Constraining the Star Formation

History of unresolved stellar systems

Some techniques, uncertainties, calibrations

Maurizio Salaris
Astrophysics Research Institute,
Liverpool John Moores University
OUTLINE

- Constraining Star Formation Histories of galaxies:
 - Ingredients
 - Integrated magnitudes and methods for unresolved systems
 - Problems in calibrating theory (see also Santi and Achim talks)
 - Additional unpleasanties (see also Santi and Achim talks)
Theoretical tools to derive the SFH

Input from stellar evolution theory

- Library of stellar models covering large ranges of mass and initial chemical composition (predict, among others, evolution of $L, Teff$).
- Theoretical isochrones ($L, Teff, mass distribution$)

Additional ingredients (not from stellar evolution calculations)

- Library of stellar spectra and bolometric corrections (either from model atmospheres or empirical or a mixture of both) to predict fluxes and magnitudes
- Initial Mass Function (IMF – usually empirical)
Breaking the age-metallicity degeneracy
Field and Virgo ellipticals

From James, Salaris, et al. (2006)
Broadband magnitudes and complex SFHs

Luminosity weighted ages and metallicities provide only limited (albeit useful) constraints on the full galactic SFHs.

i) Could different SFHs produce the same observed pairs of integrated colours?

ii) If yes, is there any way to get some additional information about the true SFHs?
Low resolution SED properties

U~3500 Å - K~22000 Å
SED of complex SFHs: removing some degeneracies (i)

constant SFR $[\text{Fe/H}]=0.0$

12+5+0.6 Gyr bursts $[\text{Fe/H}]=0.0$

(1:1:0.5)

constant SFR $[\text{Fe/H}]=0.0$

$[\text{Fe/H}]=-0.35$ 2.75 Gyr
SED of complex SFHs: removing some degeneracies (ii)
A practical case: A sample of bright ellipticals in Virgo

Data from Michard (2005)
A specific example: NGC4168 in Virgo cluster

NGC4168 in Virgo cluster

[Fe/H] = −0.05 8 Gyr
12 + 5 Gyr (1:0.22)
12 + 3 Gyr (1:0.06)
12 + 1 Gyr (1:0.02)

\(\chi^2 = 1.04 \)
\(\chi^2 = 1.01 \)
\(\chi^2 = 1.02 \)
How uncertain are theoretical SEDs?

SEDs from BaSTI, Galadriel, BC03
More quantitative estimate of systematic uncertainties
Sources of SED differences

- Uncertainties in the theoretical models (predictions of L, Teff as a function of time for models of given mass and chemical composition)

- Uncertainties in the spectral libraries and bolometric corrections (predictions of fluxes as a function of wavelength)
Comparison of AGB in near-IR

300 Myr, 1 Gyr

BaSTI

Cioni et al. (2006)
How do we calibrate?

- Eclipsing binaries (R-M) – only few with accurate parameters (and generally only Main Sequence/Turn Off) uncertain chemical composition

- LF and CMDs of resolved star clusters in the Galaxy (very few AGB stars, if any) or LMC/SMC (often uncertain chemical composition)

- Integrated colours of star clusters in the Galaxy or LMC/SMC (magnitude fluctuations)
Fluctuations !!! (i)

Fluctuations (ii)

10 Gyr $[\text{Fe/H}]=-0.6$

$M_t=1.5\text{e}5 \ M_\odot$

12 Gyr 1σ(K)=0.12 mag 1σ(V-K)=0.12 mag 1σ(V-I)=0.03 mag 1σ(J-K)=0.07 mag

1 Gyr 1σ(K)=0.14 mag 1σ(V-K)=0.14 mag
Fluctuations (iii)

Dots $\rightarrow [\text{Fe/H}] -0.6 \div -1.6$

Triangles $\rightarrow [\text{Fe/H}] -1.6 \div -1.9$

Simulations from James, Salaris et al. (2006), M31 globulars data from Galleti et al (2004)
Calibrating the AGB contribution to the total near-IR flux (fluctuations again)
300 Myr $1\sigma = 0.20$

1 Gyr $1\sigma = 0.15$

3 Gyr $1\sigma = 0.13$
Avoiding the fluctuations

The effect of statistical fluctuations on integrated magnitudes, colours and flux ratios becomes negligible when $M_{\text{pop}} \sim 5-6 \times 10^6 M_\odot$

This is about 40 times the typical Galactic globular cluster mass.

We can co-add clusters within narrow t-Z ranges (Gonzalez et al. 2004).

Do we have enough calibrating clusters for the full age/metallicity range covered by stellar populations in the universe?
Horizontal Branch colour

12 Gyr [Fe/H]=−1.6 η=0.2
12 Gyr [Fe/H]=−1.6 η=0.4

9 Gyr [Fe/H]=−1.6 η=0.2
12 Gyr [Fe/H]=−1.6 η=0.4
Hopefully this doesn’t hurt too much: interacting binaries

- Interacting binaries may cause the appearance of ‘exotic’ objects like blue stragglers or very hot HB stars.
- SED is modified mainly shortward of the U-band

← results from Zhang et al. (2005)
(solid line – pure binary population
dashed line – single star population)
Conclusions: Some **important** issues to ponder
this is important for both photometric and spectroscopic
methods !!!!

- Find ways to calibrate/test properly the population
 synthesis models (especially the AGB phase).
- What about the HB colour (e.g. RGB mass loss)?
- What about α-enhancement at high metallicities?
- Estimate/include effects related to the progeny of
 interacting binaries (blue stragglers? Hot HB
 stars?...see works by Zhang et al.)
- Effect of interstellar dust (i.e. dust enshrouded
 AGB stars.... see e.g. works by Piovan et al.)
- IMF (universal, SFH dependent) ??