TODAY IN DSP

< Discrete Fourier Transform
& Analysis
& Synthesis
Y Orthogonality of discrete complex exponentials

< Periodicity of DFT
< Circular Shift

<@ Properties of DFT

< Circular Convolution

& Linear vs. circular convolution
< Computing convolution using DFT
< Some examples
< The DFT matrix
< The relationship between DTFT vs DFT: Reprise

DFT

< DTFT is an important tool in digital signal processing, as it provides
the spectral content of a discrete time signal.

Y However, the computed spectrum, X(w) is a continuous function of w, and
therefore cannot computed using a computer (the freqz function computes only an

approximation of the DTFT, not the actual DTEFT).

Y We need a method to compute the spectral content of a discrete time signal and
have a spectrum — actually a discrete function — so that it can be computed using a
digital computer

< A straightforward solution: Simply sample the frequency variable ® of
the DTFT 1n frequency domain in the [0 2x] interval.

Y If we want, say N points in the frequency domain, then we divide o in the [0 27]
interval into N equal intervals.

& Then the discrete values of are 0, 2/N, 2.21t/N, 3.2n/N, ..., (N-1). 2n/N

‘ Orthogonal Transforms

X[k]= N_1x[n]gy’“[k, nj O0<k<N-1
x[n] =%NiX[n]w[k, n,; 0<n<N-1

with basis sequences: W[k, n]

1 N-1 ,
which are orthogonal if NZW[k’ nly[l,n]s
n=0

‘ DFTANALYSIS

< Definition - The simplest relation between a length-N
sequence X[1], defined for 0 <n<N-1, and its DTFT X(w)
1s obtained by uniformly sampling X(w) on the w-axis
0 <w<2mat o =2nkN 0 <k< N1

< From the definition of the DTFT we thus have

X k=Y x|n|e? ™ IN=N" x[n|e ™ DFT analysis equation

DFTANALYSIS

< Note the following:

& kreplaces w as the frequency variable in the discrete frequency domain

Y X[A] is also (usually) a length-N sequence in the frequency domain, just like the
signal x[n] is a length-IN sequence in the time domain.

% X[k] can be made to be longer than N points (as we will later see)
Y The sequence X[A] is called the discrete Fourier transform (DFT) of the

sequence x| 7]

< Using the notation Wy = g 2"/ N the DFT is usually expressed as:

N-1
X[k]=Y x[n]Ws" 0<k<N-1
=0

n

INVERSE DFT
(DFT SYNTHESIS)

< The inverse discrete Fourier transform, also known as the synthesis
equation, 1s given as

1 N-1 27znk
X n|= Z X[k]e
B N— / DFT synthesis equation
— Z X[k]WN , 0<n<N-1
k_

< To verify the above expressmn we multiply both sides of the above
equation by yn _ eJ N and sum the result from n=0 to TEN-1

ORTHOGONALITY OF
DISCRETE EXPONENTIALS

< During the proof, multiplication by nfwﬂl result in an expression that
includes summation of several dlscre’%\é exponentlals which can be computed using
the result of the following lemma

2 Lemma: Orthogonality of disarete exponentials

Y For integers N, 7, rand / 27
s j==ml {N, 1=1rN

e N =
Z 0, otherwise

& In words, summation of harmomcaﬂy related discrete complex exponentials of 2n4/N is N,
if £ 1s an integer multiple of N; zero, otherwise.

Y The proof of the first part follows directly from Euler’s expansion, the second part follows
from the geometric series expansion:

N . : 1
2z Note that the exponential in the numerator evaluates to e/*7 which is

J==1
5r \D 1-le N always “1” for any integer “/’. Therefore, the numerator is zero, and
27 ..
N-1 Jﬁg hence the whole expression 1s zero, except for /=7IN, when the
ZO e = 27, denominator is zero as well. This undefined situation (0/0) can easily
n= =

1-e N be computed straight from the original expression itself.

COMPUTING DFT

< Recall the analysis equation: NZ_ A& 2EN. o<k N

n=0

Y For any given k, the DFT is computed by multiplying

each x[n] with each of the complex exponentials

ji2nnk/N

e and then adding up all these components

G If, for example, we wish to compute an 8 point

DFT, the complex exponentials are 8 unit vectors ©

placed at equal distances from each other on the
unit circle

=x[0]e+x[1]e12%/8) 1 +x[2] /924 x[3]e 127/ 8)3 +x[4]e](2n/8) 4x[5]e](2n/8).5+X[6]e—j(2n/8).6+x[7]e j(@n/8).7

e0+x[1]e /924 x[2]e 127/ 8) 44 x[3]e1?/8)-04 x[4] €727/ 8) 0 x [5]e 1?7/ 824 x[6] 127/ &) 44x [7] e (2/8):6

el0-+x[1]e /9 34x[2]e127/8) 6 +x[3]e /91 4 x[4]e 127/ 8) 4 +x[5]e 1/ BT +-x[6]e 127/ 8) 24 x 7] 1/9:3

e/ 44 x 2] /904 x [3]e /944 x [4]e1C/ 904 x [5]e i/ 844 x [6] e /904 x [T] e i/ 84

e0+x[1]e 1?85 4x[2]e 127/ 8) 24 x [3]e1C7/8) 7+ x[4] 17/ &) 4 4x [5]e 1C7/8)11 4-x[6] 127/ 8) 6 4x [7] e i(2/8):3

=x[0]el+x[1]e7127/8)6+x[2] 1/ 944 x[3]e 127/ 8) 24 x [4] e 1/ 9-04-x [5]e127/8) 6 4x[6] 1/ 94 4-x [7] i27/8)2
]] 3] | 5] [0] [7]e”

7]=x[0]el0+x[1]e %/ T+x[2]e1@%/8)6+x[3]e /8 54 x[4]e127/8) 44 x[5]e /934 [6]e127/8) 24 x[T] e /)1

PERIODICITY IN DFT

< DFT is periodic in both time and frequency domains!!!

% Even though the original time domain sequence to be transformed is not periodic!

< There are several ways to explain this phenomenon. Mathematically ,
we can easily show that both the analysis and synthesis equations are
periodic by N

< Now, understanding that DFT is periodic in frequency domain is

straightforward: DFT is obtained by sampling DTFT at 2n/N intervals.
Since DTFT was periodic with 2w = DFT is periodic by N.

< This can also be seen easily from the complex exponential wheel.
Since there are only N vectors around a unit circle, the transform will
repeat itself every N points.

< But what does it mean that DFT is also periodic in
time domain?

Digital Signal Processing, © 2007 Robi Polikar, Rowan University

PERIODICITY IN DFT

< Recall how we obtained the frequency spectrum of a sampled signal:

Y The spectrum of the sampled signal was identical to that of the continuous signal, except,
with periodically replications of itself every 2.

& That is, sampling the signal in time domain, caused the frequency domain to be periodic
with 27,
< In obtaining DFT, we did the opposite: sample the frequency domain

Y From the duality of the Fourier transform, this corresponds to making the time domain
periodic.

% However, the original signal was not periodic!

W This is an artifact of the mathematical manipulations.

< Here is what is happening:

% When we sample the DTFT in frequency domain, the resulting “discrete spectrum?”
is not spectrum of the original discrete signal. Rather, the sampled spectrum is in
fact the spectrum of a time domain signal

of the original discrete signal.

Y Similar to sampling theorem, under rather mild conditions, we can reconstruct the DTFT
X(w), from its DFT samples X[k]. More on this later!

DFT & CIRCULAR SHIFT

< We compute the N-point DFT of a periodic discrete sequence x[n],
with the understanding that the computed DFT is in fact the spectrum
of a periodic sequence X[n], which is obtained by periodically
replicating x[n] with a period of N samples.

< This nuance makes it necessary to introduce the concept of drcular
shift
Y A circularly shifted sequence is denoted by x[(#-L.)y], where L is the amount of

shift, and N is the length of the previously determined base interval (by default,
unless defined otherwise, this is equal to the length of the sequence).

Y The circulatly shifted sequence is defined only in the same interval as the original
sequencel!

Y To obtain a circularly shifted sequence, we first linearly shift the sequence by L,
and then rotate the sequence in such a manner that the shifted sequence remain in
the same interval originally defined by N.

CIRCULAR SHIFT

x(n)

Original sequence

1

it

Linear shift

xX(n-1)

x(n-2)

N fr—

() [r——

B f—

e U1

Circular shift

x((n=1))g

1

x((n-2))g

I ——

) p——l

B —

n

0 |—

B f—

n

x(=n) x((=n)g

o fe—l

n

-4 -3 -2 -1 n

| 4111

If the original sequence is defined in the time interval N,
to N,, then the circular shift can mathematically be
represented as follows:

%o[0] = {(n- L]y
= x|(n- L)mod N]
= x|(n— L+1N), suchthatN; <n-L< N, |

The circularly shifted sequence is obtained by finding an
integer r'such that n-L +rNremains in the same domain as
the original sequence.

PROPERTIES OF THE DFT

Type of Property Length-N Sequence N-point DFT
g[n] G[k]
h[n] H k]
Linearity agn] + Bh[n] aGlk]l+ BH[K] 5,
_Ji
Circular time-shifting glin — no) N1 wyeGlkl=e ~ N " G[K]
27
Circular —kon o o Jgn B
frequency-shifting Wy glnl=e gnl - Glk = koln]
Duality G[n] Ngl[(—-k)N1]
. . N-1
N -point 01r.cular Y glmlhl(n — m)N] Gk]H [k]
convolution m—=0 "
(oln]* W)y Nt
. - 1
Modulation glnlh[n] ¥ ¥ GImlH[(k —m)y) = ﬁ(G[k]* HIK])
(Circular convolution in frequency) m=0

N-1 N-1
1
’ . 2 7)
Parseval’s relation E—O |x[n]]* = ¥ kz_o | X [k]|

DFT SYMMETRY RELATIONS

Length-N Sequence N-point DFT Length-N Sequence N-point DFT
x[n] X[k] x([n] X[k] = Re{X[k]} + j Im{X[k]}
x*[n] X*[(=k)N] xpe[n] Re{X[k]}
x*[(—n)N] X*[k] xpo[n] jIm{X[k]}
Re{x[n]} Xpes[k] = ${X[(k)n] + X*[(~k)N])
; 1 * X[kl = X*[(=k)N]
J Im{x[n]} Xpcalk] = 5{X[(k)Nn] — X*[(—=k)N]} -
xpes[n] Re{X[k]} e X[k] =Re X[(-k)n]
Xpcaln] j Im{X[k]} Symmetry relations Im X[k] = —Im X[(—k)nN]

IX[k]l = | X[{(=Kk)N]I
arg X[k] = —arg X[(—k)n]

Note: xpcs[n] and xpca[n] are the periodic conjugate-symmetric and
periodic conjugate-antisymmetric parts of x[n], respectively. Likewise, o o
Xpes[k]and X pca [k] are the periodic conjugate-symmetric and periodic Note: xpe[n] and xpo[n] are the periodic even and periodic odd parts
conjugate-antisymmetric parts of X [k], respectively. of x[n], respectively.

‘ Circular Convolution

N -1
Linear convolution: Y. [n1=)_ g[mIh[n—m]
m=0

N -1
Circular convolution: Yc[n1=) g[mlh[<n—m>]
m=0

consider the following functions for a 4 point circular convolution

o e
2

O- n
0 1 2

A,

Circu

lar Convolution

Evaluating Yc[n]=Y g[mh[<n-m>,] gives:

Ye
Ye
Ye
Ye

0]=9I0
1]=g[0]
2] =90

3] = g[0]n[3] + gl1]n[2] + g[2

(1] + g[1]n[0] + g[2]

h[2]+g[1]In{1] + g[2]

h[O]+ g[1]n[3] + g[2]

h[2]+g[3]h{1]

(3] + gl3]n[2]
h[O]+ g[3]n[3]

h[1]+g[3]n[0]

so we see that the 4 terms involve multiplying g[n]
with reversed and circularly shifted versions of h[n]
on the interval n=0-3

Circular Convolution

The reversed and circularly shifted versions of h[n] are:

Lol , ITse o017 well
01 2 3 0 1 3 01 2 3 0 1 2 3
(a) (b) (c) (d) '

Figure 5.7: The circularly time-reversed sequence and its circularly shifted versions: (a) h[(—m}4], (b) h[{1 — m)

4]
(©) hl(2 — m)4], and (d) A[(3 — m)4].

Yelnl

y, [n]
70
60 o 69
' ' 7> e and linear circular
leading to the following 4 _
circular convolution zT convolution results
n |
01 2 3 0O 1 2 3 4 5 6
(a) (b)

Figure 5.8: Results of convolution of the two sequences of Figure 5.7. (a) Circular convolution and (b) linear
convolution.

Circular Convolution

A graphical representation of the circular convolution is:

- h[3] h[0]

y[O] n21b ¢ LLA0] K3bE] glo1d Al y[1]
outer ring moves : ;
- hl1 - h[2
counter clock wise - .

(b)

WLy aidde2) gro1b b3 y[3]

21

(d)

CONVOLUTION MATRIX

< The circular convolution can also be easily computed using the
following N-point convolution matrix:

y[n]=x[n] & h[n]

y{0] | [mol nN-1 WN-21 - W1 «0] |
1 b1l B0] HIN-1] - h2]||]

w2 |=| h21 H1 WOl - h3]|| 2]

y{N-1] [h[N-1] h[N-2] h[N-3] - h[0]]|x[N-1]

LINEAR VS. CIRCULAR
CONVOLUTION

< Note that the results of linear and circular convolution are different.
This 1s a problem! Why?

< All LTI systems are based on the principle of linear convolution, as
the output of an LTI system 1s the linear convolution of the system
impulse response and the input to the system, which 1s equivalent to
the product of the respective DTFTs in the frequency domain.

& However, if we use DFT instead of DTFT (so that we can compute it using a
computer), then the result appear to be invalid:

« DTFT is based on linear convolution, and DFT is based on circular convolution, and
they are not the same!!!

» For starters, they are not even of equal length: For two sequences of length N and M,
the linear convolution is of length N+M-1, whereas circular convolution of the same two
sequences is of length max(N,M), where the shorter sequence is zero padded to make
it the same length as the longer one.

* |s there any relationship between the linear and circular convolutions? Can one be
obtained from the other? OR can they be made equivalent?

LINEAR VS. CIRCULAR
CONVOLUTION

< YES!, rather easily, as a matter of fact!
Y FACT: If we zero padboth sequences x[n] and h[n], so that they are both of

length N+M-1, then linear convolution and circular convolution result in identical

sequences

% Furthermore: If the respective DFT's of the zero padded sequences are X[k] and
HJk], then the inverse DFT of X[k]-H[k] 1s equal to the linear convolution of x|n]
and h[n]

& Note that, normally, the inverse DFT of X[k].H[k] is the circular convolution of
x[n] and h[n]. If they are zero padded, then the inverse DFT is the linear

convolution of the two.

EXAMPLE

-}

< Compute circular convolution of x[n]=[13 2 -1 4], h[n]=[20 1 7 -3],
by appropriately zero padding the two

Zero pad signals!

Corresponding convolution formula

Solution

Digital Sig

COMPUTING CONVOLUTION
UsING DFT

= Note that we can compute the convolution using no time domain
operation, using the convolution property of DFT, that is, the inverse
DFT of X[k]-H[k] 1s equal to the linear convolution of x[n] and h[n].

< Since we can compute DFT very efficiently using FFT (more on this
later), 1t 1s actually more computationally efficient to compute the

DFTs X[k] and H[k], multiply them, and take the inverse DFT then to
compute the convolution 1in time domain:

y[n] = x[n]® h[n] = IDFT{X[K].H[k]}

¥ Note, however, the IDFT gives the circular convolution. To ensure
that one gets linear convolution, both sequences in the time
domain must be zero padded to appropriate length

COMPUTING CONVOLUTION
USING DFT

2 Note that we can compute the convolution using no time domain operation, using
the convolution property of DFT, that is, the inverse DFT of X[K]-H[K] is equal to
the linear convolution of x[n] and h[n].

2 Since we can compute DFT very efficiently using FFT' (more on this later), it is
actually more computationally efficient to compute the DFT's X[k] and H[K],
multiply them, and take the inverse DFT then to compute the convolution in time

domain:

y[n] = x[n] @, h[n]=(xnl*hnl), = IDFT{X[k]- H[k]}

2 Note, however, the IDFT gives the circular convolution. To ensure that one gets
linear convolution, both sequences in the time domain must be zero padded to

N+HWE1

poin T |~ YLD

appropriate length.
xn] |ZeroPadding| X [n] | Nave1 | XIK]
— with .
Length-N| M:1zeros point DFT
hin] [FECSEER— hinl| w1
N-1zeros paint DET | H[k]

Lengthh- M

Length-(N+ M -1)

x=132-14];
h=2017-3];
x2={132-140000]j;
h22017-30000]j;
Cl=conv(x,h);
X=ft(x2); H=fft(h2);
C2afft(X.*H);
subplot(411)

stem(x, 'filled'); grid
subplot{412)

stem(h, ‘filled'); grid
subplot(413)
stem(C1, 'filled'); grid
subplot{414)

stem(real(C2), 'filled'); grid

h{n] x[n]

x[n]*h[n]

F10¢[k].HIKD)

| | s &

. ; ; i : a i
1 15 25 3 35 4 45

101 : ; : : ' !

4 S S S
0 i ; : i i ;
1 156 25 3 35 4 45

50 : : : : : '
: e Y i i1

- s s N S

@ i i i i i i
2 4 5 6 T 8

50 ! : : ! : i
i e Y Lo

o 5 s €

_50 i i ; i i ;
2 4 5 6 7 8

IN MATLAB

< In Matlab, the fft() computes DFT using a fast algorithm, called fast Fourier
tranddom (FF1).

< X = fft(x) returns the discrete Fourier transform (DFT) of vector X, computed with a
fast Fourier transform (FFT) algorithm.

O If x is a matrix, fft returns the Fourier transform of each column of the matrix. In this case,
the length of X and the length of x are identical.

Y X = fft(x,N) returns the N-point DFT. If the length of X is less than N, X is padded with
trailing zeros to length N. If the length of X is greater than N, the sequence X is truncated.

% The N points returned by fft corresponds to frequencies in the [0 27] range, equally spaced
with an interval of 27 /N.

Y Note that the N™ FFT point corresponds to 2x, which in turn corresponds to the sampling
frequency.

G If x[n] is real, X[k] is symmetric. Using the fftshift() function shifts the center of symmetry
so that the FFT 1s given in the [- to 7] interval, rather then [0 2x].

< X=ifft(X,N) returns the N-point inverse discrete Fourier transform

Digital Signal Processing, © 2007 Robi Polikar, Rowan University

Let’s show that

i. DFT is indeed the sampled version of
DTFT and
ii. DFT and FFT produce identical results

n=0:31; k=0:31;

x=0.9.7n;

w=linspace(0, 2+pi, 512);
K=linspace(0, 2%pi, 32);
X1=1./(1-0.9*exp(-j*w));
X2=1-(0.9%exp(-j(2*pi/32)*k)).~32)./
(1-0.9%exp(-j(2pi/32)*k));
X=fft(x);

subplot(311)

plot(w, abs(X1)); grid
subplot(312)

stem(K, abs(X2), 'r’, 'filled’); grid
subplot(313)

stem(K, abs(X), 'g', 'filled'); grid

Digital Signal Processing, © 2007 Robi Polikar, Rowan University

BACK TO EXAMPLE

DTFT of x[n]=(0.9)"

T
: i ,
2 3 4 7
) B Q. rad/s
10 32 point DFT of x[n]=(0.9)
" ! !
] R e S L e et S SRR LR
. [TTTT???%f%ﬁut'nqweﬂvc?#?ﬁ??TTiTI
0 1 2 3 4 5 5 -
32 point FFT of x{n]=(0.9)" T
10g j ! :
S A S
® : : . , : *iﬁ-
b ' ' ' ' & H
0 feeeeprecccrecocipoceene?] [
0 1 2 3 4 - B 7
®, rad

MATRIX COMPUTATION
OF DFT

< DFT has a simple matrix implementation: The DFT samples defined by

N-1
X[kl= ¥ (nW&, 0<k<N-1

n=0
can be expressed in a matrix form X = DNX

where X=[X[0] X[1] ... X[\N-1]]"is the vectorized DFT sequence,
x=[x[0] x[1] ... X[N-1]]" is the vectorized time domain sequence, and
D, is the Nx N DFT matrix given by

11 1 .
1 Wy wWg o WD
Dy=[1 W W WA

1 WD WA W1<\]N—1>2_

Rowanﬁ

University {f THE FAST FOURIER TRANSFORM (FFT)
CHAPTER 11 MITRA

< By far one of the most influential algorithms ever developed in signal
processing, revolutionalizing the field

< FFT: Computationally efficient calculation of the frequency spectrum

& Made many advances in signal processing possible

% Drastically reduces the number of additions and multiplications necessary to
compute the DFT

< Many competing algorithms
% Decimation in time FFT Recall: Wy =g J2"/N
% Decimation in frequency FFT

< Makes strategic use of the two simple complex identities:

2r . 27
2 _e INZ_g N2
WN_e =e _WN/Z
N 2 27 N 27 2T
k+E —j— —J—-E —j— i —-Jj—Kk K
Wy 2=e N .e N 2-¢g "N . - N =Wy

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

R"WSEQW | COMPUTATIONAL
COMPLEXITY OF DFT

< Q: How many multiplications and additions are needed to compute DFT?

N -1 "
X[k]= > x[n]wWy¥, 0<k <N -1
n=0

< Note that for each “k” we need N complex multiplications, and N-1 complex
additions (W ") does not depend on x[n], and hence can be precomputed and saved in table

Y Fach complex multiplication is four real multiplications and two real additions
O A complex addition requires two real additions

Y So for N values of “k”, we need N*¥N complex multiplications and N*(N-1) complex
additions

» This amounts to N2 complex multiplications and N*(N-1)~N?2 (for large N) complex additions
* N2 complex multiplications: 4N? real multiplications and ~2N? real additions
* N2 complex additions: 2N? real additions

O A grand total of 4N? real multiplications and 4N? real additions:

« The computational complexity grows with the square of the signal size.
« This computational complexity is referred to as O(N?), also called, order of N2
« For, say 1000 point signal: 4,000,000 multiplications and 4,000,000 additions: OUCH!

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Rowan‘)
e ¥ FFT: DECIMATION IN TIME

< Assume that the signal is of length N=2P, a power of two. If it is not,
zero-pad the signal with enough number of zeros to ensure power-of-
two length.

< N-point DFT can be computed as two N/2 point DFTSs, both of which
can then be computed as two N/4 point DFTs
Y Therefore an N-point DFT can be computed as four N/4 point DFTs.

& Similarly, an N/4 point DFT can be computed as two N/8 point DFT's =» the
entire N-point DFT can then be computed as eight N/8 point DFT's

Y Continuing in this fashion, an N-point DFT can be computed as N/2 2-point
DFTs

« A two point DFT requires no multiplications (!) and just two additions.

« We will see that we will need additional multiplications and additions to combine the 2-
point DFTs, however, overall, the total number of operations will be much fewer than
that would be required by the regular computation of DFT.

Sp il
Digital Signal Processing, © 2010 Robi Polikar, Rowan University ‘%L‘

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Rowan‘)
o, TWO-POINT DFT

< How many operations do we need for 2-point DFT?

© X[0]=x[0]+x[1] 1

K \ ;
L, X[1]=x[0]*1 +x[1]*e T =x[0]-x[1] X[k]=n§OX[n]WN 0<k<l W =g j2n/N

x(0) X(0)

2-point DFT requires no multiplication, just two additions
(sign change is very inexpensive — reversal of one or more bits —
and hence does not even go into complexity computations)

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Rowan‘)
e ¥ DECIMATION IN TIME

< For the first stage, we first “decimate” the time-domain signal into two half: even
indexed samples and odd indexed samples.
& Using the first property of complex exponentials:

(N/2)-1 (N/2)-1
X[k]= x[2n]\NN/2 +Wy > x[2n+1}NN/2
n=0 n=0
N J J
Y Y

= P[K] +W, S[K], Oskgg—l

/ \

_ N/2 point DFT
N/2 point DFT of odd samples —

of even samples defined on k=[0, 1, ..., (N/2)-1]

& However, we need all values of P[k] and S[k] for k=[0~N-1]

& Since DFT for real sequences is even, P[k] and S[k] are identical in both [0 (N/2)-1] and
[(N/2) N-1] intervals =» P[k]=P[k+N/2], and similarly, S[k]=S[k+N/2]

Sp il
Digital Signal Processing, © 2010 Robi Polikar, Rowan University A%L‘

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Rowanﬂ

University

DECIMATION IN TIME
STAGE 1

< Then: X[k]=P[k]+W¥S[k] Osks%—l WN“N/Z/:W W% =W

X [k +%] = P[k + %] +WIN2S K + %]

- P(0) oca
o X(0) == X(0)
. P(1) \
X(2) ——an= A X(1) 1
?2 9 o N_ point 2
i o
23 < . = z
S £ DFT o
> - II
w '
\X(N—2) i
_______________(f _______ T /=
X(1) =~
-
. X(3) ———= %
()
o N
g % < > point @
= £ DFT Z
=] N
: D
X(N—1) ——m
\ o
Digital Signal F ‘%L‘

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Rowan‘)

University

THE BUTTERFLY PROCESS

o The basic building block in ~ PIKI: Evenindexed samples
.. : P(K)
this implementation can be
represented by the butterfly
Process.

Y Two multiplications & two

X(K)

additions
< But we can do even better, S(k) i X (k +§)
just by moving the multiplier s[k]: odd indexed ~ —Wj
before the node S[k] samples

% Reduced butterfly

% 1 multiplication and two
additions !

< We need N/2 reduced
butterflies in stage 1 to
connect the even and odd
N/2 point DFTs

% A total of (N/2)

multiplications and
2*(N/2)=N additions

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

X(k)

S(K)

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Rowan‘)t
. STAGE I FFT

(N/2)?2 multiplications+
(N/2)? additions

)| (N/2)-point O
X[n] 12 evenl’] (g X k]
‘ DFT [
Z-l
P Xodd [N} (n/2)-poiint
DFT
(N/2)2 multiplications+ The butterfly
(N/2)2 additions (N/2) mult. & N additions

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

STAGE 2...& 3...&4...

< But wait...!
< We can continue the same process as long as we have s3

es to split in half:
sduced butterfly

Y% Each N/2-point DFT can be computed as two N/4-pat

Y% Each N/4-point DFT can be computed as two N/8-point a reduced butterfly.

log,N

p-1 stages,
P

EEEE

2 2-point DFT (which requires no multiplications)+ a rec®

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Rowanﬂ
8-POINT FFT — STAGE 1

P(0)

X(0) ———= - (+) X(0)
X(2) ———p- 4-point ':1 ' \ e X(1)
x(4) —w| DFT PG \ () X(2)
X(6) —— e P ".‘ ’-e X(3)
S(0)

X(1) ———po- > i e X4)

. s() Wi /// \

X(3) ———t- 4-point - VLTVE // !'{ e X(5)
-..l‘?"]

x(5) —m DFT —> / () X(6)
S@) W3

X(7) —— - 2 e (F) X(7)

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Rowanﬂ

University

8-POINT FFT — STAGE 2

X[0] X((X© T | pon Dv =P0)
X[1] X[1] oFT

X[2] X{i x(4) +—u!) A(1)
X[3] X[3]

X[4 = — X[« Wi |
;5] X5l X3 et D -
X[G] X[5]X((h[F]-F.T Wl

X[7] X[7] X[7] x6) 4—m > - P(3)

—

x[o] X[O] x(1) - 4-point Dv S(0)
X[4] 2-point
DFT
X[4] X(. X(5) ———p~ 4 .

- X(. W

X[3] X(3) 2——] D
X(f 2-point

X[S] DFT Wl

X[7] X[7] x7) 4—m >

X0 ! -

Digital Signal Processing, © 2010 Robi Polikar, Rowa

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Rowa.nﬁt
e ¥ 8-POINT FFT — STAGE 3

4-point DFT 8-point DFT

X2)q - X(2)

X(6) 1 - X(3)

1
Af
Ir' ‘1" 4

4-point DFT

Z-POINt DFE 1S

x(1) 1 - X(4)

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Rowan‘)

University

So How DID WE DO?

In log,N stages, total # of calculations:

(N/2)*(log,N-1)~(N/2)*log,N multiplications
Nlog,N additions

As opposed to N2 multiplications and N2 additions

Is that good...?

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Rowan‘)

University

DECIMATION IN FREQUENCY

< Just like we started with time-domain samples and decimated them in
half, we can do the same thing with frequency samples:

Y Compute the even indexed spectral samples k=0, 2, 4,..., 2N-1 and odd indexed
spectral components k=1, 3, 5, ..., 2N-2 separately.

& Then further divide each by half to compute X[k] for 0, 4, 8,... and 2, 6, 10, ... as
wellas 1, 5,9, ... and 3,7, 11 ...separately

% Continuing in this manner, we can reduce the entire process to a series of 2-point

DFTs.

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Royan@) 4 8-POINT DFT WITH
i DECIMATION IN FREQUENCY

—e X(0)
2-point
DFT
—e X(4)
—e X(2)
2-point
DFT
—» X(6)
—e X(1)
2-point
DFT
—® X(5)
— X(3)
2-point
DFT
—» X(7)

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Rowan‘)
™ W. FILTERING STREAMING DATA

< In most real-world applications, the filter length is actually rather
small (typically, N<100); however, the input signal is obtained as a
streaming data, and therefore can be very long.

< To calculate the output of the filter, we can

a) Wait until we receive all the data, and then do a full linear convolution of length
N filter and length M x[n], where M>>>>N = y[n]=x[n]*h[n]

b) We can use the DFT based method = y[n]=IDFT (X[k].H[k]), but we still
need to wait for the entire data to arrive to calculate X[k]

< In either case, the calculation is very long, expensive, and need to
wait for the entire data to arrive.

< Can we just process the data in batches, say 1000 samples at a time,
and then concatenate the results...?

Sp il
Digital Signal Processing, © 2010 Robi Polikar, Rowan University ‘%L‘

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Rowanﬁ

University

WHAT HAPPENED...?

< An example:
% hln]=[12 3 2 1]; (a short filter)
S x[n]=[12345-1-24564-2-3432564-1-4245-1234-223456-21231-1]

h=[12 3 2 1]; % Some short filter N=5; Short, length 5 filter h[n]
x=[12345-1-24564-2-3432564-1-4.. 4. r r r r r r

245-1234-223456-21231-1]; % M=40 5 ®
y=conv(x, h); % regular convolution Length N+M-1 T T
%L et's divide the long x[n] into smaller segments and 0? r ' r r ?
calculate the convolution of each segment 1 1.5 2 2.5 3 35 4 4.5 5
x1=x(1:5); yl=conv(xl, h); Long, length 40 S|gnal

10

X2=x(6:10); y2=conv(x2, h); i i ® i
x3=x(11:15); y3=conv(x3, h); 0 4099..‘?? hd ?‘Q’??. Q?? (11 QQ?’? 00®
X4=x(20:25); y4=conv(x4, h); ’

= N " = " '10 C . h
xg_x(izgg): yg_conv(xg, E): 0 5 10 15 20 25 30 35 40
x6=x(31:35); y6=conv(x6, h); Filtered S|gnal obtained in one conwlution, length=40+5-1=44
X7=x(36:40); y7=conv(x7, h); 50 . i - ‘ -
% Now add those segments together . T‘ ° i
%and compare to the original convolution 50 i i i i I
subplot(411); stem(h, *filled"); grid 0 5 10 15 20 25 30 35 40 45
title('Short, length 5 filter h[n]") Filtered signal obtained as concatenation of individual segments, length=...?

subplot(412); stem(x, filled"); grid
title('Long, length 40 signal’)

subplot(413); stem(y, ‘filled"); grid
title(‘Single convolution, length=40+5-1=44")
subplot(414); stem(y_batch, *filled"); grid
title(‘Concatenation of individual segments, length=...?

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Rowanﬁ

University

OVERLAP ADD

< The border effect! Processing individual segments separately and then combining
them is possible, however, the border distortion needs to be addressed

& Overlapp add is a method that allows us to compute the individual segments and then

concatenate them in such a way that the concatenated signal is the same as the one that

would be obtained if we processed the entire data at once.

X ul *

X, | Xy | X3 | X4 | X5 | Xg | X5

le !
yZEK !
| Yaid
Yaid
| Ysi

Y6 ik !
Y7 k|
Mi omi am; Y ! smy 6M,_ 6M,+K]

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

N

y M+N-1

X]_M * N: le

M = 7M,

K=M,+N-1

6M,+K=
=6M,+M,+N-1
=7M,+N-1
=M+N-1

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

Rowanﬂ

University

ExXAMPLE (CONT.)

< S0, here are the
Individual segments
ordered in an
overlap-add format

M=length(x); %Length of the original signal
M1=length(x1); % Length of each batch
N=length(h); %Length of the filter
K=length(y1); %Length of each filtered batch

L=M+N-1; %Length of the desired convolution -0,

0O=K-M1; % Amount of overlap

Y1=[zeros(1, 0*M1) y1 zeros(1, L-(1*M1)-O)];
Y2=[zeros(1, 1*M1) y2 zeros(1, L-(2*M1)-O)];
Y3=[zeros(1, 2*M1) y3 zeros(1, L-(3*M1)-0)];
Y4=[zeros(1, 3*M1) y4 zeros(1, L-(4*M1)-0)];
Y5=[zeros(1, 4*M1) y5 zeros(1, L-(5*M1)-0)];
Y6=[zeros(1, 5*M1) y6 zeros(1, L-(6*M1)-O)];
Y7=[zeros(1, 6*M1) y7 zeros(1, L-(7*M1)-O)];
Y8=[zeros(1, 7*M1) y8 zeros(1, L-(8*M1)-0O)];

Y=Y1+Y2+Y3+Y4+Y5+Y6+YT7+Y8;

Digital Signal Processing, © 2010 Robi Polikar, Rowan Uni

OVERLAPP ADD
[L

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

University

Rowanﬂ |
h il

ExXAMPLE (CONT.)

Individual filtering - Incorrect conwvolution

50 F E E T F T o y
0 jm ?J W?w th.ﬂ Wﬂw
-50° - : : - : - : s
0 10 20 30 40 50 60 70 80
Original correct filtering
50 F T T y o T T T T F
° [
0 ,.9?7?99'“?;.97 | T’.,#meﬂ T???'Q.,,_
-50° : : : - : : : : .
0 5 10 15 20 25 30 35 40 45
Filtering obtained by owerlap add
50 F y y L L y y T T F
L
0 ,.9?7?”'W?g.?ﬂTT.,Q'T???‘??TT T???‘o..,_
-50° : : : - : : : : .
0 5 10 15 20 25 30 35 40 45

Digital Signal Processing, © 2010 Robi Polikar, Rowan University

http://engineering.rowan.edu/
http://users.rowan.edu/~polikar/RESEARCH

‘ Classification of sequences

Classification of finite length sequences:

conjugate symmetry relations

1

M =~ (414 X [<=n>, D, 0<n<nN-1 ,
; } 0 = (X [+ X,)
Xa[N] =2 (N =X[<=n>\]), 0<n<N-1
XalK1=2 (XK + X T<k > D), o<k <N -1 1
, } X[K1= (X K]+ X, [
Xalkl = (XK1= X < -k >, 1), 0k <N -1

‘ Classification of sequences

other symmetry relations

X[n]=x[N —1-n] symmetric
X[N] = —x[N —1—n] antisymmetric

four types (see Mitra section 5.5.2):

- type 1. symmetric with even length
- type 2. symmetric with odd length

- type 3. asymmetric with even length
- type 4. asymmetric with odd length

Classification of sequences

Examples of sequences r
with the four types of I’
geometric symmetry: 0

P

"\

Center of Center of
symmetry symimetry
(a) Type I, N =9 (b) Type 2, N = 8
x[?’l] X [n]

i

- L
P

Center of N Center of
symmetry symmetry
(¢c) Type3, N =9 (d) Type 4, N = 8

Figure 5.10: Illustration of the four types of geometric symmetry of a sequence.

‘ Classification of sequences

the DFT of a real (anti)symmetric sequence is the product of
a phase term and an amplitude function (Mitra 5.5.2):

(. (N-1)/2 . 7
X[N 1}2 Z x[—N 1—n cos(znknj
L2 2 N

n=1

N

Type 1 X [k] _ e—j(N—l);zk/N

N

Cne (Y2 N 7k(2n-1))
X[k]=e JNDAN 2 x[——n}cos(
Type2 XIK] > ; N

L n=1)
. (((ND/2 PN g . (27kn
X[k]=e {(N-VKIN J 9 x[——n}sm(j
Type 3 XIK] > 5 Y

X [k] — e—j(N—l)ﬁk/N

N

f N
N
S =
i} NS
P
|
|
>
L
L,
>
TN
5
~—
~~
Z|5
|
=
~—
%r_/

Type 4

‘ Cosine transform

In the DFT of the different types the phase factor describes the length
of the sequence, the amplitude function describes the time domain
characteristics. Extract the information via discrete cosine transforms.

N-1
Fortype 2: X [K]= ZZx[n]cos(”k(;:H)j, O0<k<N-1
n=0
N-1
Xoer [N] _ 1 o K] XDCT[k]cos(ﬂk(znﬂ)j, 0<n<N-1
N i 2N
1/2, k=0

where: a[k]:{ L 1<k <N -1

The even symmetrical DCT is used for data compression, in particular
for images and video: JPEG, MPEG, H.261

	college05
	college05
	college05_old
	college05
	college05
	College6
	College7

	college5_p1-3
	college05
	College6
	College7

	college5_p1-3
	college05
	College6
	College7

	college5_p1-3
	college05
	College6
	College7

	college5_p1-3
	college05
	college05
	College6
	College7

	college5_p1-3
	college05
	College6
	College7

	college5_p1-3
	college05
	College6
	College7

	college5_p1-3
	college05
	College6
	College7

	college5_p4-7
	college05_old
	college05
	college05
	College6
	College7

	college5_p1-3
	college05
	College6
	College7

	college5_p1-3
	college05
	College6
	College7

	college5_p1-3
	college05
	College6
	College7

	college5_p1-3
	college05
	college05
	College6
	College7

	college5_p1-3
	college05
	College6
	College7

	college5_p1-3
	college05
	College6
	College7

	college5_p1-3
	college05
	College6
	College7

	Lecture12

	college5_p8-13

