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ABSTRACT

One of the aims of the Low Frequency Array (LOFAR) Epoch ofd®é&tation (EoR) project
is to measure the power spectrum of variations in the intgéiredshifted 21-cm radiation
from the EoR. The sensitivity with which this power spectrcem be estimated depends on the
level of thermal noise and sample variance, and also on stemstic errors arising from the
extraction process, in particular from the subtractionaréfjround contamination. We model
the extraction process using realistic simulations of #&nological signal, the foregrounds
and noise, and so estimate the sensitivity of the LOFAR Eqgieement to the redshifted 21-
cm power spectrum. Detection of emission from the EoR shbeldossible within 360 hours
of observation with a single station beam. Integrating @order, and synthesizing multiple
station beams within the primary (tile) beam, then enabfemuextract progressively more
accurate estimates of the power at a greater range of saadedshifts. We discuss differ-
ent observational strategies which compromise betweethdgmbservation, sky coverage
and frequency coverage. A plan in which lower frequenciegixe a larger fraction of the
time appears to be promising. We also study the nature ofidsevihich foreground fitting
errors induce on the inferred power spectrum, and discusstbhleeduce and correct for this
bias. The angular and line-of-sight power spectra havewifft merits in this respect, and we
suggest considering them separately in the analysis of [RO#ta.

Key words: cosmology: theory — diffuse radiation — methods: statiticradio lines: general

1 INTRODUCTION in the temperature and ionized fraction of the gas, whichnaea
that 21-cm studies may provide information on early sourmes
ionization and heating, such as stars or mini-QSOs. Theogeri
during which the gas undergoes the transition from beingelgr
neutral to largely ionized is known as the Epoch of Reiomirat
(EOR; e.g. Loeb & Barkana 2001; Benson et al. 2006; Furlanett
et al. 2006), while the period beforehand is sometimes knas/n
the cosmic dark ages. While the latter has perhaps the best po
tential to give clean constraints on cosmology, the insemis be-
coming available in the near future are not expected to bsithen
enough at the appropriate frequencies to study this epdeffén

Studying 21-cm radiation from hydrogen at high redshifteeldF
1958, 1959; Hogan & Rees 1979; Scott & Rees 1990; Kumar, Sub-
ramanian & Padmanabhan 1995; Madau, Meiksin & Rees 1997)
promises to be interesting for several reasons. Fluctgtio in-
tensity are sourced partly by density fluctuations, measargs

of which may allow rather tight constraints on cosmologipal
rameters (Mao et al. 2008). They are also sourced by vangtio
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2 G.J. A. Harker et al.

ometrically. Several, though, are hoped to be able to stue DR
(e.g. GMRT! MWA,? LOFAR,;? 21CMA,* PAPER? SKA®), but
even so, their sensitivity is not expected to be sufficienintke
high signal-to-noise images of the 21-cm emission in thg wear
future. We seek, instead, a statistical detection of a ctmgio
cal 21-cm signal, with the most widely studied statisticnigeihe
power spectrum (e.g. Morales & Hewitt 2004; Barkana & Loeb
2005; McQuinn et al. 2006; Bowman, Morales & Hewitt 2006,
2007; Pritchard & Furlanetto 2007; Barkana 2009; Lidz e2808;
Pritchard & Loeb 2008; Sethi & Haiman 2008). Our aim in this pa
per is to test how well the 21-cm power spectrum can be extdact
from data collected with the Low Frequency Array (LOFAR).

The quality of extraction is affected by several factors: oip-
servational strategy and the length of observations, whitéct
the volume being studied and the level of thermal noise; the a
ray design and layout; the foregrounds from Galactic andaext
galactic sources, and the methods used to remove their iciue
from the data (presumably by exploiting their assumed shmasts
as a function of frequency; see e.g. Shaver et al. 1999; Di Mat
teo et al. 2002; Oh & Mack 2003; Zaldarriaga, Furlanetto & tder
quist 2004); excision of radio-frequency interference (RIAd ra-
dio recombination lines; and, for example, the quality ofapiaa-
tion and total intensity calibration for instrumental ant@spheric
effects. We will not study RFI or calibration here. We wilbuaever
use simulations of the cosmological signal (CS), the faregds,
the instrumental response and the noise to generate signtlad¢h
cubes — i.e. the intensity of 21-cm emission as a functionosf p
sition on the sky and observing frequency — and then attempt t
extract the 21-cm power spectrum from these cubes. We genera
data cubes realistic enough so that we can test differermroibg
strategies and methods of subtracting the foregroundslomhdat
the effect on the inferred power spectrum.

We devote the following section to describing the consteaunct
of the data cubes and giving a brief description of their titunsnt
parts. Then, in Section 3 we discuss the extraction of ther@1-
power spectrum from the cubes, including our method forrsauibt
ing the foregrounds. In Section 4 we present our estimatekeof
sensitivity of LOFAR to the 21-cm power spectrum, and discus
the character of the statistical and systematic errors enettes-
timates. We conclude in Section 5 by offering some thoughts o
what these results suggest about the merits of differergrolrgy
strategies and extraction techniques.

2 SIMULATIONS

We test the quality and sensitivity of our power spectrum ex-
traction using synthetic LOFAR data cubes, which have wario

us to probe larger scales. The assumed cosmological paenaet
(Qm, Qa, b, h, 03, n)=(0.238, 0.762, 0.0418, 0.73, 0.74, 0.951),
where all the symbols have their usual meaning. This leads to
a minimum resolved halo mass of aroufidx 10'° A~ M.
Dark matter haloes are populated with sources whose priepert
depend on some assumed model. For this paper we assume the
‘quasar-type’ source model of Thomas et al. (2009), which is
better suited to this simulation than one assuming stetlarces
owing to the relatively low resolution, which raises the imaom
resolved halo mass. The topology and morphology of reiditiaa
is different compared to a simulation with a stellar sourcade,
and the power spectrum is also slightly different. We might
expect quasar reionization to allow an easier detection stellar
reionization, since the regions where the sources are fauad
larger and more highly clustered, producing larger fludtuest
in the signal. This paper is concerned with the extractiorthef
power in general, however, and the precise source propedtie
not expected to affect our conclusions since the fitting appe
to be relatively unaffected by the difference in the souraaleh
(Harker et al. 2009b).

Given the source properties, the pattern of ionization im-co
puted using a one-dimensional radiative transfer code rfiso
& Zaroubi 2008), which allows realizations to be generatedyv
rapidly in a large volume. If the spin temperature is suffitig
large, as we assume here, the differential brightness tetyve
between 21-cm emission and the CMB is given by (Madau et al.
1997; Ciardi & Madau 2003)

ST, Q 024\ (1+2\]?
—I‘;:39h(1+6)mm <o.0§12> Kﬁn)< 10 )] )

where ¢ is the matter density contrastyr is the neutral hy-
drogen fraction, and the current value of the Hubble parame-
ter, Hy = 100h km s~! Mpc~'. The series of periodic simulation
snapshots from different times is converted to a continuhser-
vational cube (position on the sky versus redshift or olatémal
frequency) using the scheme described by Thomas et al. Y2009
In brief, the emission in each snapshot is calculated inhiéds
space (i.e. taking into account velocities along the linesight,
which cause redshift-space distortions). Then, at eackroing
frequency at which an output is required, the signal is dated

by interpolating between the appropriate simulation bo¥és use
frequencies betweel21.5 and200 MHz, so we have a ‘frequency
cube’ of size200 = Mpc x 200 h~! Mpc x 78.5 MHz. To ap-
proximate the field of view of a LOFAR station, however, we ase
square observing window &f x 5°, which corresponds to comov-
ing distances of aroun600 h~! Mpc at the redshifts correspond-
ing to EoR observations. We therefore tile copies of thedexgy
cube in the plane of the sky to fill this observing window, and i

components. The first is the redshifted 21-cm signal which is terpolate the resulting data cube onto a grid 86 x 256 x 158
simulated as described by Thomas et al. (2009). The starting points. This simplified treatment of the field of view imptigias-

point for this is a dark matter simulation d§12® particles
in a cube with sides of comoving leng200 A~ Mpc. The
sides thus have twice the length of the simulations exhdbite
by Thomas et al. (2009) and used in our previous work on
LOFAR EoR signal extraction (Harker et al. 2009a,b), allogvi

Giant Metrewave Telescope, http://www.gmrt.ncra. &.in/

Murchison Widefield Array, http://www.haystack.mit.edst/arrays/mwa/
Low Frequency Array, http://www.lofar.org/

21 Centimeter Array, http://web.phys.cmu.edu/"past/

Precision Array to Probe the EoR, http://astro.berkethy/@backer/eor/
Square Kilometre Array, http://www.skatelescope.org/

D Ut R W N =

sumes that the station beam is equal to unity everywherewith
a square window of frequency-independent angular size zarm
outside. Since we plan to use only the top part of the primagnb

for EOR measurements, the sensitivity will vary relativelpwly
across the field of view. Our simulations of the CS restridiouex-
amining angular modes much smaller than the size of the beam i
any case, and so the main effect of this simplification isighgly
decrease the overall level of noise compared to a more decura
beam model. As we progress to using larger simulations o€®e
which let us examine more angular modes, the effects of the pr
mary beam will become more important and will be included in
future work.
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Figure 1. The rms fluctuation in differential brightness temperatwal-
culated at the resolution of LOFAR, in our simulation of thesmological
signal (CS) is shown as a function of redshift (solid line)r Eomparison,
we show the rms noise for an observing time of 600 hours peuiecy
channel, scaled down by a factor of 6 (dotted line). Note thatvertical
axis scale does not start at zero.

The rms variation in differential brightness temperatune i
each slice of this data cube is shown as a function of redshift
Fig. 1. This rms is calculated at the resolution of LOFAR, ehi
will be around4 arcmin for EOR observations, depending on fre-
guency. Note that the rms fluctuation does not drop to zerdbéy t
lowest redshift in this simulation, indicating that reipafion is not
complete there. This delay in reionization comes aboutimthe
source properties are the same as for our earlier, higtsetrion
simulations, which contain more resolved haloes (i.e. thremum
resolved halo mass is lower). The larger simulations tluzegtiave
fewer sources per unit volume. Such late reionization appea-
realistic given current observational constraints (e.@n,FCarilli
& Keating 2006, and references therein), and means thaaaxtr
ing the power spectrum at low redshift may be more difficult in
reality than we would predict using these simulations. Thestm
stringent test of our power spectrum extraction occursgitér red-
shift, however, since this corresponds to lower observiegden-
cies at which the noise (shown in Fig. 1) and the foregroumds a
larger. The power spectrum evolves less strongly at higkit
and so we expect this simulation to perform reasonably vaelle
compared to high resolution simulations. It may even behtliyg
conservative, since IiHregions at high redshift may increase the
strength of fluctuations at some scales.

We use the foreground simulations of Jeli¢ et al. (2008}sEh
incorporate contributions from Galactic diffuse synchoot and
free-free emission, and supernova remnants. They alsodaain-
resolved extragalactic foregrounds from radio galaxied eatio
clusters. We assume, however, that point sources brightgdnto
be distinguished from the background, either within thedfief
view or outside it, have been removed perfectly from the data
servations of foregrounds 460 MHz at low latitude (Bernardi
et al. 2009) indicate that these simulations fairly desctie prop-
erties of the diffuse foregrounds.

To include the effects of the instrumental response of LO-
FAR we define a sampling functiofi(u, v) which describes how
densely the interferometer baselines sample Fourier spaaehe
course of an observation, such thaty/S is proportional to the

noise on the measurement of the Fourier transform of the sky

in eachuv cell. In general this sampling function is frequency-
dependent, but we examine the effect of this dependencerhy co
paring to a situation in which we assume tinecoverage is the
same at all frequencies. This situation could be approx@chat
practice by not using data av points for which there is no cov-
erage at some frequencies. This would involve discardimpyaqp-
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mately 20 per cent of the data (from the outer part ofuliglane
at high frequencies, and from the inner part at low frequesici
increasing the level of noise and reducing the resolutiohigit
frequencies. Throughout this papsiu, v) is computed under the
assumption that 24 dual stations in the core and the firstafng
LOFAR are used to observe a window at a declinatiof3f.

To simulate our data in theiv plane we perform a two-
dimensional Fourier transform on the image of the foregdsuend
signal at each frequency, and multiply by a mask (tecover-
age) which is unity at grid points in Fourier space ¢ells) where
S(u,v) > 0, and is zero elsewhere. At this point we add uncorre-
lated complex Gaussian noise with an rms proportiona)/tdS to
the cells within the mask. We can then return to the imageeptan
performing an inverse two-dimensional Fourier transfotneach
frequency. This two-dimensional Fourier relationshipvieen the
uvand image plane only holds approximately for long integrai
with a LOFAR-type array, but we use it here since it allows-con
siderable simplification. The overall normalization of tlegel of
noise at each frequency is chosen to match the expected tises no
of single-channel images. Part of the aim of this paper ihtrk
the effect of different levels of noise on power spectrunrastion.
For reference, we assume that 300 hours of observation dEoRe
window with one synthesized beam with LOFAR will give noise
with an rms of78 mK on an image using MHz bandwidth at
150 MHz. Although this is a somewhat conservative choice, it off-
sets the assumption of a uniform primary beam within the foéld
view we are considering, since a more realistic model forgtie
mary beam would produce a noise rms that increased towaeds th
edge of the field of view. The level of noise varies with fregoyg
being related to the system temperature which we assume to be
Tuys = 140 + 60(v/300 MHz) 25 K.

A much more detailed account of the calculation of noise lev-
els and the effects of instrumental corruption for the LOFB&R
project may be found in Labropoulos et al. (2009).

3 EXTRACTION
3.1 The problem of extraction

In this paper, the main limitation on the quality of power sjpem
extraction which we will consider is the subtraction of aptrys-
ical foregrounds. One difficulty encountered in this suttitm is
simply that the fluctuations in the foregrounds are muchdatigan
those in the CS: a subtraction algorithm must ensure thatries
due to the signal are not mistaken for relatively tiny feauin the
foregrounds. A second difficulty is the presence of noiseictvh
limits the accuracy and precision with which we are able tame
sure the foregrounds, and hence the accuracy with which we ca
subtract them. The relative importance of these two effeltthges
with scale, since the power spectra of the foregrounds asignd
noise do not have the same shape.

Our foreground subtraction relies on the foregrounds being
spectrally smooth, i.e. lacking small-scale features énftequency
direction. Any small-scale features are put down to noissigr
nal. Large-scale features due to the CS are more difficuéicowver,
since they can easily be confused with foreground featuites dif-
ficulty of recovering the large-scale power is exacerbatechbse
the fluctuations in the foregrounds become larger compardidet
noise and the signal, making the problem of overfitting mare s
vere.

At small scales, the noise is more of an issue: its power spec-
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trum becomes much larger compared to the foregrounds and sig
nal, making the latter impossible to pick out. The scaleetej@ence
of the contaminants means that there is a ‘sweet spot’: arahg
scales at which both the foregrounds and the noise are snualgh
relative to the CS for the prospects for signal extractiobeg@ood.
This fact has implications for choosing an observationaltst
egy for the LOFAR EoR experiment, because we must trade off
the depth of observation against sky and frequency coverage
deep observation of a small area allows foreground fits ofidrig
quality, and is especially beneficial for the recovery of Braeale
power. It limits the size and number of modes which we can $amp
however, which is especially damaging for the errors on doev-
ered large-scale power. Conversely, increasing the sitleechrea

than in image space, since the mean contribution from foreuts,
noise and signal varies across tineplane. It may be optimal to
vary the parameters of a fitting method according to the jposin
theuvplane. None the less, we obtain reasonable results simply us
ing a third-order polynomial in frequency to fit the real anthgi-
nary parts at each point in the plane. We have also used Wptkmoo
ing to fit the foregrounds in thev plane. This gives us the freedom
to vary the smoothing parametex, across the plane. Near the ori-
gin (i.e. corresponding to large spatial scales) littlestagzation is
required, since the contribution from the foregrounds ismlarger
than that from the signal or the noise and so they are well areds
Toward the edges of the plane we need to make stronger assump-
tions about the smoothness of the foregrounds to avoid tegfi

surveyed beats down sample variance and may allow us to probeand so we make the value dflarger. Finding a ‘natural choice’ for

larger scales, though note that in the case of radio inwmietry
the length of the shortest baselines sets an upper limite@gige of
the available modes. This increase in area is only usefweter,

if the noise levels are low enough to allow foreground fittiogake
place.

Examining this trade-off is one of the aims of this work. Be-

fore doing so, we first outline the procedures we have usetttoefi
foregrounds.

3.2 Fitting procedure

As we mentioned in Section 2, we consider both the case intwhic
the uv coverage of the observations depends on observing fre-
guency, and the idealized case in which it does not. For titer|a
we always fit the foregrounds in the image-space frequenbg cu
using the Wp smoothing method (Machler 1993, 1995) desdrib
in detail in Harker et al. (2009b) and summarized in Secti@n13
This method requires the specification of a parametervhich
governs the level of regularization: larger values imposmaother
solution. We use\ = 0.5 for our image-space fitting, since we
found this to work well for extracting the rms (Harker et 2008b).
Before fitting, we reduce the resolution of the images, carinigi
blocks 0f4 x 4 pixels together to generatéax 64 x 158 data cube.
Since the unbinned pixels are smaller than a resolution ef¢wf
LOFAR (the binned pixels are slightly larger), and since tala-
tive contribution of the noise increases at small scalés gibes not
discard spatial scales at which we can usefully extractimétion,

but does increase the quality of the fit, reducing bias.

When theuv coverage is frequency-dependent, however, fit-
ting in image space becomes problematic, since spatialfitions
are converted to fluctuations in the frequency directionillas-
trated by, for example, Bowman, Morales & Hewitt (2009) arnd L
etal. (2009). Instead, we leave the data cube in Fourieesjoaco
be more preciseu, v, v)-space, since we do not transform along
the frequency direction], and fit the foregrounds as a famctf
frequency at eaclv point before subtracting them and generat-
ing images. The real and imaginary parts are fit separatsiggu
inverse-variance weights to take account of the fact thamntbise
properties change as a function of frequency. This imphes if a
point in theuvplane is not sampled at a particular frequency, then it
has zero weight and does not contribute to the fit. This iefoes
similar to the method proposed by Liu et al. (2009). We didcar
‘lines of sight’ in Fourier space in which the weight is noera
for fewer than ten points, since the foregrounds are not wat-
strained here and we would merely introduce noise into thiglual
images.

This leaves the problem of which method to use to perform
the fitting in Fourier space. Choosing a method is more aw#war

A is somewhat awkward (see Harker et al. 2009b for further dis-
cussion), so at present we choose a mean valuewliich gives
reasonable results, and vary it between lines of sight byimgak
inversely proportional to the mea#,of the fitting weights of points
along that line of sight. Specifically, we uséu, v) = 280/¢(u, v),
wherec(u, v, v;) = 1/S(u, v, v;) /o™ (v;) ande™ (v;) is the rms
image noise at frequenay; expressed in Kelvin. Since the noise
is typically a few tenths of a Kelvin, anfl has values ranging up
to around2.5 x 10°, we end up with\ ~ 15 at the edge of thav
plane and\ ~ 0.03 near the centre, for an integration of 300 hours.
The results are not sensitive to the precise normalization o

3.2.1 Wp smoothing

Wp smoothing is a non-parametric fitting method which appear
to be very suitable for fitting the spectrally smooth foragrds in
EoR data sets. It was developed for general cases by M{dbi@3,
1995), and we have described an algorithm for using it foinfitt
EoR foregrounds in a previous paper (Harker et al. 2009b)wiNe
briefly outline its principles here.

The aim is to fit a functiorf (x) to a series of point§(z;, i) }
subject to a constraint on the number of inflection pointshia t
function, and on the integrated change of curvature away fiee
inflection points. More precisely, define the functibp(x) by

(@) @)

wheresy = £1 andws,...,wn, are the inflection points. The
function f we wish to find is that which minimizes

=sp(@—w)(z—w2)...(x—wn,)e" @,

> pilo— fa) +x [ H02ar, @
i=1 E

x1

where the functiorp;, which takes as its argument the difference
0 = y; — f(z;) between the fitting function and the data points,
penalizes the fitting function if it strays too far from thetalaWe
opt to use a least-squares fit, with(6) = ¢;/(26%) wherec; is a
weight. Our choice for; is given above. The parametgicontrols
the relative importance of the least-squares term and théagza-
tion term, with larger values giving heavier smoothing.

Méchler (1993, 1995) derives an ordinary differential &pn
and appropriate boundary conditions such that the soligidhe
function f which we require. We solve it by discretizing it to give
an algebraic system which we solve using standard methos. |
possible to perform a further minimization over the numbed a
position of the inflection points, but we have found that Sohs
with no inflection points fit the EoR foregrounds well, so wera
require this extra step.

(© 0000 RAS, MNRASD0O, 000—-000
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3.3 Power spectrum estimation

Once we have fit the foregrounds, we subtract the fit to leave a
residual data cube which has as its components the cosmalogi
signal, the noise and any fitting errors. We will mainly be oermed
with the spherically averaged three-dimensional powectspeof
the residuals and their components. These are calculatishwi
some sub-volume of the full data cube (for example, a SlibéHz
thick) by computing the power in cells and then averaginqnit i
spherical annuli to give band-power estimates. We plot g
tity A%(k) = Vk*P(k)/(2r?) (or the analogous one- or two-
dimensional quantity: see e.g. Kaiser & Peacock 1991), esber
is the volume. This is usually called the dimensionless papec-
trum when dealing with the spectrum of overdensities, tioung
this case it has the dimensions of temperature squaxé¢k) is
then the contribution to the temperature fluctuations frootes in
a logarithmic bin around the wavenumber

Different systematic effects are important for modes aland
across the line of sight, however. For this reason we alstutzte
the two-dimensional power spectrum perpendicular to the 6f
sight (i.e. the angular power spectrum, but expressed asctidn
of cosmological wavenumbet) and the one-dimensional power
spectrum along the line of sight. We estimate the two-dirnoeras
power spectrum at a particular frequency by averaging thveepo
in annuli. Estimates calculated from one frequency band ten
be rather noisy, so we usually average the power spectruasscr
several frequency bands to give a less noisy estimate. lorike
dimensional case we simply calculate the one-dimensiooakp
spectrum for each line of sight with no additional binnirtgen av-
erage these spectra across6afl lines of sight R562 lines of sight
in the case of the cubes fit {m, v, ) space] to give an estimate for
the whole volume. Typically we consider a volume orhy8 MHz
deep, so that the CS does not evolve too much within the valume

To see more clearly the contribution to the power spectrum of
the residuals from its different components, we write tr@deals
in Fourier space as

r(k) = s(k) +n(k) + (k) , 4
wheres is the cosmological signat, is the noise and s the fitting
error. Then the power spectrum is given by
PT(k) = (r(k)r(k)") k=r
= P*(k) + P"(k) + P*(k)
+ (e(k)[s(k) + n(k)]" + [s(k) + n(k)]e(k)*>\k\:k(6)

where the subscript indicates that the averaging takes piger

®)

We have assumed here that the expected power spectrum of the
noise is known to reasonable accuracy. In fact, we will ncalble
compute it accurately enoughpriori for real LOFAR data: it must
instead be estimated through observation. It should belpess

do so by differencing adjacent, narrow frequency chanmalsch
narrower than those in the simulations used here, where dte d
have been binned int@5 MHz channels: the estimate would have
to be carried out before this level of binning, using chasraf
perhaps10 kHz). Studying this in more detail in the context of
the LOFAR EoR experiment must be the subject of future work,
though note that this approach has already been appliedate ch
acterize the noise in low frequency foreground observatimade
with the Westerbork telescope (Bernardi et al. 2010) an@Gi&kT
(Ali, Bharadwaj & Chengalur 2008).

3.3.1 Statistical errors

The statistical errors on the extracted power spectrunudeton-
tributions from the noise and from sample variance. Comside
first the noise, in the'" Fourier cell the real and imaginary parts
of the contribution to the gridded visibility from the nojsé”, are
Gaussian-distributed, with mean zero and variantésay), which

is known. ThenV;"|? is exponentially distributed with meav?

and variancels. We may estimate the power spectrum at some
wavenumbe¥k by computing

n 1 - n |2
(P = 2 3 IV @
where the sum is over all cells within an annulus nkaltf the
number of cells in the annulus is sufficiently large, the eamthis
estimate is approximately Gaussian-distributed, and wmate it
as (P"(k))/+/mx, assuming that the different cells are indepen-
dent and using the fact that the variancggf'|? is the square of
its mean. This error translates into an error on the finalaetéd
power spectrum, and can be reduced either by integratingelon
on the same patch of sky (to redugg ~ 1/7 wherer is the ob-
serving time) or by spending the time observing a wider acea t
increase the number of accessible modes, increasindn the lat-
ter case, the error only decreased A¢/7.

Though this estimate of the error is useful as a guide for how
the errors behave as the observational parameters changarea
accurate error bar can be computed in a Monte Carlo fashion by
looking at the dispersion between independent realizatairthe
noise, and this is how we compute the errors in practice.chigin
the analytic estimate is reasonable, it tends to underestirthe

a shell ink-space, and the superscripts label the power spectra of errors at large scales and overestimate them at small scales

the different components. The equality on the second lilevis
because the signal and noise are uncorrelated so theirtenss
average to zero. We cannot assume, however, that the fittioge
are uncorrelated with the signal or noise, which gives ris¢he
final term in angle brackets, which may be either positive eg-n
ative. We may usually expect it to be negative, since we fityawa
some of the signal and noise, reducing the size of the rdsidifia

it is large enough, the power spectrum of the residuals may ev
fall below the power spectrum of the input CS, especiallycates
where the noise power is small.

If we ignore the fitting errors, we may estimate the power
spectrum of the CS by computing the power spectrum of thelresi
uals, then subtracting the expected power spectrum of tise nio
this case, we can make a relatively straightforward esgroéthe
error on the extracted power spectrum, as we see in Sectioh. 3.

(© 0000 RAS, MNRASDOQ, 000-000

The power spectrum of our simulation of the CS is calculated
similarly to the power spectrum of the noise. In this case dtror
(P5(k))/\/my represents the error on our final estimate of the
power spectrum due to sample variance, and can only be réduce
by sampling more modes (increasing,). Unlike the noise, the
fluctuations in the CS are not Gaussian, and so an analyiast
of the error is likely to be less accurate. This should notterabo
much at small scales where in any case the error on our estract
power spectrum is dominated by noise, but on larger scatesaim-
ple variance becomes important. At present we do not havegétno
different realizations of the CS to simulate the errors nregdisti-
cally: as noted in Section 2 we must already tile copies ohglsi
simulation to fill a LOFAR field of view, which limits the rangef
scales we can realistically study. These estimates shbatéfore
be considered an illustration of how we expect the errorhtmge
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as we vary our observational strategy, rather than a defnitlcu-
lation, which is reasonable given the other simplificatinm@shave
made (e.g. adopting a square field of view rather than a tiealis
primary beam shape). Error bars on our extracted power igpect
are computed by adding the noise and sample variance errors i
quadrature.

3.3.2 Systematic errors

The terms involving fitting errors on the right-hand side gtia-
tion (6) will bias our estimate of the power spectrum of the CS
unless they can be accurately corrected for, and so cotegritou
a systematic error. When analysing LOFAR data it may be possi
ble to estimate the size of these terms using simulation#éasito
the ones used in this paper. Bowman et al. (2009) have estimat
them for simulations of MWA data through a ‘subtraction @war
terization factor'fs (k) = (P°(k))/P* (k). By fitting cubes which
include different realizations of the CS and noise, it sHalko be
possible to reflect the statistical error introduced by mglsuch a
correction in the error bars. In this paper we do not makedbis
rection, however: it would be accurate by construction aedce
quite uninformative. Instead we ploP*(k)) = P" (k) — (P"(k))
to illustrate the level of bias we may expect to see if no aiioa is
made. Our error bars will then reflect errors due only to thape
variance and the noise. If the estimated power falls bel@trie
power, we use the estimate of sample variance from the trwempo
since this gives a more realistic view of what the estimatéhef
sample variance would be if we made a correction for the {ttin
bias.

We expect any estimate of the bias, or of the statisticalrerro
introduced by correcting for the bias, to be rather uncertsince
it may depend strongly on the shape of the foregrounds, wisich
unknown to the required level of accuraaypriori, and on the de-
tails of the fitting procedure used. It is none the less dttfigward
to estimate them for a specific foreground model and fittirager
dure.

4 SENSITIVITY ESTIMATES
4.1 Comparison of fitting methods

Examples of extracted power spectra at three differenthifids
for slices8 MHz thick, are given in Fig. 2 (points with error bars).
From top to bottom, the central redshift of the slice used&dohe
panel is 9.96, 8.49 and 7.37, while the mean neutral fraatignn
each slice is 0.998, 0.942 and 0.614, respectively.

For comparison, we also show the power spectrum of the
noiseless CS cube (solid line), the noise (dashed line)raksid-
uals after fitting (dotted line). The extracted power spautis the
difference between the residual and noise power spectayauld
be equal to the noiseless CS power spectrum if there wererae fo
grounds. For this figure we use a frequency-independertov-
erage, so the foreground fitting is carried out in the lowehetion
image cube. A noise level consistent with 300 hours of olzgEm
per frequency bin of a singlé{ x 5°) window using a single sta-
tion beam is assumed. It may not be possible to observe tire ent
frequency range simultaneously, and it may have to be spiitivo
or three segments (e.g. 82 MHz width) only one of which can
be observed at once. If we have to use two such segmentshhen t
300 hours of observation per frequency bin translates tohg00s
of total observing time. This is a somewhat pessimistic agen
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Figure 2. Power spectra of the input CS (solid line), the noise (dagheli
the residuals (dotted line) and the extracted signal (paiith error bars)
at three different redshifts. Here we assumeuki€overage is frequency-
independent, so the foreground fitting is done using Wp shiogtin the
image plane. The noise level is consistent with 300 hoursbstrovation
per frequency bin on a single window, using one station b&dma.redshift
shown in each panel is the central redshift of&aiViHz slice from the
frequency cube. This frequency interval correspondato= 0.63, 0.48
and 0.37 for the top, middle and bottom panel respectively. From tp t
bottom, the mean neutral fraction in each sligg;, is 0.9976, 0.9416 and
0.6140. The missing points in the top panel correspon lxins at which
the power spectrum of the residuals falls below the powectspa of the
noise, so that we would infer an unphysical, negative sigoaler.

for the quality of data we may collect after one year of EoRevbs
vations with LOFAR, since it is hoped that several statioarbe
can be correlated simultaneously to cover the top of the gym
(tile) beam, allowing a larger field of view to be mapped outreno
quickly. It may also be possible to trade off the number ofrbga
against the width of the frequency window, or to spend déffer
amounts of time on different parts of the frequency rangené\o
the less, the assumptions of Fig. 2 provide a useful basatjamst
which we can compare results for deeper observations or fwem
realistic (frequency-dependeniy coverage. It also illustrates the
main features we see in many of our extracted spectra.

For the lowest-redshift slice (bottom panel), the recoegpy
pears to be good: at most scales, the recovery is accurateaand
small errors. At large scales the error bars increase intszause
of sample variance, and it appears that the recovered pqeeer s
trum lies systematically below the input spectrum. Thisfers
because at large scales, we fit away some of the signal power du
ing the foreground fitting. If the points at large scales do sy
pear to jump around as one would expect given the size of the er
ror bars, this is because the error bars here are dominatedrby
ple variance, and so show our uncertainty as to how repratheant
this volume is of the whole Universe. If, instead, we showed e
ror bars showing only the uncertainty on our determinatibthe

(© 0000 RAS, MNRASD0O, 000—-000



Power spectrum extraction for the LOFAR EOR experimerit

z=9.9564 -

L ¢ 1
XH|=0'998 - :
I

log, (8% / (MK)’)

-1 -08 -0.6

3 -0.4
Iogm(k / (h Mpc "))

-0.2

Figure 3. Power spectra of the CS, the noise, the residuals and thectedr
signal for the case when thes coverage is frequency-dependent, we have
300 hours of observation per frequency channel with a sisigiton beam,
and the foreground fitting is done using Wp smoothing in Fengpace. The
redshift slices and the colour coding of the lines are theesasfor Fig. 2,
but note we have changed the scale of the vertical axis taraooalate the
upturn in noise power at small scales.

power spectrunwithin this volumethey would be much smaller
and would be visually consistent with the scatter displaygdhe
points. The error bars grow at small scales because the poiger
becomes larger compared to the signal power, limiting ousise
tivity. We caution that, as noted in Section 2, the simulatiee
use represents a rather optimistic scenario for low-rédskgnal
extraction, since reionization occurs very late.

As we move to higher redshift (middle panel) the situation
worsens slightly, with the error bars increasing in sizeduse of
the higher noise levels. More worryingly, the recovered povs
lower than the input power at all scales (though it becomese&vo
at large scales as before) which seems to indicate thatrfarad
subtraction may cause significant bias in our estimate ofife
nal power even at intermediate scales. The trend continsi@gea
move to the highest redshift slice (top panel). We do not tiet
recovered power for a range of scales betwgerr 107%° and
107°3 h Mpc~!. This is because we infer an unphysical negative
power here. While in principle it may still be possible to fdtatis-
tical upper limits on the power, in practice this seems ndtgase-
ful, since the bias from the fitting procedure would mean tlagy
below the true value. The larger noise at lower frequendigshér
redshifts) increases the size of the error bars comparduktother
panels. The combination of this higher noise and the larges-f
ground power makes fitting the foregrounds at high redshdtem
difficult, as we have seen in previous work (Harker et al. 2009
leading to the observed bias.

The situation is very similar if thewv coverage is frequency-
dependent but we do our fitting using Wp smoothing in Fourier
space. This case can be seen in Fig. 3, which is otherwisesirary
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Figure 4. As for Fig. 3, except that the foregrounds are fit using a third
order polynomial rather than Wp smoothing.

ilar to Fig. 2 except that we have changed the vertical axédesc
to accommodate the upturn in noise power at higlaused by the
varyinguv coverage. The higher small-scale noise coming from the
frequency-dependentv coverage damages the recovery of power
at the smallest scales, but the fitting using Wp smoothingimier
space allows us to recover the power on intermediate ane larg
scales even better than in Fig. 2. The reason that we fit even be
ter than in the supposedly more ideal case of Fig. 2 is pdnty t
the noise level is normalized in the image plane, and so the in
crease in small-scale noise in the frequency-independase s
compensated by a reduction in large-scale noise, impraéogv-

ery there. It is also the case that awrplane fitting is more adap-
tive, applying less regularization at scales where thegianends
dominate and the noise is low. Unfortunately we do not yehav
a well-motivated method to choose the regularization patam\
automatically rather than varying it by hand, but this resufjgests
that finding a suitable method could yield even more improxeim

in the quality of the fitting.

If we use a third-order polynomial fit for the foregrounds
rather than using Wp smoothing, however, the result becomes
worse, especially at high redshift. This is illustrated ig.R, which
is identical to Fig. 3 apart from the fact that polynomial faie
used. While at low redshift the quality of recovery is vidyah-
distinguishable, at high redshift the Wp smoothing of Figlldws
us to recover an estimate of the power spectrum to highdthe
bias at lowk also seems to be larger for polynomial fitting, which
seems to produce overestimates of the power of the CS at large
scales. This may be due to the fact that a polynomial is urtable
match the large-scale spectral shape of the foregrounidsyiag
foreground power to leak into the residuals. Unlike Wp srhoag,
polynomial fitting does not allow us to smoothly vary the lleok
regularization across thesplane (the only parameter we can tweak
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Figure 5. As for Fig. 2, but using a noise level consistent with 180 saafr

observation per frequency bin on a single window, using d¢atos beam.

We also plot two error bars for each point: the grey one on éfieshows

the error from both noise and sample variance as in our otheres, while

the black one on the right shows the error only from noise.

is the polynomial order, which is a somewhat blunt instruthand
this may also contribute to the poorer fit.

We conclude that even though varyimy coverage makes
foreground fitting more awkward, we can mitigate its effegtth-
out having to discard a large proportion of our data if we cdeour
fitting method carefully. At present our scheme for fitting flore-
grounds using Wp smoothing in Fourier space is quite slow-ho
ever, so for the rest of the paper we revert to the case of émegyu
independenuv coverage, for which our image-space fitting works
quickly and reasonably well. Fig. 3 suggests that this shoat af-
fect our comparisons of results using different lengthshsfesving
time or observational strategies. For actual LOFAR dagfitting
of the foregrounds should still be much faster than othgusste
the reprocessing of the data, and so we are likely to use ost mo
accurate scheme (at present, Wp smoothing in Fourier spaee)
if it is slow compared to other schemes.

4.2 Different depths and strategies

Having compared the characteristics of different fittingtinoels,
we now move on to comparing the quality of extraction for dif-
ferent assumptions about the amount of observing time, and f
different observational strategies. We start by showirgektrac-
tion for 180 hours of observing time per frequency bin, mgkn
total of 360 hours of observing time if two frequency ranges a
required, in Fig. 5. This makes it comparable to fig. 12 of Bawmm
et al. (2009), who show a simulated power spectrum for 360shou
of observation with the MWA (though spanning a larger refishi
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Figure 6. As for Fig. 2, except we assume that six station beams are syn-
thesized, rather than one.

black one on the right including only the noise error, as iwBo
man et al.’s figure. Visually, the errors for LOFAR appear Bera

at most scales at the lower redshifts, as we may expect frem th
larger collecting area, but we would expect a computati@fui

ing the sample variance to favour the MWA owing to its largeldfi

of view. Hence we explore the effect of observing multiplden
pendent windows below.

The field of view can also be extended if, as planned, we are
able to synthesize multiple station beams simultaneo&s|yiva-
lently, if we wish from the outset to observe a window lardeart
the ~ 5° x 5° of a single station beam, multiple beams can be
used to achieve observations of greater depth without usioig
observing time. We show the effect of extending the field efwi
in Fig. 6, where we assume that we observe for 300 hours per fre
guency bin (as in Fig. 2), but using six station beams. We inode
the effect of using six beams by reducing the errors due teenoi
and to sample variance by a factord6. A realistic primary beam
model, and the incorporation of modes with smakiewould make
the effect of multiple beams more complicated, but we inocate
the effect in a way which is consistent with our simplified fea
The most obvious effect of using multiple beams is at largdess;
since here the increase in the number of available modesesdu
the (large) sample variance errors as well as the noiseserfte
noise errors at higk are also reduced, however. Since the smallest
scales we probe may be comparable to the size of bubbles Hilthe
distribution, this improvement may be important for coasting
physical models.

This figure also makes it clear what multiple beamsndd
do. Increasing the field of view in this way does not incredse t
signal to noise along each line of sight, and so the foregidititing

range than a panel of our figure). To make the comparison more does not improve. The systematic offset at intermediateesda

direct, we show two error bars for each point, the grey onehen t
left including both the noise error and the sample variaaoé, the

the middle redshift bin is still present, and we remain uaatiol
extract physically meaningful information at high redshit these
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Figure 7. Power spectra of the original and extracted signal, thelveds
and the noise, using the same line styles as Fig. 2. Each paseines the
same total observing time (900 hours) using six station lseaman8 MHz
slice centred at = 9.96 (with 1 = 0.9976), the same redshift as for the
top panel of Figs. 2—6. The panels differ in the way in which ¢fbserving
time is split between windows: in the top panel we devotetl dabserv-
ing time to a single window, and in the bottom panel we spreadjially
between five different windows. The middle panel shows aerinediate
case.

scales with our current methods. Our CS simulations arevufed
size, so we are unable to demonstrate how the larger fieldeof vi
enables us to recover the power spectrum at loverhe bias we
see at the largest scales in our figures is unlikely to impes/ee
go to yet larger scales, however, and so it may be difficulkpait
the potential afforded by a larger field of view in practice.

We now directly examine the trade-off between spending ob-
serving time to go deeper in a small area, and spending itrte@gu
a larger area. Considering first the situation at the lonedshifts,
we see from Figs. 5 and 6 that after 180 hours of observation pe
frequency channel, the fitting bias has reached a level duatces
very little with deeper observation. Moreover, with the station
beams of Fig. 6 the errors at intermediate scales are rathalt.s
The main effect of deeper observation is then to reduce ttoeser
only at the very smallest scales. It would clearly be morditaiole
to use extra observing time to cover multiple windows, arttioe
the large-scale errors which are dominated by sample \agian

At high redshift the trade-off between depth and number of
windows is more interesting, as we see in Fig. 7. Here, aliehr
panels show power spectra at the same redshift as the topgiane
our earlier figures{ = 9.9564, with Zgyr = 0.9976). The differ-
ent panels distinguish between different ways of allocpsiriixed
amount (900 hours) of observing time per frequency band sikh
station beams. If we use this time to observe five differemideivs
(bottom panel), as seems to be preferable at low redshéfttain
effect is to reduce the size of the statistical errors in éoregf the
power spectrum (lovik) where there is in any case a relatively large
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and uncertain systematic correction to be made for thedithias.
Meanwhile, the large amount of noise per window degrades the
fitting at intermediate scales. Taking 300 hours of obs@mgber
frequency band per window (middle panel) reduces the biagso
what, and enables recovery of reasonable quality acrosgerla
range of scales. Only with 900 hours of observation of a simgh-
dow (top panel), however, are we able to recover a physigddiy-
sible estimate of the power across almost all the accessidlies.
Even at those scales at which the shallower observatioow/exd
some sort of estimate of the power, the increased depth esdhe
bias from the fitting, so that it becomes comparable to thistizal
error bars.

The tension between optimizing low- and high-redshift xeco
ery is not the only consideration in deciding how many window
to observe and for how long. Using multiple windows will hétp
control the systematics because we can then compare fielts wi
different foregrounds and different positions in the skyvé wish
to observe for a reasonable fraction of the year, we are red tio
observe different windows since some may be inaccessibiecor
low in the sky during some periods. None the less, a hybriat-str
egy in which some windows receive more time than others may be
possible.

Another possible strategy, since the higher redshift bopear
to benefit more from longer integration times, is to spendy&n
observing higher redshifts than lower redshifts. Since Wweaay
split up the frequency range into different chunks which ao¢
observed simultaneously, this may be possible without ssice
difficulty. We note, however, that for other reasons (for rapée
improving the calibration), it may be desirable not to sgii¢ fre-
guency range into large contiguous chunks, but into twaliedsed
combs. This would enforce a uniform integration time acribgs
whole frequency range. A further problem one may envisatfeais
the noise rms would jump discontinuously across the gap dsstw
the two frequency chunks. Unless the noise is well charzetgdy
such a jump could be confused with a change in the signal rras du
to reionization. It may also complicate the foregroundriitiand
so we test this in Fig. 8. Here we have assumed that we havé spen
1200 hours on the low frequency chunk (beléd0 MHz), and
only 300 hours on the high frequency chunk. This does notappe
to affect our fitting adversely. Even if we choose to plot tlogvpr
spectrum in a slice which straddles the crossover betwaendad
short integration times, the extraction appears to be stdbbther
factors allow us to use such a strategy, then, it appears tovie
able way to make the quality of our signal extraction mordarm
across the redshift range we probe.

4.3 Source of the large-scale bias

Even when we achieve small statistical errors, as for théobot
panel of Fig. 6, a bias persists on large scales. We look fer th
origin of this bias by plotting the power spectrum of modeshia
plane of the sky (the angular power spectrum) in Fig. 9, amd th
one-dimensional power spectrum along the line of sight g E0.
For both of these figures we consider a slice at low redshéff¢a
the bottom panel Fig. 6), and assume 900 hours of observagion
frequency chunk with one station beam.

The extracted two-dimensional power spectrum appears to
behave similarly to the three-dimensional power spectrain,
beit with slightly larger error bars because we have fewedeso
available. The bias at large scales persists: we undea@stithe
power because we fit away some of the signal and noise. The one-
dimensional power spectrum looks rather different. It igeac-
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Figure 8. Power spectra at three different redshifts, using the sanee |
styles as before. In this case, however, we assume thatakineies above
160 MHz (corresponding ta = 7.9) we have used 300 hours of integra-
tion time, while below160 MHz we have used 1200 hours of integration
time, in each case using one station beam.

AR z=7.3717
-1f -
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-1.4 -1.2 -1 -08 ~ -06 -0.4
log, [k / (h Mpc 7))

Figure 9. Two-dimensional power spectrum in the plane of the sky, for
a slice8 MHz thick centred at: = 7.3717 and withzy; = 0.6140,

for 900 hours of integration with a single station beam. Tihe ktyles for
the original signal, noise, residuals and extracted spectre as for the
previous figures.
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curately determined because we average over so many lines of - X,,=0.614
sight, and there is no apparent bias in the extraction. Thee on 0.
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dimensional power spectrum does not extend to such lardessca
as the two-dimensional power spectrum because we restriet o
selves to quite a narrow frequency slice (corresponding to-a
moving depth 003.2 A~! Mpc) to avoid evolution effects, but it
does extend to scales at which the two-dimensional powes-spe
trum shows bias. We have experimented with using slicestwhic
are twice as thickl(6 MHz) and these still show no significant bias
at the largest scales. The one-dimensional power specttends

to smaller scales than the two-dimensional one, since thgasp
resolution is better along the frequency direction for 6ur MHz
channels. This resolution, and the lack of bias, may be ugefe

are able to invert the one-dimensional power spectrum tovesc
the three-dimensional power spectrum (Kaiser & Peacock ;199
Zaroubi et al. 2006).

At first sight it seems somewhat puzzling that although we as-
sume that the foregrounds are smooth in the frequency direct
— we effectively ignore very large-scale power along the lof
sight — the fitting bias manifests itself most clearly in theya-
lar power spectrum. Note, though, that if our estimate offtire-
grounds along a line of sight is offset by some constant, carby
amount that is approximately constant within the narrowgdiency
range in which we estimate the power spectrum (the fits arayaw
computed across the full frequency range to avoid edge tsjfec
this does not change the power spectrum of the residualg #hen
line of sight at all. If this offset is different between difent lines
of sight, though, then this will be apparent in the angulavgo
spectrum of the residuals at each frequency. If the offgatearby
points are correlated, perhaps because the foregrounkismwidme
region have a similar shape and strength, then the anguleerpo

log, (k / (h Mpc )

Figure 10. One-dimensional power spectrum along the line of sight, for
a slice8 MHz (93.2 h~! Mpc) deep centred at = 7.3717 and with
Zy1 = 0.6140, for 900 hours of integration with a single station beam. The
line styles for the original signal, noise, residuals anttasted spectrum
are as for the previous figures.

spectrum of the residuals on small scales will hardly becadie.
At scales larger than the correlation length of the fittinges then
these offsets could lead to the bias which we see.

In any case, Figs. 9 and 10 suggest that we should consider the
angular and line-of-sight power spectra separately in afyais of
LOFAR data, though ultimately neither will allow us to coréh
models as tightly as a three-dimensional power spectruratwihi
cludes a contribution from all modes. The line-of-sight powpec-
trum appears to be less vulnerable to bias and extends terfigh
while the angular power spectrum extends to larger scalg srey
have greater power to distinguish between models of redioiz.

The more sophisticated version of this separation — exparnitie
three-dimensional power spectruR{k, 1) in powers ofy, the co-

sine of the angle between a mode and the line-of-sight (Barka
& Loeb 2005) — is, unfortunately, not likely to be useful fdret
noise levels expected for LOFAR, though we have not yet made a
guantitative investigation of this possibility.
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5 SUMMARY AND DISCUSSION

In this paper we have studied the extraction of the 21-cm EoR
power spectrum from simulated LOFAR data. The simulatidns a
low us to compute the statistical errors on the power spectiue

to thermal noise and sample variance, and these are smaigleno
to raise the possibility of a significant detection of envssirom
the EoR using only a modest amount of observing time. If wdwis
to estimate the power spectrum accurately, however, thierhes
more challenging once we take into account the presenceioffit
errors from the subtraction of astrophysical foregrourideese er-
rors are correlated (positively or negatively) with thergigand the
noise in general, and introduce a scale-dependent biasimtes-
timate of the power spectrum. We anticipate that simulatisunch
as the ones studied here could be used to estimate and domrect
the bias; this would induce a further statistical error ihoan be
straightforwardly computed by using multiple realizasaf a sim-
ulated observation. Making this sort of correction will alyg be
uncertain, though, so it is desirable to minimize its size Ndve
looked at the extent to which the size of the correction, al$ age
the size of the statistical errors, can be reduced by ohsgifiar
longer or using alternative observational strategies.

Before that, though, we tested that extraction is still fiesf
we do not make the assumption that tecoverage is independent
of frequency. We find that this necessitates fitting the faregds
in the (u, v, v) cube rather than the image cube, as noted by Liu
et al. (2009). The Wp smoothing method, which we have used pre
viously to fit the foregrounds in the image cube, can be adajote
work in the (u, v, v) cube by fitting the real and imaginary parts
independently for eachv cell and by varying the regularization
parameter), across theiv plane. This yields results comparable to
(in fact, even better than) those we obtain if we assume &eqy+
independentiv coverage and then fit in the image cube. We have
also tried using a third-order polynomial to fit the foregnads in
the (u, v, v) cube: this yields results which are acceptable, but not
as good as those obtained using Wp smoothing. The main draw-
back of Wp smoothing in this case is its speed, especiallifas
of sight’ near the centre of thev plane where it is best to choose a
small value for\ (implying little smoothing). Because Wp smooth-
ing in the image cube is faster, because the polynomialditiives
worse results than Wp smoothing in tie, v, v) cube, and be-
cause Wp smoothing produces extraction of similar qualityhie
image and(u, v, ) cubes, we have concentrated on results using
frequency-independenty coverage to explore the different scenar-
ios in this paper.

We have found that a year’s observations (of, say, 600 hours,
of which perhaps 360 could be of a single window) should be suf
ficient to detect cosmological 21-cm emission from towaius t
end of the EoR. We caution, however, that the approximations
ployed in this paper prevent us from treating these numlsensae
than rough estimates. If we wish to study the power spectrum a
small or large scales — away from the ‘sweet spot’ at inteiated
k — it will be important to be able to synthesize multiple siati
beams. This allows us to reduce the statistical errors frampge
variance and noise. Unfortunately, however, there appedss no
substitute for extending the integration time, especitdlyprobe
high redshifts and very small scales. This is because ordp dé-
servations can improve the quality of the foreground fittingd
hence reduce the systematic offset between the true sigdaha
recovered signal.

just two frequency bands (the instantaneous frequencyragees
limited), 600 hours of observation of a single window shohél
enough to yield quite precise and accurate power spectra tip:t

9, for k between approximately 0.03 aAd; ~ Mpc~!. Pushing to
the very highest redshifts accessible with the frequenegame of
LOFAR'’s high band antennas requires somewhat longer: psrha
900 hours per frequency band, which corresponds to 180Gstafur
observation if there are two frequency bands.

With observations of this depth, the limiting factor in tha-s
tistical errors comes from sample variance on large scalagh
can only be reduced by observing a larger area of sky. Thigés o
of several reasons why the LOFAR EoR project plans to observe
multiple — perhaps five — independent windows. We have ajread
seen that approximately 600 hours per window is requiredtfer
thermal noise errors to be small and the bias to be underaontr
for redshifts less than about 9. For five windows, this cqoesis
to 3000 hours of observation. Comparing the independerdavis
will also allow important cross-checks, in particular tegistemat-
ics are under control.

To really push towards precise constraints on the power-spec
trum towards the start of reionization, the 1800 hours perdaiv
that we find yelds high quality extraction at> 10 corresponds to
9000 total hours for five windows. This figure may be reduced if
a hybrid strategy, in which we integrate for a longer timeawér
frequency bands, turns out to be feasible. From the poinienf v
of foreground fitting and power spectrum extraction, igngrcon-
straints that may be imposed by calibration etc., a hybriatesgy
does indeed seem to be feasible. Of course, we have corsidere
this strategy only from the point of view of the power spentru
If deeper observations at all frequencies would allow usushp
beyond the power spectrum, perhaps into a regime where we can
observe individual features in the distribution of 21-cmigsion
towards the end of reionization with reasonable signal teeydhen
this would surely be valuable too.

Other hybrid strategies are also possible, for example ones
in which different windows are observed for different amtsuof
time. We have not studied them here since they do not reafhaan
the fitting and extraction, which is independent for eachdaim.
None the less, they may allow us to obtain high redshift cairgs
by observing one window deeply, while simultaneously aitaywus
to beat down sample variance errors on large scales at Iasifes
by observing several other windows at reduced depth.

In any case, our study suggests that as the amount of time
spent observing the EoR with LOFAR is increased, this allag/s
to make qualitative improvements to the fitting, and to thege
of scales and redshifts we can probe accurately. Deepegyratien
does more than simply allow us to shrink our statistical loars.

This all depends, however, on the robustness of our fitting
techniques, and more generally on the level of control weahte
to exercise over systematic errors. The Wp smoothing metred
have introduced previously appears to work well when it conoe
extracting the power spectrum. This holds whether we apdly i
an idealized case in which thw coverage of the instrument is con-
stant with frequency, or to a more realistic case in whichaities.
We confirm a suspicion we have expressed previously (Hatksdr e
2009b) that the power spectrum may be easier to extract thap-a
parently simpler statistic such as the rms of the 21-cm sigha
fitting errors are scale-dependent, and a power spectrutgsisma
allows us to pick out the scales where our method works beht wi

Under the optimistic assumptions that we can synthesize six out being swamped by small-scale noise. Splitting the pa@pec-
beams, and that the useful frequency range can be covenag usi trum into angular and line-of-sight components may helpous$t
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the robustness of our conclusions, and perhaps extend #tialsp
dynamic range we can probe.

We have assumed here that the power spectrum of the noise

is known to reasonable accuracy, an assumption which widhxe
amined in future work. We will also study in a future paper how
different strategies alter our ability to constrain thegraeters of
reionization models.

Finally, we note that foreground fitting and power spectrum
extraction are late steps in the collection and analysis@FAR
EoR data. They depend on earlier and probably more diffiteitss
such as instrumental calibration (including polarizatiaich we
have neglected here), correcting for the ionosphere, amexhi-
sion of RFI. The results of this paper only reassure us tlealater
stages are unlikely to be the limiting ones.
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