New opportunities for Stellar population modeling using MILES

Reynier Peletier

Kapteyn Astronomical Institute
Groningen
The MILES Collaboration

P. Sánchez-Blázquez (Lausanne)
A. Vazdekis (IAC), R.F. Peletier (Groningen)
F.J. Gorgas, A.J. Cenarro, N. Cardiel, E. Toloba (Madrid)
J. Jiménez-Vicente (Granada)
S. Selam (Ankara); J. Falcón-Barroso (Estec)

Telescope : INT La Palma
Spectrograph : IDS
Resolution : 2.3Å FWHM
Spectral Range : 3500 - 7500Å
Sampling : 0.9Å/pix
Observed : 985 stars with a large range in Temperature, Gravity and Metallicity
INT-IDS
De-commissioned February 2002
Re-introduced August 2006
Atmospheric parameters coverage of different libraries compared with the parameter coverage of MILES
Gravity-temperature diagram for the library stars. Different symbols are used to indicate stars of different metallicities, as shown in the key.
Spectra sample of different spectral types

- $T_{\text{eff}} = 8560 \text{K}$
 - HD 74721, A0 V ($\log g = 3.57$)

- $T_{\text{eff}} = 5727 \text{K}$
 - HD 4307, G2 V ($\log g = 4.07$)

- $T_{\text{eff}} = 4570 \text{K}$
 - CD-26 10417, K5 V ($\log g = 4.50$)

- $T_{\text{eff}} = 3344 \text{K}$
 - HD 1326, M1.5 V ($\log g = 5.30$)

- $T_{\text{eff}} = 7325 \text{K}$
 - HD 2629, A7 III ($\log g = 3.57$)

- $T_{\text{eff}} = 5013 \text{K}$
 - HD 2685, G5 III ($\log g = 2.35$)

- $T_{\text{eff}} = 4731 \text{K}$
 - HD 221345, K0 III ($\log g = 2.63$)

- $T_{\text{eff}} = 3487 \text{K}$
 - HD 184786, M4.5III ($\log g = 0.60$)
The MILES stars are well flux-calibrated

Comparison of B-V colour measured on the MILES spectra with the Lausanne photometric database (Mermilliod).
The flux-calibration for other libraries is not as good:

BC03 : RMS = 0.10 mag
The resolution of MILES is 2.3 +/- 0.1A

Resolution measured on the individual reduced spectra by fitting a linear combination of higher resolution spectra to it (from INDO-US) and fitting the broadening that is needed (using PPXF). Errorbars give the RMS of the stars.
The indices measured on MILES do not contain noticeable systematic errors.

Index\textsubscript{Jones, STELIB, ELODIE} = \text{slope} \times \text{Index} \textsubscript{MILES} + \text{a}_0

<table>
<thead>
<tr>
<th></th>
<th>Jones</th>
<th></th>
<th></th>
<th>STELIB</th>
<th></th>
<th></th>
<th>ELODIE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>slope</td>
<td>(a_0)</td>
<td>RMS</td>
<td>slope</td>
<td>(a_0)</td>
<td>RMS</td>
<td>slope</td>
<td>(a_0)</td>
</tr>
<tr>
<td>H(\delta)A</td>
<td>0.969</td>
<td>0.217</td>
<td>0.269</td>
<td>1.003</td>
<td>0.821</td>
<td>0.489</td>
<td>1.015</td>
<td>0.394</td>
</tr>
<tr>
<td>H(\alpha)F</td>
<td>0.975</td>
<td>0.059</td>
<td>0.140</td>
<td>1.005</td>
<td>0.104</td>
<td>0.166</td>
<td>1.020</td>
<td>0.283</td>
</tr>
<tr>
<td>CN(_1)</td>
<td>0.956</td>
<td>-0.008</td>
<td>0.060</td>
<td>0.977</td>
<td>-0.020</td>
<td>0.009</td>
<td>1.031</td>
<td>-0.009</td>
</tr>
<tr>
<td>CN(_2)</td>
<td>0.958</td>
<td>-0.008</td>
<td>0.010</td>
<td>0.966</td>
<td>-0.023</td>
<td>0.012</td>
<td>1.001</td>
<td>-0.006</td>
</tr>
<tr>
<td>Ca(_{4227})</td>
<td>0.976</td>
<td>0.031</td>
<td>0.062</td>
<td>1.046</td>
<td>-0.031</td>
<td>0.082</td>
<td>1.092</td>
<td>-0.075</td>
</tr>
<tr>
<td>G(_{4300})</td>
<td>0.965</td>
<td>0.098</td>
<td>0.182</td>
<td>0.971</td>
<td>-0.007</td>
<td>0.198</td>
<td>0.982</td>
<td>-0.040</td>
</tr>
<tr>
<td>H(_{\gamma})(_A)</td>
<td>0.962</td>
<td>-0.155</td>
<td>0.332</td>
<td>0.967</td>
<td>-0.680</td>
<td>0.635</td>
<td>1.005</td>
<td>0.137</td>
</tr>
<tr>
<td>H(_{\gamma})(_F)</td>
<td>0.975</td>
<td>-0.004</td>
<td>0.138</td>
<td>1.005</td>
<td>-0.183</td>
<td>0.110</td>
<td>1.012</td>
<td>0.106</td>
</tr>
<tr>
<td>Fe(_{4383})</td>
<td>0.968</td>
<td>0.160</td>
<td>0.232</td>
<td>1.000</td>
<td>0.078</td>
<td>0.514</td>
<td>0.993</td>
<td>0.071</td>
</tr>
<tr>
<td>Ca(_{4455})</td>
<td>0.975</td>
<td>0.209</td>
<td>0.260</td>
<td>1.000</td>
<td>0.223</td>
<td>0.221</td>
<td>0.991</td>
<td>0.012</td>
</tr>
<tr>
<td>Fe(_{4531})</td>
<td>0.969</td>
<td>0.147</td>
<td>0.566</td>
<td>1.020</td>
<td>0.209</td>
<td>0.260</td>
<td>1.002</td>
<td>0.088</td>
</tr>
<tr>
<td>C(_{4668})</td>
<td>0.896</td>
<td>0.006</td>
<td>0.09</td>
<td>0.985</td>
<td>0.002</td>
<td>0.066</td>
<td>0.985</td>
<td>0.008</td>
</tr>
<tr>
<td>H(_\alpha)</td>
<td>0.984</td>
<td>0.080</td>
<td>0.119</td>
<td>0.988</td>
<td>0.000</td>
<td>0.187</td>
<td>0.984</td>
<td>0.010</td>
</tr>
<tr>
<td>Mg(_{1})</td>
<td>0.952</td>
<td>0.066</td>
<td>0.09</td>
<td>0.988</td>
<td>0.000</td>
<td>0.007</td>
<td>0.971</td>
<td>0.007</td>
</tr>
<tr>
<td>Mg(_{2})</td>
<td>0.952</td>
<td>0.011</td>
<td>0.009</td>
<td>0.996</td>
<td>-0.002</td>
<td>0.006</td>
<td>0.985</td>
<td>0.008</td>
</tr>
<tr>
<td>Mg(_{b})</td>
<td>0.999</td>
<td>0.075</td>
<td>0.095</td>
<td>0.995</td>
<td>-0.015</td>
<td>0.117</td>
<td>1.005</td>
<td>0.083</td>
</tr>
<tr>
<td>Fe(_{5270})</td>
<td>0.984</td>
<td>0.080</td>
<td>0.119</td>
<td>0.988</td>
<td>0.000</td>
<td>0.187</td>
<td>0.984</td>
<td>0.010</td>
</tr>
<tr>
<td>Fe(_{5335})</td>
<td>0.986</td>
<td>0.064</td>
<td>0.010</td>
<td>1.000</td>
<td>0.010</td>
<td>0.010</td>
<td>0.998</td>
<td>-0.117</td>
</tr>
<tr>
<td>Fe(_{5406})</td>
<td>0.994</td>
<td>0.008</td>
<td>0.063</td>
<td>0.988</td>
<td>0.030</td>
<td>0.075</td>
<td>0.996</td>
<td>-0.026</td>
</tr>
<tr>
<td>Fe(_{5709})</td>
<td>1.016</td>
<td>0.032</td>
<td>0.098</td>
<td>0.955</td>
<td>-0.178</td>
<td>0.125</td>
<td>0.973</td>
<td>0.054</td>
</tr>
<tr>
<td>Fe(_{5782})</td>
<td>0.973</td>
<td>0.054</td>
<td>0.069</td>
<td>0.950</td>
<td>-0.093</td>
<td>0.112</td>
<td>0.973</td>
<td>0.001</td>
</tr>
<tr>
<td>Na(_{5890})</td>
<td>0.999</td>
<td>0.060</td>
<td>0.140</td>
<td>0.965</td>
<td>0.009</td>
<td>0.005</td>
<td>0.973</td>
<td>0.001</td>
</tr>
</tbody>
</table>
A poor man’s way to obtain homogeneous stellar parameters

Field Stars:
- Choose one standard reference (Soubiran, Katz, Cayrel 1997)
- Take all references with at least 25 stars in common, and determine a linear transformation between their and our parameters (T_e, $\log g$, $[\text{M/H}]$)
- For all other references, determine simple offsets in the three parameters (similar to Cenarro et al. 2001)

Cluster Stars:
- Use uniform colour – temperature conversion
- Determine gravity by isochrone fitting
MILES Papers:

2. The stellar parameters of MILES (Cenarro et al. 2006), MNRAS, to be submitted July 15
3. Stellar population models with MILES (Vazdekis et al. 2006), MNRAS, to be submitted August/September

Availability of MILES to the community through a dedicated website:

1. **SSP Models: preliminary version on July 3**
2. **Stars: December 15 (during IAUS 241)**
An application of MILES: separating emission and absorption lines
An example: separating absorption and emission:

1. Fit a linear combination of MILES stars or SSP models + polynomials (for continuum) to an emission-free region to obtain the stellar kinematics.
2. Keeping stellar kinematics fixed, fit now a linear combination of stars/models + gaussians roughly at the place of the emission lines. This gives kinematics + strengths of the various emission lines.

3. The absorption lines can now be calculated to an accuracy of 0.1-0.2A (Sarzi et al. 2006).
A test in the blue (WHT-ISIS data, test done by Katia Ganda, Groningen)

NGC2964 - centre

NGC2964 - spiral arm ~25”
Stellar kinematics: fitting options

- Single template, mult polynomials
- Per-bin template, mult polynomials
- Single template, add polynomials
- Per-bin template, add polynomials
Gas Cleaning: a test

- Applying the pPXF-gas method to some Balmer lines
- **Question:** is there any difference in the amount of predicted emission between a ‘full-range’ fit and a fit performed on a short _range_ around the line?
- **Test to answer this question:** comparison of the measured emission line ratio with the theoretical one: $H/_\lambda/H_\lambda = 0.55$
Full range fit - tied kinematics: All three lines fitted together (plus models)

Full range fit - free kinematics

Short range - tied kinematics: each line fitted on a small range around it

Best result

Short range fit - free kinematics
An example, NGC 4314 (SAURON)

Intensity

Mg b

H beta

Fe 5015

HST

1. Center: old stellar populations
2. In ring: combination of old and very young (10^7 y)
3. Outside ring: young (10^{8.5} y) (+ old)
Other applications:

- Study fainter absorption lines
- Study galaxies at non-zero redshift (no Lick corrections)
- Define new and better line indices
- Derive abundances of more individual elements
- Do much more accurate work, since we are not limited any more by the stellar library
- etc.
A possible new age-indicator:

A possible new metallicity indicator: