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Outline

● Introduction on radio telescopes
● Data from telescopes
● Interferometers
● Processing steps of observations
● Interference & detection

● André Gunst wil discuss LOFAR and focus 
more on the signal chain.



  

What is a radio telescope?

Arecibo observatory



  

What is a radio telescope?

(E)VLA observatory



  

What is a radio telescope?

● A (large) antenna
● Measures EM

radiation at radio
wavelengths

● Tracks the sky
● Outputs complex voltages (E)
● Possibly in multiple polarizations



  

The product of a RT

The data stream from a telescope consists of
● Complex voltages as a function of time t 

and frequency ν: E(t, ν)
● Often with multiple

polarizations
● André Gunst will

discuss the first
part of the data
chain

A LOFAR antenna

ν



  

Data from a RT



  

Data from a RT

● One quasi monochromatic source:
E(t, ν) = a(l,m) exp(-i2π t ν)

● Delayed & correlated...



  

Data from a RT

● One quasi monochromatic source:
E

1
(t, ν) = a(l, m) exp(-i2π t ν)

● Delayed 2nd telescope:
E

2
(t, ν) = a(l, m) exp(-i2π (t-Δt) ν)

E
2
(t, ν) = a(l, m) exp(-i2π (t-τ(u, v)) 

ν)
● Correlated: V(u, v) = [ E(t, ν) E*(t, ν) ]

 = I(l, m) exp(i2πντ(u, v))
● ...



  

Data from a RT

● V(u, v) = I(l, m) exp(i2πντ(u, v))
● Integrated over sources (all sky):

V(u, v)= ∬I(l, m) e^i2πντ(u, v) dldm
● u, v chosen such that in 2d:

V(u, v)= ∬I(l, m) e^i2πν(lu+vm) 
dldm

● Does this look familiar?



  

Data from a RT

● V(t, ν) = E(t, ν) E*(t, ν)
● This does not change rapidly over 

time
● Gaussian noise in real/imaginary
● Integrate over time:

V(t, ν) = < E(t, ν) E*(t, ν) >
● Performed by a “correlator”



  

Data from a RT



  

Processing of the correlated data

● Detect interference
● Calibrate
● Image
● Deconvolve
● Extract signal ( / sources)

● LARGE(!) data volumes



  

Step 1: interference detection

● Signal of interest interfered by strong 
transmitters ('RFI'):

– Man-made:
fm radio, (weather) radars, airplanes, 
satellites, electric fences, HV lines, …

– But also natural interence:
Lightning, the sun

● Last resort: detection and ignoring in 
further steps

● (methods will be explained later) 



  

Step 1: interference detection

● Detect interference:



  

Step 2: calibration

● We want an accurate brightness measure
● Many instrumental effects:

– Beam, ionosphere, temperature effects 
(cable lengths), band filters, …

● Approaches:
– Use an external calibrator

– Self-calibration



  

Step 3: imaging

● Perform the 
Fourier 
Transform

● Implemented
with FFT

Image: Van Weeren et al., 2011, to be submitted



  

Another LOFAR example

● LOFAR image
● 6 hr observation
● Not deconvolved

Sarod Yattawatta, NCPfield, 2011



  

Step 4: deconvolution

● 'Rings' caused
by finite FT.

● Deconvolution
removes
the PSF

● Often combined
with imaging
& source
subtraction

Image: Van Weeren et al., 2011, to be submitted



  

How to detect RFI?

This process is
called “data flagging”



  

How to detect RFI?

● Used to be done “ad hoc” by astronomer
● (Visually) looking for contaminated 

baselines, antennas, channels or time 
ranges.

● Huge obser-
vations: No
longer feasible!



  

How to detect RFI?

● Detection is a 'last resort'
● Other techniques:

– Turn radiating devices off (!)

– Beam shaping

– (Spatial) Filtering

– Modeling and
subtraction
of RFI.

– Reference
antenna



  

AOFlagger

See Offringa et al., MNRAS (2010) & Offringa et al., RFI2010



  

● Input...

Freq

Time

RANK 
operator



  

● First quick look at the
data:

– Flag extreme value 
samples (> 8 x sigma)

– Flag on power in 
channels / time steps

RANK 
operator



  

● SumThreshold is a 
combinatorial threshold 
technique...

RANK 
operator



  

SumThreshold
● Combinatorial thresholding strategy
● Fast & accurate
● Idea:

– Sum samples and use different thresholds

A            > threshold1? → FLAG A
A+B         > threshold2? → FLAG A, B
A+B+C     > threshold3? → FLAG A, B, C
A+B+C+D > threshold4? → FLAG A, B, C, D
A+E          > threshold2? → FLAG A, E
A+E+F      > threshold3? → FLAG A, E, F
A+E+F+G > threshold4? → FLAG A, E, F, G
B               > threshold1? → FLAG B
B+C          > threshold2? → FLAG B, C
.......



  

SumThreshold

● How to determine 'thresholds'?
● Use the variance of the (residual) data
● Variance strongly biased by RFI...

– Use “stable” statistics, e.g. trimmed or 
Winsorized mean&variance.



  

● Change resolution of 
time-frequency image
(factor of 2x2 or 3x3)

● Only for reasons of 
speed.

RANK 
operator



  

● 2D fit represents signal
● Ignore flagged data
● 2 x 1D Gaussian 

convolution (“Gaussian 
weighted local average”)

● Fast

RANK 
operator



  

● Continue on difference

RANK 
operator



  

● 2nd fit...

RANK 
operator



  

● No apparent RFI after final SumThreshold
● Might be some unapparent RFI around 

flagged regions

The scale-invariant rank operator



  

The SIR-operator: why?

Purple: flags produced by SumThreshold
Yellow: produced by time dilation (i.e., horizontal)



  

Dilation

● Dilation is “inaccurate”:
– Flags too much on small RFI scales

– Flags too little on large-scale RFI

● Dilation efficiency strongly depends on 
time/frequency resolutions

● Ideally, use a scale-invariant operator...



  

The scale-invariant rank operator

● An “improved” dilation
● Defined on a set of “flags” X:

● Parameter eta specifies required ratio of 
good samples in any subsequence



  

The scale-invariant rank operator



  

The scale-invariant rank operator

● Scale invariant
● Just submitted faster 

algorithm for the SIR 
operator



  

Automatic flagging example



  

AOFlagger vs other flaggers

● Accuracy higher than other flaggers
● Fast

MAD flagger

AOFlagger



  

Method comparison

● Compare methods with the help of 
test sets and ROC curves

● One of the test sets:

(Offringa et al., MNRAS, 2011)



  



  



  

LBA Total power, before flagging



  

LBA Virgo, total power, after flagging



  

4 observations combined

LOFAR cookbook chapter 6 (Offringa et al.,)



  

Flagging performance

● The RFI pipeline needs to be extremely 
fast:

– Executed at highest post-correlation 
resolution

– On 'all' baselines (~correlations), 
polarizations, bands

– LOFAR 24hr observation at high resolution 
(1s, 1KHz) is ~100 TiB.



  

Flagging performance
● The RFI pipeline needs to be extremely 

fast
● Optimized in several ways:

– Multithreaded

– Parallelized over ~60 nodes

– Use of SSE (Streaming SIMD extensions)

– Flagging is integrated in the next 
processing step to avoid multiple reads 
of the data

● Processing time now heavily IO dominated



  

Flagging performance

● Pipeline is faster than real-time
● With 3 threads (/16 cores), 64 nodes, we 

flagged a 90 TiB, 24 hr observation in 8 
hours...

● But only reading the data already takes 20 
hours!



  

Summary

● A lot of signal processing issues in radio 
astronomy

● We can automatically detect RFI in an 
efficient and accurate way

● Moore's law has allowed us to digitize the 
signal chain and increase time/frequency 
resolution

● Speed of hard disk did not follow Moore's 
Law, somewhat of an issue in my field
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