1]
[] [1]

x n x N n
x n x N n

= − −
= − − −

symmetric
antisymmetric

four types (see Mitra section 5.5.2):

- type 1: symmetric with even length
- type 2: symmetric with odd length
- type 3: asymmetric with even length
- type 4: asymmetric with odd length

Classification of sequences

Examples of sequences
with the four types of
geometric symmetry:

Classification of sequences

(1)/2
(1) /

1

/2
(1) /

1

(1)/2
(1) /

1

1 1 2[] 2 cos
2 2

(2 1)[] 2 cos
2

1 2[] 2 sin
2

[]

N
j N k N

n

N
j N k N

n

N
j N k N

n

N N knX k e x x n
N

N k nX k e x n
N

N knX k e x n
N

X k

π

π

π

π

π

π

−
− −

=

− −

=

−
− −

=

⎧ ⎫− −⎡ ⎤ ⎡ ⎤ ⎛ ⎞= + −⎨ ⎬⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎝ ⎠⎩ ⎭
⎧ − ⎫⎡ ⎤ ⎛ ⎞= −⎨ ⎬⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎩ ⎭
⎧ ⎫−⎡ ⎤ ⎛ ⎞= −⎨ ⎬⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎩ ⎭

∑

∑

∑
/2

(1) /

1

(2 1)2 sin
2

N
j N k N

n

N k ne x n
N

π π− −

=

⎧ − ⎫⎡ ⎤ ⎛ ⎞= −⎨ ⎬⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎩ ⎭
∑

the DFT of a real (anti)symmetric sequence is the product of
a phase term and an amplitude function (Mitra 5.5.2):

Type 1

Type 4

Type 3

Type 2

Cosine transform

[]

[]

1

0

1

0

(2 1)[] 2 cos , 0 1
2

1 (2 1)[] []cos , 0 1
2

N

DCT
n

N

DCT DCT
k

k nX k x n k N
N

k nx n k X k n N
N N

π

πα

−

=

−

=

+⎛ ⎞= ≤ ≤ −⎜ ⎟
⎝ ⎠

+⎛ ⎞= ≤ ≤ −⎜ ⎟
⎝ ⎠

∑

∑

For type 2:

where: [] 1/ 2, 0
1, 1 1

k
k

k N
α

=⎧
= ⎨ ≤ ≤ −⎩

In the DFT of the different types the phase factor describes the length
of the sequence, the amplitude function describes the time domain
characteristics. Extract the information via discrete cosine transforms.

The even symmetrical DCT is used for data compression, in particular
for images and video: JPEG, MPEG, H.261

	college05
	college05
	college05_old
	college05
	college05
	College6
	College7

	college5_p1-3
	college05
	College6
	College7

	college5_p1-3
	college05
	College6
	College7

	college5_p1-3
	college05
	College6
	College7

	college5_p1-3
	college05
	college05
	College6
	College7

	college5_p1-3
	college05
	College6
	College7

	college5_p1-3
	college05
	College6
	College7

	college5_p1-3
	college05
	College6
	College7

	college5_p4-7
	college05_old
	college05
	college05
	College6
	College7

	college5_p1-3
	college05
	College6
	College7

	college5_p1-3
	college05
	College6
	College7

	college5_p1-3
	college05
	College6
	College7

	college5_p1-3
	college05
	college05
	College6
	College7

	college5_p1-3
	college05
	College6
	College7

	college5_p1-3
	college05
	College6
	College7

	college5_p1-3
	college05
	College6
	College7

	Lecture12

	college5_p8-13

