Deriving the parameters of a population (SSP) fitting a spectrum

M. Koleva1,2, Ph. Prugniel1,3, P. Ocvirk4, D. Le Borgne5, I. Chilingarian1,6, P. Blonde1, V. Golev2

1CRAL Observatoire de Lyon, University Claude Bernard
2Department of Astronomy, University of Sofia St. “Kliments Ohridski”
3GEPI Observatoire de Paris
4University of Central Lancashire
5IAS Orsay
6MSU Stenberg Astronomical Institute, Moscow
Population Pixel Fitting

Derive the population parameters from the full spectra

- **Validation of the 3 major steps**
 - stellar libraries
 - population synthesis
 - inversion method

 \Rightarrow compare various codes and methods

- **Validation on real data (SSPs)**

 \Rightarrow Galactic GCs and M67
The Model

- Stellar library - Elodie 3.1
- Code for computing synthetic evolutionary spectra of galaxies - Pegase HR
- Fitting procedure - NBURSTS
The Model

- **Elodie 3.1**
 - 1961 Spectra
 - 1500 Stars
 - $R = 10\,000$
 - $wl\, [3900,6800]$
 - extended coverage of parameters space

The empirical library with largest set of stars, high resolution and fair flux calibration

http://www.obs.u-bordeaux1.fr/m2a/soubiran/elodie_library.html
The Model

- **Pegase HR (Le Borgne et al 2004)**
 - SSP, CSP, self consistent

 http://www2.iap.fr/pegase/pegasehr/

- **NBURST**: we are fitting simultaneously parameters of the template (Age, Z); of the Line-of-Side Velocity Distribution (cz, \(\sigma\)) and polynomial (P) of degree n in pixel space using Penalized Pixel Fitting (pPXF) method described in Cappellari & Emsellem, 2004.

\[
\text{Obs}_{px} = P_n^{\text{Template}(\text{Age, Z}) \otimes \text{LOSVD}(\text{cz,} \sigma)}
\]
Validation

To test our method we inverted:

- **synthetic SSPs** from other authors (BC03; Vazdekis)
- **real data**: GCs (Schiavon, R. et al 2005) and M67 (Schiavon, R. et al 2004)
Validation - I
Comparison with SSPs models

Grid of SSPs from BC03 (SteLib) invert with Pegase HR (Elodie 3.1)

Results:
- Consistent
- Systematic effects (metallicities of -0.4dex and +0.4dex from the grid of BC03 are finishing with solar Z)

Z and age found using P.HR

Point from BC03 grid
Validation I
Comparison with SSPs models

To investigate where is the problem with systematic effect found with BC03 (SteLib) we inverted SSPs from Vazdekis (kindly provided by him on this conference) with MILES stellar library.

<table>
<thead>
<tr>
<th>Vazdekis (MILES)</th>
<th>Pegase HR (ELODIE 3.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Z</td>
</tr>
<tr>
<td>5 Gyr</td>
<td>0.2 dex</td>
</tr>
<tr>
<td>5 Gyr</td>
<td>0 dex</td>
</tr>
<tr>
<td>5 Gyr</td>
<td>-0.4 dex</td>
</tr>
<tr>
<td>Age</td>
<td>Z</td>
</tr>
<tr>
<td>4.8 Gyr</td>
<td>0.23 dex</td>
</tr>
<tr>
<td>4.5 Gyr</td>
<td>0.03 dex</td>
</tr>
<tr>
<td>4.5 Gyr</td>
<td>-0.34 dex</td>
</tr>
</tbody>
</table>

inversion
Validation I
Comparison with SSPs models

Conclusions:

- Pegase HR SSPs are consistent with other synthetic libraries
- Systematic effect found inverting BC03 with Pegase HR is due to SteLib
Validation I
Comparison with SSPs models

Example of one of the fitted spectra

Vazdekis
5 Gyr - 0.4 dex

Pegase HR
4.5 Gyr - 0.34 dex
Validation I
Comparison with SSPs models

Zoom in G band region

Vazdekis
5 Gyr - 0.4 dex

Pegase HR
4.5 Gyr - 0.34 dex
Validation I
Comparison with SSPs models

Zoom in the Mg2 region

Vazdekis
5 Gyr - 0.4 dex

Pegase HR
4.5 Gyr - 0.34 dex
Validation II
Fit observed clusters

Comparison between metallicities found with our method and metallicities from Harris (http://www.physics.mcmaster.ca/Globular.html) for Galactic GCs (Schiavon, R. 2005)

Conclusions:
- Excellent agreement
- Scatter is very small
- Small bias
Validation II
Fit observed clusters

Comparison between ages found with our method and ages took from the literature of galactic GCs from Schiavon, R. (2005)

Conclusions:

- Consistency
- For some of the GCs we found younger ages (possibly due to Blue Horizontal Branch)
Validation II

Fit observed clusters

Found:
AGE = 4911 Myr
Z = -0.11 dex
Validation II

Fit observed clusters

Found:

AGE = 4911 Myr
Z = -0.11 dex
Validation II
Fit observed clusters

Found:
AGE = 4911 Myr
Z = -0.11 dex
CONCLUSIONS

- The different libraries and SSPs (BC03, Pegase HR, Vazdekis) are consistent

- Population pixel fitting vs. spectrum photometric indices
 - Age and Z are consistent with Lick indices
 - Error bars are 3 times smaller

- Limitations of fitting spectra
 - Presently limited to the abundances of the stellar libraries
 - Wait for libraries with variable [Mg/Fe]

(see Coelho et al 2005 & this conf.; Soubiran & Prugniel in prep.)
References

- Coelho et al, 2005, A&A...443..735

Acknowledgments

- Orginizers: Scott Trager and Reynier Peletier for the fruitful conference and for financial support
- Alexandre Vazdekis and Ricardo Schiavon for providing data for tests
- Grant No63/2006 of the Science Found of Sofia University