Sampling: examined in detail

< The Sampling Theorem
Y The need for sampling and the aliasing problem
Y Shannon’s sampling theorem
* Nyquist rate
&, Effect of sampling in frequency domain
& Sampling explained graphically!
& Recovering the original signal.
« The sinc function



ANALOG =2 DIGITAL 2 ANALOG

< Most signals in nature are continuous in time
Y Need a way for “digital processing of continuous-time signals.”

< A three-step procedure

&, Conversion of the continuous-time signal into a discrete-time signal
» Anti-aliasing filter — to prevent potentially detrimental effects of sampling
» Sample & Hold — to allow time to the A/D converter
* Analog to Digital Converter (A/D) — actual conversion in time and amplitude
Y, Processing of the discrete-time signal
 Digital Signal Processing — Filter, digital processor
Y Conversion of the processed discrete-time signal back into a cont.-time signal

 Digital to analog converter (D/A) — to obtain the cont. time signal
» Reconstruction / smoothing filter - smooth out the signal from the D/A

Anti- — .
At ) gital | Reconstruction
i algalig;g S/H—A/D processor D/A— filter .




ALIASING

Alias:

Two names for the
same person, or thing.



ALIASING

< Note that identical discrete-time signals may result from the sampling of more than one
distinct continuous-time function. In fact, there exists an infinite number of continuous-time

signals, which when sampled, lead to the same discrete-time signal
x1=cos(21c3t), x2=cos(21c7t), x3=cos(2n13t)
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ALIASING

(ANOTHER EXAMPLE)
B

% The signals in the following plot shows two sinusoids: x[n]=cos(0.4nn) and x,[n]=cos(2.47n). Note that

these two signals are distinct, as the second one clearly has a higher frequency.

% However, when sampled at, say integer values of # , they have the same values, that is x[n]=x,[n] for all

mnteger 7. These two signals are aliases of each other. More specifically, in the DSP jargon, we say that

the frequencies w,= 047 and w,=2 .47 are aliases of each other.

% This 1s why all signals— when represented in frequency domain — are normalized to a 27 interval

Cos(0.4xt)

Cos(2.4xt)
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x1=cos(0.4*pi*n); x2=cos(2.4*pi*n);
t=0:0.001:100; 0.4}

yl=cos(0.4*pi*t); y2=cos(2.4*pi*t);
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plot(t,y1, 'b');

hold 0
plot(t,y2, 'r');
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stem(n,x1, ‘g’);
stem(n,x2, ‘g’); 0
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ALIASING

< Here is another example:

& The signals in the following plot shows two sinusoids: x,[n]=cos(0.4nn) and
X,[n]=cos(2.4nn). Note that these two signals are distinct, as the second one clearly
has a higher frequency.

Y However, when sampled at, say integer values of 7 , they have the same values, that
is x,[n]=x,[n] for all integer n. These two signals are aliases of each other. More
specifically, in the DSP jargon, we say that the frequencies w,= 0.4n and w,=2.4n
are aliases of each other.

Y This is why all signals and systems — when represented in frequency domain — are
normalized to a 2m interval
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ALIASING

< In general, 2n multiples added or subtracted to a sinusoid gives aliases

of the same signal.
Y The one at the lowest frequency is called the principal alias, whereas those at the

negative frequencies are called folded aliases.
Y In summary, the frequencies at ®, 127k and 2nk-m, for any integer £, are aliases of

each other.
Y We can further show that for folded aliases, the algebraic sign of the phase angle is

opposite that of the principal alias

Discrete-Time Spectrum of x[n] = cos(0.4mn)

24 .67 §—JT -4 0 4w T 1.6 24w
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Alias frequencies
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HOUSTON...
WE’VE GOT A PROBLEM!*

< The fact that there exists an infinite number of continuous-time
signals, which when sampled lead to the same discrete-time signal,
poses a considerable dilemma 1n plotting and interpreting signals in
the frequency domain.

< Q: If the same discrete signal can be obtained from several continuous
time signals, how can we uniquely reconstruct the original continuous
time signal that generated the discrete signal at hand?

< A. Under certain conditions, it is possible to relate a unique
continuous-time signal to a given discrete-time signal.

Y If these conditions hold, then it is possible to recover the original continuous-time
signal from its sampled values



SHANNON'S
SAMPLING THEOREM

< The solution to this complicated and perplexing phenomenon comes
from the amazingly simple Shannon’s Sampling Theorem, one of the
cornerstones of the modern communications, signal processing and
control systems.

Y A continuous time signal x(8), with frequencies no higher then £2,__=2zf, __can be
reconstructed exactly, precisely and uniquely from its samples x{n] = x(nT), if
the samples are taken at a sampling rate (frequency) of £=1/T, or (2=2rn/T)
that is greater then 2f,__ The frequency £2,/2 (or £/2 0t £, ) is called the
Nyquist frequency (or folding frequency), as it determines the minimum
sampling frequency required. The minimum required sampling frequency is then
called the Nyquist rate.

Y In other words, if a continuous time signal is sampled at a rate that is at least twice
as high (or higher) as the highest frequency in the signal, then it can be uniquely
reconstructed from its samples.

& Aliasing can be avoided if a signal is sampled at or above the Nyquist rate.



CLAUDE SHANNON

|| Shannon, Claude Elwood (1916-2001), American applied mathematician

and electrical engineer, noted for his development of the theory of
communication now known as information theory. Born in Gaylord,

* Michigan, Shannon attended the University of Michigan and in 1940
§ obtained his doctorate from the Massachusetts Institute of Technology,

i where he became a faculty member in 1956 after working at Bell
Telephone Laboratories. In 1948 Shannon published “A Mathematical
Theory of Communication,” an article in which he presented his initial

= concept for a unifying theory of the transmitting and processing of

information. Information in this context includes all forms of transmitted
messages, including those sent along the nerve networks of living
organisms; information theory is now important in many fields.

© 2003 Microsoft Encarta.



EFFECT OF SAMPLING
IN THE FREQUENCY DOMAIN

< Mathematically, we can show that the spectrum of the discrete
(sampled) signal 1s simply a 2=n replicated and 1/Tnormalized version
of the spectrum of the original continuous time signal

Spectrum of the
sampled signal

Note that if

Gp(f'9)=Ti ) Ga(j(9+k9311

S k=-o
/ A\
Spectrum of the Sampling
continuous time signal frequency
w=QT,

Q=Q =wo=QT =2xfT, = ZETLTS =2r

S
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EFFECT OF SAMPLING
IN THE FREQUENCcCY DOMAIN

spectrum of the continous signal X
/\
-y Qp £
spectrum of the sampled signal Xe(a)
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SAMPLING EXPLAINED ...

< Let g.(t) be a continuous-time signal that is sampled uniformly at
t = nT,, generating the sequence g[n] where

glnl=g,(nTy), —oco<n<ow

< Now, the frequency-domain representation of g (t) is given by its
continuous-time Fourier transform (CFT):

G, (jR2)= fga (z)edt

< The frequency-domain representation of g[n] is given by its discrete-
time Fourier transform (DTFT):

G(ej“’) = G(a)) = Z::—oo g[n]e "




SAMPLING

< To establish the relationship between G,(Q2) and G(w), we treat the
sampling operation mathematically as a multiplication of g,(t) by a

periodic impulse train p(t):

p(t)="3 6(t—nT)

n=—oo

p(?)

A
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ga(t) 'ﬂy; > gp(t)
p(?)

+ Tle

2T-T 0 T 2T
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SAMPLING

& The multiplication operation vields another impulse train:

g,()=g,(1)p(t)= 3 g, (n7)o(t-nT)

n=-0

= g,(t) 1s a continuous-time signal consisting of a train of uniformly spaced impulses
with the impulse at ¢ = nT, weighted by the sampled value g,(nT,) of g,(t) at that
instant 2.(0) (o)

N

-
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From the convolution theorem we know that multiplication in

the frequency domain corresponds to convolution in the time domain,
and, sinularly, that multiplication in the time domain corresponds

to convolution in the frequency domain. Thus from

gp'it:' =g |t plt]

one gets

G, | fI=G | fl=P|f]

with:

I 1 > n
’ T Z.?l{f—?.

/ n= -

P(f)=F | 3 slt—nT)

\n= L

(F 1s here a symbol indicating the Fourier Transform)
Then we have for G, If

r-2-+ 5 T oinsslr—g-s)o.

G,lf1=G /1 3

= o



SO

. 1 < o n|
Gp‘fq,'—? Z | Gall_f T.l

n=—

. . = ¥ 1
so, if the sampling frequency is /; = +
then S

I 'l

> a—i S o el
Gp'f' I'S Zﬂ Galf TS'

N= o

hence G | £| 1s a periodic function with period — consisting
of a sum of shifted Fourier transforms of g_[7] °

this can be rewritten as: | (jQ) = 1 S: G (j(Q+EQ,))
p a
T k=—00

G,(j€2) 1s a periodic function of & consisting of a sum of shifted (by
7) and scaled (by 1/T) replicas of G,(j€2). The term with k=1 1s
called the baseband portion of G,(j€2).



“ R SAMPLING

~ the term on the RHS of this equation for k=0 1s called the
baseband portion of G,(j$2)

S G,(j(@+kQ,)

=) G (iO =l
,(JQ) )

> the frequency range — Q7/2 <— Q <— Q7 /2 is called the
baseband or Nyquist band



SAMPLING EXPLAINED...
... GRAPHICALLY

%l ~ G,(jQ)
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NYQUIST RATE

< Note that the key requirement for the G,(€2) recovered from G (€2) is
that G(€2) should consist of non-overlapping replicas of G,(€2).

G,(jQ)
;l.;ll.(...:
: _Qﬂl Oﬁ 7 Q"l E - Q
P oGum :
11 §
s BN N Q
Q 2y o0 2,0\ Q 20 3Q

< Under what conditions would this be satisfied...?

?

If Q,>2Q, , g,(t) can be recovered exactly from g, (t) by passing it through an ideal
lowpass filter H.(Q) with a gain T, and a cutoff frequency Q. greater than Q_ and
less than Q_- Q_. For simplicity, a half-band ideal filter is typically used in exercises.



ALIASING -~ REVISITED

< On the other hand, if Q <2Q _, due to the overlap of the shifted
replicas of G,(€2) in the spectrum of G(€2), the signal cannot be
recovered by filtering.

Y This is simply because the filtering of overlapped sections will cause a distortion by
folding, or aliasing, the areas immediately outside the baseband back into the

baseband.
G,(jQ)
/T
KR 3 KR K 8 Q
Q y‘ T Q 20, 30,
Q.-Q, Qm

Y The frequency €, /2 is known as the folding frequency.



A SUMMARY

< Given the discrete samples g.(nT,), we can recover g.(t) exactly by
generating the impulse train g, = Z 2. (nT,)5(t nT,)
and then passing it through an ideal lowpass filter H (€2) with a gain T’
and a cutoff frequency Q_ satisfying Q <Q . <Q- Q.

< The highest frequency Q, contained in g (t) is usually called the
Nyquist frequency since it determines the minimum sampling
frequency Q=2 Q  that must be used to fully recover g,(t) from its
sampled version.

&, Sampling over ot below the Nyquist rate is called oversampling ot
undersampling, respectively. Sampling exactly at this rate is critical sampling. A
pure sinusoid may not be recoverable from critical sampling. Some amount of
oversampling is usually used to allow some tolerance.

Y E.g. in phone conversations, 3.4 kHz is assumed to be the highest frequency in the
speech signal, and hence the signal is sampled at 8 kHz.

Y In digital audio applications, the full range of audio frequencies of 0 ~ 20kHz is
preserved. Hence, in CD audio, the signal is sampled at 44.1kHz.
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< To see the full effect of
aliasing, as well as to get an
insight to the story behind the
word “aliasing” consider the
sinusoid x (t)=cosQt.

& Note that the filtered signal has
its spectral components at
+(Q-Q,), rather then Q.

& The reconstructed signal is
then cos(Q-€2)t, not cosQt.

& This is because frequencies
beyond /2 have folded into
the baseband area. Hence we
get an alias of original signal.

i E.g. A sinusoid at 5kHz,
sampled at 8kHz would appear
as 3kHz when reconstructed!

Digital Signal Processing, © 2007 Robi Polikar, Rowan Univer:

MORE ON ALIASING

? ‘ X (Q) = 7[6(Q-Qy)+5(Q+ Q)]
—:zo Qq Q
(a)
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SUMMARY

< Sampling theorem — MUST sample at least twice highest frequency in
the signal!

< Aliasing will occur otherwise.

< If sampled at the appropriate rate, continuous time signal can be
recovered — exactly — from its samples using low pass filtering.



RECOVERING THE
ORIGINAL SIGNAL

< We saw in frequency domain that the original signal g,(t) can be
recovered from its sampled version after lowpass filtering.

< One may ask the question: How does lowpass filtering uniquely “fill-
in” the spaces in between the discrete samples?

< To find out, we need to convolve the impulse response of the low pass
filter h [n] with the sampled sequence, impulse train g (t)

8p(1) R
g, »(}9 M H, (iQF— &,

p()




RECOVERING THE
ORIGINAL SIGNAL

< The impulse response / (¢) of the lowpass reconstruction filter is
obtained by taking the inverse DTFT of H (Q):

. (Q)z{T, Q< Q,
: 0, |Q>€,
1 2 sin| &2 ¢
hr(’)zg_mer( )jgtdg‘_f 2= Qc(t/Z) s

< The input to the LPF is the impulse train g, (7) o

e, ()= 3 elnls(—nr) ~ TET AT

p()

n=—00

& Therefore, the output in time domain is the convolution

g, (t)— E g[n]h (t—nT)

n—_oo
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RECOVERING THE
ORIGINAL SIGNAL

< Substituting 4 (r) =sin(Q.r)/(Q,t/2) in the above and assuming for
simplicity Q. =Q,/2=x/T, (that 1s assuming ideal half band filter), we
get (do the math at home!!!)

a = sin[z(t —nT,)/T,]
ga)= 2., glnl YT

n=—00
\ Shifted versions of

< What does this mean??? impulse function hy(t)

Y Now recall that the impulse response of the filter is a sinc function

Y The sampled signal is a seties of impulses

Y The convolution of any signal with a series of impulses can be obtained by sifting
the signal to each impulse location and summing up all shifted versions of the

signal



RECOVERING THE
ORIGINAL SIGNAL

< Graphically:
Y Observe that A(0)=1 and A(#nT,)=0 for all n#0. Since at n=0, the 4 (#nT)) is

normalized by g[n], we do obtain g[0] at n=0. The contribution to g[0] from all other

h (¢-nT)) at n=0 is zero.
& The same can be said for all other time points of g[n]: For any 7, only one of the shifted

h (t-nT,) contributes at that time 7, all others are zero.
Y Thus the ideal lowpass filter fills-in between the samples by interpolating using the sinc

function.

Amplitude




| SOME KEY POINTS TO REMEMBER

< The lowpass filter is essentially doing a “sinc” interpolation.
< Sinc function in Matlab computes sin(pi*x)/(pi*x)

% The sinc function and the rectangular function are Fourier transform pairs. Therefore, the
impulse response of an ideal lowpass filter is a sinc function

H(£2)
T x.(t)
=5 L Q
T T
sin[z(t —nT,)/T ) il -
=l ] =s1nc((t—nT9)/Tg) / S g
ﬂ(l—l’lTS)/Tg ‘ ‘ ; %, :‘(t)
hr{t} ;'J’ f
1 ) H t
-

-4T -3T -T 0 T\/ 3T 4T 1
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FINAL WORDS

< Note that the ideal lowpass filter is infinitely long, and therefore is not
realizable. A non-ideal filter will not have all the zero crossings that
ensure perfect reconstruction.

< Furthermore, if a signal is not-bandlimited, it cannot be reconstructed
whatever the sampling frequency is.

Y Therefore, an anti-aliasing filter is typically used before the sampling to limit the
highest frequency of the signal, so that a suitable sampling frequency can be used,
and so that the signal can be reconcstructed if with a non-ideal low pass filter!

< Sampling and anti-aliasing filters are covered in Chapter 4 of your text
(page 209-211)



ABOUT THE SINC FUNCTION

1T,

t=-3:0.001:3;
xa1=sinc(1 *k);/
xa2=sinc(10*t);
xa3=sinc(100*t');
subplot(311); plot(t,xa1); grid
subplot(312); plot(t,xa2); grid
subplot(313); plot(t,xa3); grid




ABOUT THE SINC FUNCTION
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XA1=abs(fft(xa1));
XA2=abs(fft(xa2));
XA3=abs(fft(xa3));
Fs=1/0.001;
f=linspace(-Fs/2, Fs/2, length(xa1));
subplot(311) | - 2
plot(f,fftshift(XA1)); grid Frequency. Hz
subplot(312)

plot(f,fftshift(XA2)) ; grid

subplot(313)

plot(f,fftshift(XA3)) ; grid




EXAMPLE

< Consider the analog signal x,(t)=cos(20nt), 0<t<I. It is sampled at
T.=0.01, 0.05, 0.075 and 0.1 second intervals to obtain x[n];
Y For each T, plot x[n]

&, Reconstruct the analog signal y,(t) from the samples of x[n] by means of sinc
interpolation (low pass filtering). Use At=0.001. Estimate the frequency in y,(t)
from your plot. Ignore the end effects.

Y Try at home with the sinc function. What did you observe?



