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A B S T R A C T

We present a new unbiased minimal variance (UMV) estimator for the purpose of

reconstructing the large-scale structure of the Universe from noisy, sparse and incomplete

data. Similar to the Wiener filter (WF), the UMV estimator is derived by requiring the linear

minimal variance solution given the data and an assumed a priori model specifying the

underlying field covariance matrix. However, unlike the WF, the minimization is carried out

with the added constraint of an unbiased reconstructed mean field. The new estimator does

not necessitate a noise model to estimate the underlying field; however, such a model is

required for evaluating the errors at each point in space. The general application of the UMV

estimator is to predict the values of the reconstructed field in unsampled regions of space (e.g.

interpolation in the unobserved Zone of Avoidance), and to dynamically transform from one

measured field to another (e.g. inversion of radial peculiar velocities to over-densities). Here,

we provide two very simple applications of the method. The first is to recover a 1D signal

from noisy, convolved data with gaps, for example CMB time-ordered data. The second

application is a reconstruction of the density and 3D peculiar velocity fields from mock SEcat

galaxy peculiar velocity catalogues.
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1 I N T R O D U C T I O N

The mapping of the distribution of galaxies and their peculiar

velocity field constitutes a major research area in modern

astronomy, setting both the observational and theoretical

foundations of cosmology and, in particular, of large-scale

structure (LSS). Within the framework of gravitational instability,

the large-scale galaxy distribution offers a probe of the nature of

the primordial perturbation field, and can be used to set strong

constraints on the values of cosmological parameters. However,

since astronomical observations give only incomplete and noisy

information on the real Universe, the recovery of the underlying

signal from these observations can be a non-trivial task, forcing one

to resort to regularization methods, for example Wiener filtering

(Wiener 1949; Rybicki & Press 1992; Zaroubi et al. 1995) or the

Maximum Entropy algorithm (Gull 1989).

In particular, the WF has been widely applied to galaxy surveys

(Lahav et al. 1994; Fisher et al. 1995; Schmoldt et al. 2000), CMB

studies (Bunn et al. 1994; Tegmark & Efstathiou 1996, Bouchet &

Gispert 1999), and galaxy peculiar velocity catalogues (Hoffman

et al. 2000; Zaroubi 2000; Zaroubi et al. 1999, 2001a). The WF

provides an optimal estimator of the underlying field in the sense of

a minimum-variance solution given the data and an assumed a

priori model (Wiener 1949; Press et al. 1992). The model defines

the data auto-correlation and the data-field cross-correlation

matrices. In the case where the data is drawn from a random

Gaussian field, the WF estimator coincides with the conditional

mean field and with the most probable configuration given the data

(see Zaroubi et al. 1995).

Although the application of the WF is very simple and has

proved to be useful for many purposes, it is easy to show that the

estimator is intrinsically biased, often in a scale-dependent manner.

The main cause of this bias stems from the modulation introduced

by the signal=ðsignalþ noiseÞ weighting it invokes. This drawback

has prevented the use of the Wiener reconstructed maps in many

areas, for example power spectrum estimations, bias parameter

extraction from galaxy peculiar velocity data comparison with

galaxy survey data, etc. To account for this bias in the power

spectrum estimation a correction factor is often applied to the

Wiener reconstructed signal (Rybicki & Press 1992; Tegmark &

Efstathiou 1996).

In this paper, we propose a new linear unbiased minimal

variance (UMV) estimator that is designed to avoid the intrinsic

bias that exists in the WF. This is achieved by solving the

minimization equation subject to the constraint of an unbiased

mean underlying field. To test the UMVestimator we apply it (1) to

recover a 1D time series from convolved and noisy data with gaps,

and (2) to a mock SEcat peculiar velocity data set, a combination of

the SFI (Giovanelli et al. 1998) and the ENEAR (da Costa et al.

2000) galaxy peculiar velocity catalogues, for which wePE-mail: saleem@mpa-garching.mpg.de
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reconstruct the distribution of the true density and velocity fields

from which the mock catalogue is constructed.

The outline of this paper is as follows. The method is presented

in Section 2. In Section 3 two simple extra regularization methods

are discussed. Section 4 shows how constrained realizations could

be produced within the UMV framework. The method is tested

using artificial data based on simulations in Section 5. The results

are discussed and the conclusions are summarized in Section 6.

2 T H E O RY

2.1 Derivation of the UMV estimator

Consider the case of a set of observations, or measurements,

performed on an underlying field s ¼ {sa}ða ¼ 1; . . .;NÞ, or on

any field linearly related to s, which yields a set of data points

d ¼ {di}ði ¼ 1; . . .;MÞ. In particular, we are interested in

measurements that can be modelled mathematically as a linear

convolution or mapping of the underlying field,

d ¼ oþ e ¼ Rsþ e; ð1Þ

where o ¼ Rs, R is an M £ N matrix which represents the response

or point spread function (hereafter RF), and e is the noise vector

associated with the data. The RF will be treated as any function that

linearly connects the underlying signal to the data, be it blurring or

smoothing introduced by the measurement, some theoretical

relationship between two fields, or any other linear transformation

on the underlying signal.

In principle, the reconstruction of s can be accomplished by

inverting equation (1). However, two main obstacles usually

prevent one from pursuing this approach. First, the number of

independent data points is usually much smaller than the number of

underlying degrees of freedom. Secondly, the presence of noise can

render such a direct inversion unstable and the obtained results

meaningless. As a result of these potential difficulties, one is often

forced to resort to some statistical regularization techniques (e.g.

WF) in order to solve equation (1).

Similar to in the derivation of the WF, we assume prior

knowledge of the signal correlation function

S ¼ kssþl; ð2Þ

where s þ is the complex conjugate of the transpose of the

underlying signal, and angled brackets denote the signal ensemble

average. Notice that there have been no assumptions made

regarding the actual probability distribution function from which

the field s is drawn. We define the unbiased minimal variance

estimator s UMV ¼ Hd, where H is the N £ M matrix that minimizes

the variance of the residual r ¼ s 2 s UMV, while satisfying the

constraint

½s UMV�N ¼ ½Hd�N ¼ s: ð3Þ

The ensemble average, [. . .]N, is an ensemble average over noise

realizations and is very different from the ensemble average, k. . .l,
which denotes an ensemble average over signal realizations. This

distinction between the two ensemble averages will be used only in

this section; in the rest of the paper we use only the signal ensemble

average.

In short, we are seeking H that minimizes

k½rrþ þ lHd�N l ¼ k½ðs 2 s UMVÞðs 2 s UMVÞþ þ lHd�N l; ð4Þ

where l is a Lagrange multiplier. The ensemble average over noise

realizations precedes the one over signal realization. The order of

averaging over ensembles is very important since if it is reversed

the contribution of the term Hd will be null.

The constraint, introduced in equation (3), assumes that the data

are unbiased, namely that the errors are random, and therefore

requires that the estimator does not alter the value of the measured

data points, but rather forces the field to retain its measured values

at the appropriate locations. However, this requirement does not

guarantee an unbiased variance of the reconstruction; on the

contrary, one expects that the variance of the reconstructed field is

some compromise between the ðsignalþ noiseÞ variance of the

data points and the assumed variance of the underlying signal.

Carrying out the minimization of equation (4) with respect to H,

one obtains an equation that together with equation (3) is used to

solve for H and l. The solution yields the UMV estimator,

s UMV ¼ ksoþlkooþl21d: ð5Þ

The Lagrange multiplier, l, is roughly proportional to the

noise=ðsignalþ noiseÞ, making it dominant when the noise is

dominant and small when the signal=noise @ 1.

In the absence of a response function that operates on the signal,

namely R ¼ I (where I is the unity matrix), the reconstructed signal

at the location of the data points is identical to the data measured

values, which is consistent with the constraint given in equation

(3). In the rest of space the degrees of freedom are recovered by

interpolating the data points in a manner consistent with the

correlation assumed in the underlying theory.

Mathematically, the difference between the WF and the current

estimator is that in the former the term koo þl is replaced by kdd þl,
a matrix that includes the noise correlations, an addition that

accounts for the signal suppression which renders the WF mean

field biased.

The variance of the field estimated in equation (5) is

ks UMVs UMVþl ¼ ksoþlkooþl21
ðkooþlþ NÞkoþol21kosþl; ð6Þ

where N is the noise correlation matrix. The variance of the

residual is

krrþl ¼ kssþl 2 ksoþlkooþl21kosþl

þ ksoþlkooþl21Nkooþl21kosþl: ð7Þ

As a simple example, assume that R ¼ I and that the field is

estimated at the exact locations of the data points: the variance in

equation (6) simply reduces to kssþlþ N, recovering the power

spectrum of the signalþ noise at those points. The variance of the

residual (equation 7) at the location of the data points is simply

reduced to the correlation matrix of the noise, N. In addition, when

the data points are uncorrelated with the rest of the underlying

degrees of freedom, the reconstructed values, at locations different

from those of the data points, are zero (equation 6), and the

variance of the residual at those same locations, as obtained from

equation (7), is simply the underlying prior correlation.

Substitution of o ¼ Rs in equation (5) yields

s UMV ¼ kssþRþlkRssþRþl21d; ð8Þ

which one could be tempted to simplify further to obtain

s UMV ¼ kssþlkssþl21R21d ¼ R21d. Normally, however, the

matrix R is not square but rather has a larger number of rows

than columns, its inverse is not unique, and the inverse of its

transpose, Rþ, does not exist at all. Therefore, in most cases

carrying the simplification further is mathematically incorrect.

This simplification is possible if the inverses of both R and Rþ
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exist, which is only true if the number of data points is identical to

the number of degrees of freedom in the underlying signal, or when

the signal correlation function is a Dirac delta function.

However, when the simplification can be performed the UMV

estimator is equivalent to direct inversion. Since direct inversion in

the presence of noise could produce very large uncertainties in the

reconstructed signal one should resort to extra regularization that

reduces the variance to a manageable size. An example of such an

extra regularization is given in Section 3.

To summarize, the regularization strength of the UMV estimator

stems from the cross-talk between the underlying signal and the

data points at different locations. The stronger the correlation is,

the more advantageous the use of the UMV. With the absence of

such a cross-talk, the number of degrees of freedom that one can

reconstruct is identical to the number of data points, and the UMV

estimator is reduced in this case back to R21; that is, it is equivalent

to direct inversion, a case that requires extra regularization in order

to reduce the, often huge, uncertainty introduced by the noise.

3 E X T R A R E G U L A R I Z AT I O N

As shown in the previous section, the UMV could be equivalent to

direct inversion; therefore, while it produces an unbiased estimator

of the underlying field, it gives a ‘minimum variance’ that is too

large to be useful. In contrast, the WF filter produces a manageable

variance but a large degree of bias. Hence, the UMV alone is often

insufficient to stabilize the deconvolution and consequently it must

either be modified, be supplemented with extra regularization, or

replaced with another method.

Of course, to solve the inversion problem fully one might want

to use more sophisticated non-linear methods such as maximum

entropy (Gull 1989), or Pixons image restoration algorithm (Piña &

Puetter 1993), etc. These methods, however more advanced, are

much more computationally expensive and complicated to apply.

In this paper we choose to modify the UMV inversion method

with extra regularization that is both simple and easy to integrate

into the algorithm. In Subsections 3.1 and 3.2, two simple extra

regularization methods are introduced, the singular value

decomposition (SVD) algorithm (e.g. Press et al. 1992), and a

WF-like regularization. These methods are basically applied to find

the vector a, defined as a ; O21d ; kooþl21d (see equation 5).

The difficulty in finding a could be due to the inversion instability

of O or due to the noise in vector d. In both methods suggested here

this difficulty is solved by, in effect, adding elements to the

diagonal of O or to its eigenvalues, so that the inversion of O is

stabilized and at the same time the noise contribution of d to the

vector a is suppressed.

3.1 The singular value decomposition algorithm as a

regularizer

The following presentation follows the one in Zaroubi et al. (1995).

Mathematically, the solution of equation (5) involves the solution

of the equation

Oa ¼ d; ð9Þ

for the unknown vector a.

The SVD algorithm basically decomposes the positive-definite

matrix1 O* into a multiplication of three matrices, O ¼ U diag{wi}

Uþ, where the set {wi} is referred to as the collection of singular

values, or the eigenmodes, and the columns of the matrix U are

orthogonal and proportional to the eigenvectors of O. The

inversion, after decomposition, is straightforward and gives O21 ¼

U diag{1/wi} Uþ. Formally speaking, equation (9) has a unique

solution if and only if O is a non-singular matrix, namely if wi – 0

for all i. However, a meaningful solution can be obtained even in

the case where O is singular, by requiring the solution to minimize

the norm of the residuals, jOa 2 dj. Such a solution is obtained by

substituting 1/wi ¼ 0 in the expression for the inverse for any

wi ¼ 0 (Press et al. 1992).

In any given problem, the lower limit of the singular values

below which the inverse values are set to zero must be set. In

general, the singular values measure the amount of ‘information’

carried by each mode in the problem (Press et al. 1992); in other

words, the small singular values do not contribute significantly to

the reconstruction, but they can destabilize the inversion. As an

extension of the ideal case of wi ¼ 0, we impose a cut-off on the

small singular values in order to maintain stability. Often, the

structure of the sorted spectrum of singular values contains a very

sharp drop normally appearing as a ‘knee’. The location of the

‘knee’ usually determines the singular values that contain sufficient

information. A simple cut-off at the location of the ‘knee’ normally

does the trick and stabilizes the inversion.

Another possible criterion for the choice of the cut-off would be

by expanding the matrix O in terms of signal-to-noise eigenmodes

(Bond 1995). This method allows a simultaneous diagonalization

of the matrix O and the noise matrix N, which in turn allows the

usage of some signal-to-noise ratio threshold (typically 1) in order

to set the cut-off. For a specific application see the 1D example in

Section 5.1, especially the expansion shown in Fig. 2 (see also the

example discussed in Zaroubi et al. 1995).

3.2 Wiener-filter-like regularizer

The WF by itself is a very robust and efficient regularizer. The

main reason for this stems from the relatively high values of the

diagonal terms in the matrix kdd þl. These high values usually

come from the noise contribution, especially if it is uncorrelated

(e.g. white noise). This aspect is, of course, also responsible for the

suppression of the Wiener reconstructed signal.

From the point of view of the SVD algorithm the stabilization

effect caused by the noise diagonal elements is quite obvious,

especially in the light of the following example. Consider the

simplest case of white Gaussian noise where the noise correlation

matrix is proportional to the unity matrix, I. With the application of

the SVD algorithm, the noise contribution is still proportional to

the unit matrix and is the same for every singular value. This means

that the singular values can be as small as the noise and none of

them has a value of ‘zero’; therefore, the matrix is naturally stable

and no extra stabilization is normally needed.

In order to utilize the stabilization aspect of the WF on the one

hand, while avoiding the signal suppression aspect on the other, we

add a very small white noise-like contribution to the correlation

matrix O. Naturally, one should seek the smallest possible addition

in order that the recovered signal is suppressed as little as possible.

The choice of the amplitude of the addional noise term could be

guided by the same signal-to-noise cut-off criterion as discussed in

Section 3.1. This is, of course, problem-dependent and should be

carried out with caution.

An example of the application of this approach is discussed in

Section 5.1.

1 The matrix O is an auto-correlation matrix, therefore it is a square

positive-definite matrix.
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4 C O N S T R A I N E D R E A L I Z AT I O N S

Hoffman & Ribak (1991) showed that, within the framework of

Gaussian random fields and a given prior, any realization can be

split into two parts: the mean field, or the WF field, which is

determined by the constraints (data); and the residual field, which

is a Gaussian random field. Thus, one can make a constrained

realization of the underlying field given the assumed prior model

and the data.

With the UMV reconstructed field one can produce constrained

noisy realizations at every point in space only if the noise in the

observed quantity is uncorrelated. The formulation here is quite

similar to the constrained realizations procedure of Hoffman &

Ribak (1991); one produces a random realization of the noisy

underlying field and noise, ~s Noisyð¼ ~sþ ~sÞ, then samples it in the

same way as the actual data are obtained:

~d ¼ R~sþ ~e: ð10Þ

Here, s̃ and ẽ are random realizations of the underlying field and

the statistical uncertainties, respectively. The noise in the random

realization of the data ẽ is related to the noise in the random

realization of the underlying noisy field s̃ through the response

function,

~e ¼ R ~s: ð11Þ

A constrained realization of the field given the data is given by

s Noisy ¼ ~s Noisy þ Hðd 2 ~dÞ: ð12Þ

Here s Noisy is the constrained noisy realization.

Note that if the noise, ẽ, is correlated, one cannot use this

formalism as the UMV takes into account only the correlation in

the underlying signal. In such a case, an alternative approach is

with the noise correlation included in the estimator; here one can

expand the UMV estimator to have the form

s UMV ¼ ksoþ þ seþlkooþ þ eeþl21d: ð13Þ

This kind of noisy constrained realization could be very useful

for cases when one has gaps in the data that one would like to fill,

not only in a manner consistent with the data but also with the same

power spectrum as the signalþ noise.

5 A P P L I C AT I O N S

The UMVestimator can be applied to many areas of LSS and CMB

for (1) interpolating between data points, for example filling in

gaps in the time-ordered data to help map-making, bridging the

Zone of Avoidance and other uncovered areas in nearly full sky

catalogues, etc.; and (2) stabilizing inversions used to transform

one dynamical field to another, for example from radial peculiar

velocity field to density field, or from redshift to real density.

Here we present two examples: the first is a reconstruction from

a 1D time series of noisy convolved signal with gaps, for example

CMB time-ordered data; the second shows how this method could

be applied to reconstruct the 3D density and peculiar velocity fields

from observed galaxy radial peculiar velocity catalogues.

5.1 Time series example: deconvolution of noisy data with

gaps

To test the performance of the UMV estimator we proceed with a

simple 1D example. Let s be a random Gaussian time series, with a

known correlation function, which we would like to measure in the

time range ½0–200� (the signal and time units are arbitrary). The

measurement involves a convolution of the signal with a Gaussian

window of 5 time units width, and the convolution is described by

the matrix C. The measurement procedure uniformly samples the

signal at about 100 positions, except for the time range of

½90–100�, where there is a gap in the data. An instrumental white

noise, e, with standard deviation three times larger than the signal

standard deviation is added. Mathematically, the data are

connected to the underlying signal by d ¼ Csþ e. The heavy

solid line in Fig. 1 shows the underlying signal and the connected

diamonds represent the measured data.

This specific example is typical of what one obtains in CMB

time-ordered data types of measurements where the matrix C is the

instrument’s point spread function, the noise level reflects the

detectors sensitivity, and the gaps are drop-outs in the data stream.

The UMV and WF estimators for this case are

s UMV ¼ kssþCþlkCssþCþl21d; ð14Þ

and,

s WF ¼ kssþCþlkCssþCþ þ e 2Il21d: ð15Þ

Owing to the large correlation length in this example, the matrix

O ; kCssþCþl in equation (14) is unstable for inversion, and

therefore, as previously discussed, one has to apply an extra

regularization scheme. The heavy solid line in Fig. 2 shows the

sorted spectrum of the singular values (wi) of the matrix O versus

the mode number. The very abrupt drop of the singular values

around mode number 10 indicates that the information content of

the rest of the singular values is very small and that they are

essentially responsible for the inversion instability. To stabilize the

inversion, we adopt the regularization method described in Section

3.2, and add a diagonal constant with 0.005 of the noise

contribution. The heavy dashed line in Fig. 2 shows the sorted

spectrum of singular values of the regularized O. The two lines are

identical for large singular values and depart at small singular

Figure 1. A 1D reconstruction example. The heavy solid line shows the

underlying signal A(t ) as a function of time; both time and amplitude have

arbitrary units. The underlying signal is convolved with a Gaussian window

function with a width of 5 time units; the convolved signal is then uniformly

sampled with the exception of a gap in the time range 90–100. A random

noise is then added to produce the ‘data’ points shown with the diamond-

shaped connected points; the signal-to-noise ratio in this example is 3. The

heavy dashed line shows the UMV reconstructed signal, while the heavy

dotted line shows the Wiener reconstructed signal.
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values. For comparison, the dotted line in Fig. 2 shows the singular

values of the matrix used in the WF application, namely O þ N.

The heavy dashed line in Fig. 1 shows the UMV reconstruction

of the signal that follows directly from calculating s UMV from

equation (14). The dotted line shows the WF reconstructed signal

as obtained from equation (15). The UMV reconstruction follows

the data points while taking into account the deconvolution and the

prior for the signal temporal correlations. The WF reconstruction is

much smoother and has smaller variance than the underlying

signal.

To demonstrate the differences between the two reconstructions,

Fig. 3 shows an average of 500 reconstructions of data realizations

with the same underlying signal but different noise Monte Carlo.

The unbiased nature of the UMV and the biased nature of the WF

reconstructions are evident. In each UMV reconstruction we have

applied the aforementioned WF-like regularization. The amount of

bias introduced by this procedure is negligible, while the bias for

the full WF application is not.

5.2 Reconstruction from peculiar radial velocity data

Next, we present an example of an application of the UMV

estimator to reconstruct the density and 3D velocity fields from

galaxy radial peculiar velocity data. The data set used here is a

mock catalogue that mimics the SEcat galaxy peculiar velocity

catalogue (Zaroubi 2000), which is a combination of the grouped

and Malmquist-bias-corrected SFI (Giovanelli et al. 1998) and

ENEAR (da Costa et al. 2000) galaxy peculiar velocity catalogues.

The catalogue consists of about 2050 objects (<1300 from SFI and

<750 from ENEAR), for which it provides radial velocities and

inferred distances with errors, of the order of <19 per cent of the

distance per galaxy. The sampling is reasonably homogeneous and

covers the whole sky outside the Zone of Avoidance; the radial

selection function is uniform out to <5500 km s21. The Zone of

Avoidance is about ^158. The SEcat catalogue contains distances

and peculiar velocities of both late-type and early-type galaxies,

and therefore has the advantage of sampling both high- and low-

density environments, minimizing possible biases that may affect

reconstruction from catalogues based on a single population of

galaxies.

The mock catalogue is produced as follows. We first generate a

random linear Gaussian realization of density and velocity with a

LCDM power spectrum (with Vm ¼ 0:3 and L ¼ 0:7Þ. Then the

mock catalogue is produced so that the locations of the data points

in the mock catalogue are the same as for those in the real SEcat

catalogue; however, the values of the radial peculiar velocities are

taken from a random Gaussian realization of the underlying fields.

The original density field is used for comparison with the

reconstructed one.

In this example the data points are given as a set of observed

radial peculiar velocities uo
i sampled at positions ri with estimated

errors e i, assumed to be uncorrelated. The observed velocities are

thus related to the true underlying velocity field v(r), or its radial

component ui at ri, via

uo
i ¼ vðriÞ·r̂i þ e i ; ui þ e i: ð16Þ

We assume that the peculiar velocity field v(r) and the density

fluctuation field d(r) are related via linear gravitational–instability

theory: d ¼ f ðVÞ217·v, where f ðVÞ < V0:6 and V is the mean

universal density parameter. Under the assumption of a specific

theoretical prior for the power spectrum P(k) of the underlying

density field, we can write the UMV estimator of the fields as

v UMVðrÞ ¼ kvðrÞuilkuiujl
21

uo
j ; ð17Þ

and,

dUMVðrÞ ¼ kdðrÞuilkuiujl
21

uo
j : ð18Þ

Assuming linear theory and that the velocities are drawn from a

Gaussian random field, the two-point velocity–velocity and

density–velocity correlation tensors (bracketed quantities in

equations 17 and 18) are readily calculated. The calculation of

these matrices is discussed elsewhere (Górski 1988; Zaroubi et al.

1995, 1999).

We wish to test two aspects of the reconstruction. First, whether

the coverage within the assigned area is good enough for a faithful

recovery of the underlying signal. Second, whether the noise level

allows a reasonable (high signal/noise) reconstruction within the

Figure 3. The solid line shows the same underlying signal as in Fig. 1. To

this signal we add 500 noise realizations to produce Monte-Carlos of the

‘observed’ data. The dashed line shows the mean of the 500 UMV

reconstructions of these realization. The dotted line shows the mean of the

Wiener reconstruction of the 500 data realizations.

Figure 2. Sorted spectrum of singular values of the matrix O. The heavy

solid line shows the singular values of O without regularization. The heavy

dashed line shows the singular values of O after adding a diagonal constant

noise matrix: the constant is 0.005 of the noise rms. The ‘knee’ around

singular values of 1029 is caused by numerical noise. For comparison, the

dotted line shows the singular values of the full WF regularization.
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60 h 21 Mpc sphere. The success of the reconstruction is

demonstrated in Fig. 4. The top-left panel shows the density of

the underlying field, used to construct the mock SEcat catalogue, at

the Z ¼ 0 h 21 Mpc plane, smoothed with a 9 h 21 Mpc Gaussian,

within a sphere of radius 60 h 21 Mpc; this is the target map which

we are attempting to recover.

In order to test the quality of the coverage we construct a noise-

free mock SEcat catalogue which has accurate radial velocities at

the locations of the data points. The top-right panel in Fig. 4 shows

the density reconstruction from the noise-free catalogue; this map

tests mainly the uniformity of the catalogue within a sphere of

60 h 21 Mpc. The very good agreement between this map and the

target map shows that the coverage of the SEcat catalogue is

excellent.

Next, we test the effect of noise on the reconstruction; here we

construct a noisy mock SEcat catalogue where the added noise is

realistic and corresponds to the quoted Tully–Fisher and Dn –s

errors in the real catalogue. The bottom-left panel shows the

density reconstruction from a noisy mock realization of the SEcat

catalogue. The agreement between this map and the target map is

also good (see Fig. 6), although there are some areas where the

recovered signal is not very satisfactory, especially towards the

edge of the sphere.

In order to test where the recovered signal is reliable we

reconstruct the density field from 30 mock catalogues, with the

same underlying field but with different noise realizations, and

compare them with the target map. The bottom-right panel shows

contours of the signal-to-noise ratio, with a spacing of 1 and with

the heavy solid contour denoting a signal-to-noise ratio of unity.

The signal-to-noise ratio in some areas in the map can be up to 15,

and in most of the map the signal-to-noise ratio is greater than a

few. However, if the underlying density is of order zero the signal-

to-noise ratio gives a misleading impression about the quality of

the reconstruction, as in this case it will be always of order zero.

Therefore, the lower-right panel also shows the area (shaded)

within which the error in the density contrast is less than 0.45.

To demonstrate the stability of the inversion, all the panels, with

the exception of the bottom-right panel, in Fig. 5 show

reconstructions similar to the ones shown in the bottom-left

panel of Fig. 4 but with different error realizations. For

comparison, the bottom-right panel in Fig. 5 shows the Wiener

reconstructed density field from one of the noisy mock catalogues

(the one used in the top left panel). Note that here the WF

reconstruction roughly recovers the features in the target map;

however, the amplitude of the density is suppressed throughout the

plane, reflecting the biased nature of the Wiener reconstruction.

Fig. 6 shows a scatter plot of the original versus reconstructed

densities within the whole reconstructed sphere. The densities are

chosen from areas within which the errors, estimated from Monte

Carlos of noisy mock SEcat catalogues, are less than 0.2. The left

panel shows the quality of the reconstruction from a noise-free

catalogue, while the right panel shows the reconstruction

quality from a noisy catalogue. As expected, the scatter in the

right panel is larger. The measured slope is slightly smaller than 1

Figure 4. Testing the method with mock SEcat data. Shown are maps of density in the Supergalactic plane, smoothed with a Gaussian window of 900 km s21,

G9. The density contour spacing is 0.1; the mean d ¼ 0 contour is heavy; positive contours are solid and negative contours are dashed. The top-left panel shows

the original mock Supergalactic plane. The top-right panel is the reconstruction from a noiseless mock catalogue, which shows the uniformity of the sampling

and the quality of the interpolation. The bottom-left panel shows a typical UMV reconstruction from noisy data. The bottom-right panel shows the signal-to-

noise ratio with contour spacing 1. The heavy solid line indicates a signal-to-noise ratio of unity. The shading indicates regions where the error is less than 0.45.
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Figure 5. Maps of density in the Supergalactic plane reconstructed from various Monte Carlo realizations of the errors. The smoothing window is a Gaussian of

radius 900 km s21, G9. The density contour spacing is 0.1; the mean d ¼ 0 contour is heavy; positive contours are solid and negative contours are dashed. The

bottom-right panel shows the Supergalactic plane WF reconstruction from one of the Monte Carlo realizations.

Figure 6. A scatter plot of the underlying density versus the reconstructed density. The densities chosen are from areas within which the reconstruction error is

,0.2; this error is determined using 30 mock SEcat catalogues. The left panel shows the quality of the reconstruction from a noise-free mock catalogue. The

right panel shows the quality of the reconstruction from a noisy mock SEcat catalogue.
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(<0.98 ^ 0.03, where the quoted uncertainty is the 1s error);

nevertheless, the agreement between the original and reconstructed

densities is excellent.

6 D I S C U S S I O N A N D S U M M A RY

A general framework of linear estimation and prediction by

minimal variance subject to a linear constraint in the data has been

introduced. The solution of the minimization problem yields the

UMV estimator, which is shown to be a very useful tool for

reconstructing the large-scale structure of the Universe from

incomplete, noisy and sparse data. The UMV estimator has been

designed to overcome one of the main drawbacks of the WF, which

is that it predicts the null field in the absence of good data; that is,

in the limit of very poor signal-to-noise data the perturbation field

is estimated to be zero. In contrast, the UMV estimator does not

alter the values of the reconstructed field at the locations of the data

points, because it lacks the filtering aspect of the WF; instead, it

keeps the values of the measured data at the locations of the data

points and interpolates between them in accordance with the

correlation function assumed in the model. Like the WF, the new

estimator can be used for dynamical reconstruction; that is, to

reconstruct one dynamical field, for example over-density, from

another measured field, for example radial peculiar velocity. These

two properties make the UMV estimator a very appealing tool for

various applications in LSS and CMB problems.

The regularization strength of the new estimator stems from the

cross-correlation between the signal and the data points at different

locations, which allows a reconstruction that is consistent with the

data points and the correlations among them. Lacking such a

correlation, the UMV estimator is equivalent to direct inversion. In

this case, an additional regularization is required. This issue could

be viewed as follows. The UMV produces an unbiased estimate of

the underlying signal subject to the minimal variance requirement.

This minimal variance could sometimes be too large to be useful.

In comparison, the WF produces a truly minimal variance but with

a biased mean. Therefore, when applying the UMV estimator,

sometimes an extra regularzation is needed in order to, on the one

hand, reduce the variance in the UMV reconstruction to a

manageable value, while keeping the reconstructed underlying

signal as unbiased as possible, on the other. In this paper two extra

regularization methods, which are both simple and easily

integrated into the UMV method, have been discussed.

Constrained realizations of the underlying field (Hoffman &

Ribak 1991) will not be possible with the UMV estimator.

However, constrained realizations of a noisy underlying field are

possible. Such noisy constrained realizations could be very useful

if one wished to fill gaps in the data, for example from balloon-born

CMB measurements, with a realization that has the same assumed

properties as the signalþ noise.

An apparent difficulty arises from the fact that the current UMV

reconstruction assumes linear gravitational instability, yet it is

applied to a universe that is non-linear on scales smaller than a few

Megaparsecs. To obtain a non-linear reconstruction of the

underlying field, snl, one can include the non-linear correlation

by substituting ksnlo
þl in equation (5). This of course only takes

into account the contribution of the variance and ignores the

contribution of higher moments, but in many cases this will do.

In one of the examples presented here, we have applied the

method to galaxy radial peculiar velocity data and shown that the

reconstruction is unbiased and trustworthy within a very large

region of the volume covered by the data. In this context the UMV

reconstruction could be viewed as a compromise between the

POTENT algorithm (Bertschinger & Dekel 1989; Dekel, Bertschin-

ger & Faber 1990), which assumes no regularization, and the WF,

which relies too heavily on it.

The UMV reconstruction of the over-density and the 3D velocity

field from galaxy peculiar velocity catalogues is suitable for bias

parameter extraction from a comparison with the respective fields

obtained from redshift galaxy catalogues such as the PSCz

(Saunders et al. 2000; Branchini et al. 2000). The current estimator

allows density–density and velocity–velocity comparisons to be

carried out using the same reconstruction technique (Zaroubi et al.

2001b).
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